材料力学习题第三章
- 格式:doc
- 大小:324.00 KB
- 文档页数:3
第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。
A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。
A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。
A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。
A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。
2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。
4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × )2.外力就是构件所承受的载荷。
(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
第三章 扭转3.1 作图示各杆的扭矩图。
(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。
(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。
T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。
3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。
由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。
4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。
由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。
3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。
试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。
T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。
第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。
( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。
( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。
( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。
( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。
6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。
( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。
( )8. 圆杆扭转变形实质上是剪切变形。
( )9. 横截面的角点处的切应力必为零。
( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。
A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。
2. 直径为D 的实心圆轴,两端受扭转力矩作用。
轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。
A .2τ; B .τ; C . 8τ; D .16τ。
3. 阶梯圆轴的最大切应力发生在( )。
A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。
4.空心圆轴的外径为D ,内径为d,α=d/D 。
其抗扭截面系数为( )。
A .()απ-=1163D W P ;B 。
()23116απ-=D W P ;C 。
()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。
A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。
第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
(×)二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()31 16p D W πα=- B ()321 16p D W πα=-C ()331 16p D W πα=- D ()341 16pD Wπα=-6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
材料力学第三章答案
薄壁钢管外径为mm 114,受扭矩m kN 8⋅作用,用薄壁圆管的近似公式确定所需的壁厚t 值。
设容许切应力[]MPa 100=τ。
解:[][]mm r T t t r T 92.3100
5721082226
22=⨯⨯⨯=≥⇒≤=πτπτπτ,取mm t 4=。
3.1 如图所示为圆杆横截面上的扭矩,试画出截面上的切应力分布图。
解:
3.2 直径为mm d 50=的圆轴受力如图所示,求:(1)截面上处A 点的切应力;(2)圆轴上的最大切应力。
解:MPa I T p
4.20
5.125032
1014
6
=⋅⨯⨯=
=πρτρ MPa W T t 7.4016
5010136max
=⨯⨯==πτ 3.3 图示圆轴的直径mm 100=d ,mm 500=l ,
kN.m 71=M ,kN.m 52=M ,已知材料GPa 82=G 。
试求:
