用字母表示加法运算定律
- 格式:pptx
- 大小:2.36 MB
- 文档页数:15
加减乘除运算定律字母公式在咱们学习数学的道路上,加减乘除运算定律那可是相当重要的“法宝”。
就像咱们出门得带钥匙,这些定律就是解决数学问题的“钥匙”。
先来说说加法交换律,用字母表示就是 a + b = b + a 。
这就好比你有 3 个苹果,我有 5 个苹果,咱俩交换一下,咱俩拥有的苹果总数还是 8 个。
我还记得有一次,我和小伙伴一起去买糖果,我买了 7 颗,他买了 9 颗,然后我们俩就互相分享,不管先数我的还是先数他的,加起来都是 16 颗,这就是加法交换律在生活中的体现。
加法结合律呢,字母公式是 (a + b) + c = a + (b + c) 。
比如说,咱们要算 2 + 3 + 5 ,可以先算 2 + 3 = 5 ,再加上 5 ,得到 10 ;也可以先算3 + 5 = 8 ,再加上 2 ,结果还是 10 。
有一回我们班级组织活动,要准备道具,有一组同学负责准备气球,第一波同学拿来了 10 个,第二波同学拿来了 15 个,第三波同学拿来了 20 个。
我们计算总共的气球数量,就可以用加法结合律,先把 10 和 15 加起来,再加上 20 ,或者先把 15 和 20 加起来,再加上 10 ,都能很快算出一共有 45 个气球。
减法的性质,用字母表示是 a - b - c = a - (b + c) 。
这就好像你有 100 块零花钱,花了 20 块买文具,又花了 30 块买零食,那其实就相当于一次性花了 50 块,你剩下的钱就是 100 - (20 + 30) = 50 块。
我记得有一次和妈妈去逛街,她给了我 200 元让我自由支配。
我看中了一本书80 元,一个玩具 60 元。
我要是分开算,200 - 80 - 60 ,有点麻烦。
但用减法的性质,200 - (80 + 60) ,一下子就算出来还剩下 60 元。
乘法交换律,字母公式是 a × b = b × a 。
比如说教室里面每行有 6个座位,一共 8 行,那座位总数就是 6 × 8 = 48 个;反过来,要是说每列有 8 个座位,一共 6 列,总数还是 48 个,这就是乘法交换律。
用字母表示加法运算定律-冀教版四年级数学下册教案一、教学目标1.认识加法运算定律。
2.能够用字母表示加法运算定律,如a + b = b + a。
3.了解用字母表示加法运算定律的应用场合。
二、教学重难点1.重点:加法运算定律的概念和用字母表示方法。
2.难点:理解用字母表示加法运算定律的意义。
三、教学内容1.加法运算定律的概念。
2.用字母表示加法运算定律,如a + b = b + a。
四、教学步骤1. 导入新课介绍本节课的学习目标和重点难点,引发学生对本课的兴趣。
2. 学习新知(1)加法运算定律的概念加法运算定律是指加法运算中,加数的先后顺序不影响和的结果,即区别顺序的加数交换顺序不影响和的结果。
例如,1 + 2 = 2 + 1。
(2)用字母表示加法运算定律我们可以用字母表示加法运算定律,如a + b = b + a。
其中,a和b都是任意数。
3. 拓展应用(1)用字母解决实际问题假设有两个气球,一个气球上写着“a”,另一个气球上写着“b”,我们将它们插到长度为5的细木棍上,可得a + b = 5。
现在,有一个长为10的细木棍,我们可以用字母表示得到a + b = 10。
通过这种方法,我们可以解决更加复杂的实际问题。
(2)在代数表达中的应用加法运算定律不仅可以用于日常生活中的实际问题,还可用于代数表达式中。
例如,若有表达式a + b + c,我们可以变形为b + a + c,c + b + a等,根据加法运算定律不会改变它的结果。
4. 总结与归纳在加法运算定律的学习中,我们了解了加法运算定律的概念和用字母表示方法,并通过实例掌握了如何用字母解决实际问题和在代数表达中的应用。
五、教学反思通过本节课的教学,我发现学生们对加法运算定律的概念理解较为困难,因此,在讲解时需要结合实例进行讲解,提高学生的兴趣和理解能力。
同时,本节课的实例练习应重点突出,以帮助学生巩固所学内容并培养实际运用能力。
运算定律与性质1、加法运算定律交换律:连加法中,交换两个加法得位置,它们得与不变.例如:96+4=4+96用字母表示:a +b=b+ a同时也适用几个数相加得情况。
例如:28+75+25=25+75+28用字母表示:a + b +c=c+ b+ a结合律:几个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,它们得与不变。
例如:(25+8)+32=25+(8+32)用字母表示:(a+b)+c=(a+ c)+b如果先交换,再结合,可得:a + b+ c=( a + c)+ba+ b + c+ d=( a +d)+(b+c)2、乘法运算定律交换律:在乘法中,交换两个因数得位置,它们得积不变。
例如:12×23=23×12用字母表示:a×b=b×a同时也适用几个数相乘得情况。
例如:12×25×4=4×25×12用字母表示:a×b×c=c×a×b结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再与第一个数相乘,它们得积不变。
例如:25×34×4=(25×4)×34用字母表示:a×b×c=a×(b×c)如先交换,后结合,可得a×b×c=(a×c)×b同时也适用几个数相乘得情况。
