材料力学典型例题及解析 12.冲击问题典型习题解析
- 格式:pdf
- 大小:343.61 KB
- 文档页数:7
2-1 求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A 1=A 2=1150mm 2; 解:(1)分析整体,作示力图∑=0)(i BF M:CB 041088=××−×A F AF N1F N2(c)40kN A F =(2)取部分分析,示力图见(b )∑=0)(i CF M:02442.22=×+×−×q F F A N2(404402)36.36kN 2.2N F ×−×==3262236.361031.62MPa 115010N F A σ−×===×(3)分析铰E ,示力图见(c )∑=0ix F :0sin 12=−βN N F F1240.65kN N N F F == 3161137.961035.3MPa 115010N F A σ−×===×2-2 求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB 的横截面积为40mm 2,下段BC 的横截面积为30mm 2,杆材料的ρg =78kN/m 3。
解:1.作轴力图,BC 段最大轴力在B 处6N 120.530107812.0kN B F −=+×××AB 段最大轴力在A 处6N 12(0.5300.540)107812.0kN A F −=+×+×××3N 2612.010400MPa 30mm3010B B F σ−−×===× 3N 2612.010300MPa 40mm 4010AA F σ−−×===×杆件最大正应力为400MPa ,发生在B 截面。
EDF BF AF CxF N2(b)A120B120F NC2-4 一直径为15mm ,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm ,直径缩小了0.022mm ,确定材料的弹性模量E 、泊松比µ。
学年第二学期材料力学试题(A 卷)一、 选择题(20分)1、图示刚性梁AB 由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A 1和A 2,若载荷P 使刚梁平行下移,则其横截面面积( )。
A 、A 1〈A 2B 、A 1 〉A 2C 、A 1=A 2D 、A 1、A 2为任意2、建立圆轴的扭转应力公式τρ=M ρρ/I ρ时需考虑下列因素中的哪几个?答:( )(1)扭矩M T 与剪应力τρ的关系M T =∫A τρρdA (2)变形的几何关系(即变形协调条件) (3)剪切虎克定律(4)极惯性矩的关系式I T =∫A ρ2dAA 、(1)B 、(1)(2)C 、(1)(2)(3)D 、全部 3、二向应力状态如图所示,其最大主应力σ1=( ) A 、σ B 、2σ C 、3σ D 、4σ4、高度等于宽度两倍(h=2b)的矩形截面题 号 一 二 三 四 五 六 总分 得 分题一、3图题一、1图梁,承受垂直方向的载荷,若仅将竖放截面改为平放截面,其它条件都不变,则梁的强度()A、提高到原来的2倍B、提高到原来的4倍C、降低到原来的1/2倍D、降低到原来的1/4倍5. 已知图示二梁的抗弯截面刚度EI相同,若二者自由端的挠度相等,则P1/P2=()A、2B、4C、8题一、5图D、16二、作图示梁的剪力图、弯矩图。
(15分)二题图三、如图所示直径为d的圆截面轴,其两端承受扭转力偶矩m的作用。
设由实验测的轴表面上与轴线成450方向的正应变,试求力偶矩m之值、材料的弹性常数E、μ均为已知。
(15分)三题图四、电动机功率为9kW ,转速为715r/min ,皮带轮直径D =250mm ,主轴外伸部分长度为l =120mm ,主轴直径d =40mm ,〔σ〕=60MPa ,用第三强度理论校核轴的强度。
(15分)五、重量为Q 的重物自由下落在图示刚架C 点,设刚架的抗弯刚度为EI ,试求冲击时刚架D 处的垂直位移。
1 / 20材料力学模拟试题(一)解答一、 一、 填空题(每小题5分,共10分)1、 如图,若弹簧在Q 作用下的静位移mm st 20=D ,在Q 自由下落冲击时的最大动位移mm d 60=D ,则弹簧所受的最大冲击力d P 为:3Q 。
2、 在其它条件相同的情况下,用内直径为d 的实心轴代替直径d 的实心轴,若要使轴的刚度不变(单位长度的扭转角j 相同),则实心轴的外径D = d 42 。
二、 二、 选择题(每小题5分,共10分)1、 图示正方形截面杆承受弯扭组合变形,图示正方形截面杆承受弯扭组合变形,在进行强度计算时,在进行强度计算时,其任一截面的危险点位置有四种答案:置有四种答案:(A)截面形心;截面形心; (B )竖边中点A 点;点;(C )横边中点B ;(D )横截面的角点D 点。
点。
正确答案是:正确答案是:C2、 若压杆在两个方向上的约束情况相同;若压杆在两个方向上的约束情况相同;且且z y m m >。
那么该正压杆的合理截面应满足的条件有四种答案:足的条件有四种答案:(A );z y I I =(A );z y I I >(A );z y I I <(A )y z l l =。
正确答案是:。
正确答案是: D三、 三、 计算题(共80分) 1、(15分)图示拐轴受铅垂载荷P 作用。
试按第三强度理论确定AB 轴的直径d 。
已知:P=20KN,[]MPa 160=s 。
解:AB 梁受力如图:梁受力如图: )(280014.020000Nm M n =´= AB 梁内力如图:梁内力如图:)(300015.020000max Nm M =´=危险点在A 截面的上下两点截面的上下两点由圆轴弯扭组合第三强度理论的强度条件:由圆轴弯扭组合第三强度理论的强度条件:[])(64)(0639.01016014.3101.4321016032/28003000363632222mm m d d W M M n ==´´´´³\´=£+=+s pM 图0.14PM x 图2、图示矩形截面钢梁,A 端是固定铰支座,B 端为弹簧支承。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
第二章轴向拉伸和压缩2-1 一圆截面直杆,其直径d =20mm, 长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3, 杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。
题 2 - 1 图+5004.8N4000N解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 】故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Ad d σππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2 试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。
已知杆横截面面积为A ,长度为L ,材料的容重为γ。
AB题 2-2 图A B解:距离A 为x 处的轴力为N ()F x Ax γ=⋅ 所以总伸长 2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 【2-3 图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。
在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。