(1)轴上的最大切应力,并指出其所在位置;(2)C 截面相对于A 截面的相对扭转角。
解:扭矩图如下
x
2
5
T/kN m
.
MPa W T t 5.2516
10010536max max
=⨯⨯==πτ,发生在BC 段外表面。
ο11.00019.032
1001082500
1053210010825001024
364362211-=-=⨯⨯⨯⨯⨯-⨯⨯⨯⨯⨯=+=+=rad GI l T GI l T P P BC
AB AC ππϕϕϕ。
3.4 图示阶梯形圆轴ABC ,其中AB 段为直径为1d 的实心轴,BC 段为空心轴,其外径125.1d D =。
为了保证空心段BC 的最大切应力与实心段AB 的最大切应力相等,试确定空心段内径d 2。
解:()242422
31121max 1616t t t t W d D D d W W T W T =-==⇒==
π
πτ ()214313
22292.037.1D d d D D d ==-=⇒
3.5 图示AB 轴的转速min 120r n =,从B 轮输入功率=kW 13.44=P ,功率的一半通过锥形齿轮传给垂直
轴II ,另一半由水平轴I 输出。
已知mm 6001=D ,mm 2402=D ,mm 801=d ,mm 602=d ,mm 1003=d ,
[]MPa 20=τ。
试校核各轴的扭转强度。
解:m kN n P T ⋅=⨯=⨯
=51.312013.4455.955.93 m kN n P T ⋅=⨯=⨯=76.1120065
.2255.92/55.91
m kN D D n P T ⋅=⋅⨯
=⋅⨯=70.0240/600120065
.2255.9/2/55.9212
MPa W T t 5.1716
801076.136
111max =⨯⨯==πτ
MPa W T t 6.161660107.036222
max =⨯⨯==πτ;MPa W T t 9.1716
100105.336
333max =⨯⨯==πτ
3.6 三个皮带轮安装在阶梯轴上,其相关尺寸示于图中。
中间皮带轮为主动轮,输入功率为kW 40,左、右各有一只从动轮,其输出功率分别为kW 15和kW 25。
已知轴的转速为min 180r ,轴材料的许用应力为
[]MPa 80=τ。
试校核轴的强度。
解:m N n P M A A ⋅=⨯=⨯
=8.7951801595509550 m N n P M B B ⋅=⨯=⨯=2.212218040
95509550
m N n P M C C ⋅=⨯=⨯=4.1326180
25
95509550
[]τπτ≤=⨯⨯===MPa W M W T t A t 3.631640108.795331111max ;[]τπτ≤=⨯⨯===MPa W M W T t C t 3.3116
60104.132633222
2max
所以,该轴满足强度要求。
3.7 由厚度mm 8=δ的钢板卷制成的圆筒,平均直径为mm 200=D 。
接缝处用铆钉铆接(如图所示)。
若铆钉直径mm 201=d ,许用切应力[]MPa 60=τ,许用挤压应力
[]MPa 160=bs
σ,筒的两端受扭转力偶矩m kN 30⋅=e
M
作用,试确定
铆钉之间允许的最大间距s 。
解:考虑无接缝的圆筒,其纵向切应力
δ
πδπττ2
222D M r T
e ===' 假设整个圆筒长度为l ,则整个长度上形成的剪切合力为
2
2D l
M l F e πδτ=
'= 考虑有接缝的圆筒,剪切合力应由铆钉(假设共有n 个,则n
l
s =)承担,每个铆钉承受的剪力或挤压力为
s D
M n D l M n F F F e
e bs s ⋅====2222ππ 由剪切条件:
[][]mm M d D s d D s M A F e e s s s 5.39103082020060886
2
222122212=⨯⨯⨯⨯⨯=≤⇒≤⋅⋅==ππττππτ
由挤压条件:
[][]mm M d D s d D s M A F e bs bs e bs bs bs 6.53103028
20200160226
21212=⨯⨯⨯⨯⨯⨯=≤⇒≤⋅⋅==πδπσσδπσ
故铆钉之间允许的最大间距s 为39.5mm 。
3.8 图示为外径D 及壁厚t 的圆杆,左端A 为固定端,承受载荷集度为m 的均布力偶作用。
设该圆轴的扭转刚度p GI 为常数,试求自由端B 的扭转角ϕ。
解:任意x 位置截面的扭矩为
()()x L m x T -=
()()dx GI x T x d p
=ϕ 故()()p
L p L p AB B GI mL dx GI x L m dx GI x T 22
00
⎰⎰
=
-===ϕϕ
3.9 直径mm 50=d ,长度为5m 的实心铝制圆轴,最大切应力为40MPa ,铝的剪切弹性模量GPa 3.26=G 。
求轴两端的相对扭转角。
解:ο4.17304.050
103.265000
40223
max max max ==⨯⨯⨯⨯=====rad Gd l GI l W GI Tl W T p t p t ττϕτ;
3.10 图示实心圆轴ABC ,转速为min 420r ,传递的总功率为kW 300。
假设许用单位长度扭转角
[]m 5
.0ο
='ϕ,剪切弹性模量GPa 80=G 。
试确定AB 段的直径d 及BC 段的直径D 。
解:m N n P M A A ⋅=⨯=⨯
=0.18194208095509550 m N n P M C C ⋅=⨯=⨯=4.5002420
220
95509550
()()[]mm d m d mm rad d G d T GI T AB p AB AB 8.71/1000180
1080100.181932/1080100.181932323
43
3
43
3≥⇒'≤⨯⨯⨯⨯⨯⨯⨯=
⨯⨯⨯⨯⨯===
'ϕπ
πππϕο
()()[]mm D m D mm rad D G D T GI T BC p BC BC 4.92/1000180
1080104.500232/1080104.500232323
43
343
3≥⇒'≤⨯⨯⨯⨯⨯⨯⨯=
⨯⨯⨯⨯⨯=
=='ϕπ
πππϕο,取[][]mm D mm d 9372==;。