高中数学:均匀随机数的产生 (28)
- 格式:doc
- 大小:2.00 MB
- 文档页数:10
均匀随机数的产生算法下面将介绍几种常见的均匀随机数产生算法:1. 线性同余法算法(Linear congruential generator, LCG):线性同余法算法是最常见的随机数产生算法之一、它的基本原理是通过以下递推公式得到随机数:Xn+1 = (a * Xn + c) mod m其中,Xn是当前的随机数,Xn+1是下一个随机数,a、c、m是常数,通常选择合适的a、c、m可以产生具有良好均匀性的随机数序列。
2. 递推式产生器(Recursive generator):递推式产生器是一种基于数学递推公式的随机数产生算法。
其基本原理是通过递推公式不断更新随机数的值,从而产生一系列随机数。
递推式产生器的一个常见例子是Fibonacci递推式:Xn+2 = (Xn+1 + Xn) mod m其中,Xn是当前的随机数,Xn+2是下一个随机数。
3. 平方取中法(Middle-square method):平方取中法是一种简单的随机数产生算法。
它的基本原理是通过将当前的随机数平方并取中间的几位数字作为下一个随机数。
具体步骤如下:-将当前的随机数平方,得到一个更大的数。
-取平方结果的中间几位作为下一个随机数。
-若需要较大的随机数,再次对下一个随机数进行平方取中操作。
4. 梅森旋转算法(Mersenne Twister):梅森旋转算法是一种基于梅森素数(Mersenne prime)的随机数产生算法。
它具有周期长、随机性好等特点,广泛应用于模拟、统计等领域。
该算法基于以下递归公式生成随机数:Xn=Xn-M^(Xn-M+1,u)其中,Xn是当前的随机数,Xn-M和Xn-M+1是前面两个随机数,u是一系列位操作(如或运算、异或运算等)。
通过选择不同的Xn-M和Xn-M+1,可以生成不同的随机数序列。
混合线性同余法是一种多元随机数产生算法。
它的基本原理是将多个线性同余法的结果进行线性组合,从而产生更高质量的随机数。
[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P135~P136,回答下列问题.(1)教材问题中甲获胜的概率与什么因素有关?提示:与两图中标注B的扇形区域的圆弧的长度有关.(2)教材问题中试验的结果有多少个?其发生的概率相等吗?提示:试验结果有无穷个,但每个试验结果发生的概率相等.2.归纳总结,核心必记(1)几何概型的定义与特点①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等.(2)几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[问题思考](1)几何概型有何特点?提示:几何概型的特点有:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(2)古典概型与几何概型有何区别?提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.[课前反思]通过以上预习,必须掌握的几个知识点:(1)几何概型的定义:;(2)几何概型的特点:;(3)几何概型的计算公式: .某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻.往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.[思考1] 这两个试验可能出现的结果是有限个,还是无限个?提示:无限多个.[思考2] 古典概型和几何概型的异同是什么?名师指津:古典概型和几何概型的异同如表所示:名称古典概型 几何概型 相同点 基本事件发生的可能性相等不同点 ①基本事件有限个 ①基本事件无限个②P (A )=0⇔A 为不可能事件 ②P (A )=0A 为不可能事件③P (B )=1⇔B 为必然事件 ③P (B )=1B 为必然事件 讲一讲1.取一根长为5 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m 的概率有多大?[尝试解答] 如图所示.记“剪得两段绳长都不小于2 m ”为事件A .把绳子五等分,当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的15, 所以事件A 发生的概率P (A )=15.求解与长度有关的几何概型的关键点在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到不会影响事件A的概率.练一练1.(2016·全国乙卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13 B.12 C.23 D.34解析:选B如图,7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P=2040=12.故选B.讲一讲2.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.π2 B.π4 C.π6 D.π8[尝试解答]由几何概型的概率公式可知,质点落在以AB为直径的半圆内的概率P=半圆的面积长方形的面积=12π·121×2=π4,故选B.★★答案★★:B解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积;(3)套用公式,从而求得随机事件的概率.练一练2.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4 B.π2-1 C .2-π2 D.π4解析:选A 由几何概型知所求的概率P =S 图形DEBF S 矩形ABCD =2×1-14×π×12×22×1=1-π4. 讲一讲3.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1 中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[尝试解答] 点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. ★★答案★★:1-π12如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.练一练3.如图所示,有一瓶2升的水,其中含有1个细菌.用一小水杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小水杯中有0.1升水,原瓶中有2升水,∴由几何概型求概率的公式得P (A )=0.12=0.05.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式.2.本节课要掌握以下几类问题:(1)理解几何概型,注意与长度有关的几何概型的求解关键点,见讲1.(2)求解与面积相关的几何概型问题的三个关键点,见讲2.