例如:25×5×4×2=(25×4) ×(2×5)用字母表示:a×b×c×d=(a×d)×(b×c)分配律:两个数得与或者两个数得差与一个数相乘可以用这个数分别去乘两个数,再把两个积相加或相减。
例如:(25+16)×4=25×4+16×4(25-16)×4=25×4—16×4用字母表示:(a + b)×c=a×c + b×c(a – b)×c=a×c- b×c3、加减混合运算性质(1)在加减混合运算中,改变运算顺序,结果不变。
小学六年级上册数学公式详细整理汇总+重点知识点汇总小学六年级上册数学公式详细整理汇总一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:即围绕物体一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a?a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。
如两个完全相同的三角形、梯形可拼成一个平行四边形。
圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积①长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积①长方体的体积=长×宽×高 V=abh②正方体的体积=棱长×棱长×棱长 V=a×a×a=a3③圆柱的体积=底面积×高V=sh=πr2h④圆锥的体积=底面积×高÷3 V=1/3sh= 1/3πr2h 【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。
《用字母表示运算定律和公式》教案一、教学目标:1. 让学生掌握运算定律和公式的表达方式,并用字母表示出来。
2. 培养学生运用字母表示运算定律和公式的能力,提高其数学思维水平。
3. 通过对运算定律和公式的学习,使学生更好地理解和运用数学知识。
二、教学内容:1. 加法运算定律:a + b = b + a2. 乘法运算定律:a ×b = b ×a,0 ×a = 0,a ×1 = a3. 分配律:a ×(b + c) = a ×b + a ×c4. 结合律:a + b + c = (a + b) + c = a + (b + c)5. 交换律:a ×b = b ×a,a + b = b + a三、教学重点与难点:1. 教学重点:让学生掌握运算定律和公式的表达方式,会用字母表示。
2. 教学难点:理解并运用分配律、结合律和交换律。
四、教学方法:1. 采用讲解法,讲解运算定律和公式的表达方式。
2. 采用例子法,通过具体例子让学生理解和运用运算定律和公式。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学步骤:1. 引入新课,讲解运算定律和公式的表达方式。
2. 通过具体例子,让学生理解和运用运算定律和公式。
3. 布置练习题,让学生巩固所学知识。
5. 布置家庭作业,巩固所学知识。
六、教学评估:1. 课堂练习:观察学生在课堂练习中的表现,了解其对运算定律和公式的掌握程度。
2. 家庭作业:检查学生完成的家庭作业,评估其对所学知识的掌握和运用能力。
3. 课后访谈:与学生进行课后访谈,了解其在课堂外的学习情况和遇到的问题。
七、教学反思:1. 针对学生的学习情况,调整教学方法和策略,以提高教学效果。
2. 对于学生掌握不足的地方,加强讲解和练习,确保学生能够理解和运用运算定律和公式。
3. 关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习积极性。
加减法,减法的性质, 拆分、凑整法简便计算运算定律与简便计算(一)加减法运算定律1.加法交换律:两个加数交换位置,和不变字母表示:a+b = b+ b 例如:16+23=23+162.加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:) (a+b)+c=a+(b+c)注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:1)46+67+54 (2)680+485+120 (3)155+657+245425+14+286 32+179+68 85+47+15+53 168+250+323.减法的性质:一个数减去这两个数的和等于这个数连续减去两个数.A-(B+C) =A-B- C167-(67+84) 376-(276+58) 955-(155+78)967-(67+84)(1)一个数连续减去两个数,等于这个数减去这两个数的和A-B-C=A-(B+C)198-18-82 369-45-55 856-58-42 856-76-244.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:102=100+2,1006=1000+6,…235+102 468+103 504+273 468+402 489+1002 8956+1006凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。
例如:99=100-1,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。