(3)注意与体积有关的几何概型的求解策略,见讲3.3.本节课的易错点:不能正确求出相关线段的长度或相关区域的面积或相关空间的体积,如讲1,2,3.课下能力提升(十九)[学业水平达标练]题组1 与长度有关的几何概型1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( )A.45B.35C.25D.15解析:选B 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35. 2.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析:选A 试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1min ,故P (A )=110. 3.在区间[-2,4]上随机取一个数x ,若x 满足|x |≤m 的概率为56,则m =________. 解析:由|x |≤m ,得-m ≤x ≤m ,当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.★★答案★★:34.如图所示,在单位圆O的某一直径上随机地取一点Q,求过点Q且与该直径垂直的弦长长度不超过1的概率.解:弦长不超过1,即|OQ|≥32,而Q点在直径AB上是随机的,记事件A={弦长超过1}.由几何概型的概率公式得P(A)=32×22=32.∴弦长不超过1的概率为1-P(A)=1-32.题组2与面积、体积有关的几何概型5.在如图所示的正方形中随机撒入 1 000粒芝麻,则撒入圆内的芝麻数大约为________(结果保留整数).解析:设正方形边长为2a,则S正=4a2,S圆=πa2.因此芝麻落入圆内的概率为P=πa24a2=π4,大约有1 000×π4≈785(粒).★★答案★★:7856.一个球型容器的半径为3 cm,里面装有纯净水,因为实验人员不小心混入了一个H7N9病毒,从中任取1 mL水,含有H7N9病毒的概率是________.解析:水的体积为43πR3=43×π×33=36π(cm3)=36π(mL).故含有病毒的概率为P=136π.★★答案★★:136π7.(2015·西安质检)如图,在正方体ABCD-A1B1C1D1内随机取点,则该点落在三棱锥A1-ABC内的概率是________.解析:设正方体的棱长为a,则所求概率P=VA1-ABCVABCD-A1B1C1D1=13×12a2·aa3=16.★★答案★★:168.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设长方体的高为h,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P=2+4h(2h+2)(2h+1)=14,解得h=3或h=-12(舍去),故长方体的体积为1×1×3=3.★★答案★★:39.在街道旁边有一游戏:在铺满边长为9 cm的正方形塑料板的宽广地面上,掷一枚半径为1 cm的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解:(1)如图(1)所示,因为O落在正方形ABCD内任何位置是等可能的,小圆板与正方形塑料板ABCD的边相交接是在圆板的中心O到与它靠近的边的距离不超过1 cm时,所以O落在图中阴影部分时,小圆板就能与塑料板ABCD的边相交接,这个范围的面积等于92-72=32(cm2),因此所求的概率是3292=3281.(2)小圆板与正方形的顶点相交接是在圆心O与正方形的顶点的距离不超过小圆板的半径1 cm 时,如图(2)阴影部分,四块合起来面积为π cm 2,故所求概率是π81. [能力提升综合练] 1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性解析:选A 几何概型和古典概型是两种不同的概率模型,故选A.2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 利用几何概型的概率公式,得P (A )=38,P (B )=28,P (C )=26,P (D )=13, ∴P (A )>P (C )=P (D )>P (B ),故选A.3.如图,在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S 4的概率是( )A.14B.12C.34D.23解析:选C 因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S 4”等价于事件“|BP |∶|AB |>14”.即P (△PBC 的面积大于S 4)=|P A ||BA |=34. 4.已知事件“在矩形ABCD 的边CD 上随机地取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB=( )A.12B.14C.32D.74解析:选D依题可知,设E,F是CD上的四等分点,则P只能在线段EF上且BF =AB.不妨设CD=AB=a,BC=b,则有b2+⎝⎛⎭⎫3a42=a2,即b2=716a2,故ba=74.5.(2016·石家庄高一检测)如图,在平面直角坐标系内,射线OT落在60°角的终边上,任作一条射线OA,则射线OA落在∠xOT内的概率为________.解析:记“射线OA落在∠xOT内”为事件A.构成事件A的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P(A)=60°360°=16.★★答案★★:166.一个多面体的直观图和三视图如图所示,其中M是AB的中点.一只苍蝇在几何体ADF-BCE内自由飞行,求它飞入几何体F-AMCD内的概率.解:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC=a.因为V F-AMCD=13S四边形AMCD×DF=13×12(12a+a)·a·a=14a3,V ADF-BCE=12a2·a=12a3,所以苍蝇飞入几何体F-AMCD内的概率为14a312a3=12.7.在长度为10 cm的线段AD上任取两点B,C.在B,C处折此线段而得一折线,求此折线能构成三角形的概率.解:设AB,AC的长度分别为x,y,由于B,C在线段AD上,因而应有0≤x,y≤10,由此可见,点对(B,C)与正方形K={(x,y)|0≤x≤10,0≤y≤10}中的点(x,y)是一一对应的,先设x <y ,这时,AB ,BC ,CD 能构成三角形的充要条件是AB +BC >CD ,BC +CD >AB ,CD +AB >BC ,注意AB =x ,BC =y -x ,CD =10-y ,代入上面三式,得y >5,x <5,y -x <5,符合此条件的点(x ,y )必落在△GFE 中(如图).同样地,当y <x 时,当且仅当点(x ,y )落在△EHI 中,AC ,CB ,BD 能构成三角形,利用几何概型可知,所求的概率为S △GFE +S △EHI S 正方形=14.。