关于晶体衍射的劳厄方程和布拉格反射公式的关系
- 格式:pdf
- 大小:136.88 KB
- 文档页数:4
说明劳厄方程、布拉格方程、衍射矢量方程之间关系劳厄方程、布拉格方程和衍射矢量方程是物理学中重要的方程,它们在解释和描述物质波的衍射现象和晶体结构方面发挥着重要作用。
下面我将对这三个方程的关系进行详细阐述。
首先,我们先介绍劳厄方程。
劳厄方程是描述物质波经过衍射时的现象的方程,它表达了衍射角和衍射波长之间的关系。
根据劳厄方程,当一束光通过一道狭缝或物体表面时,光将向四面八方进行衍射,形成弯曲的波前。
劳厄方程的数学表达式为:d*sin(θ) = m*λ,其中,d表示衍射物体的周期性结构,θ表示衍射角,m表示干涉级,λ表示衍射波长。
劳厄方程是了解衍射现象的基础,通过它可以计算出不同波长的光在特定结构上的衍射情况,为进一步研究衍射现象提供了定量的依据。
接下来是布拉格方程。
布拉格方程是描述X射线或中子衍射的现象的方程,它与劳厄方程非常相似,不同的是其针对的是具有一定晶体结构的物体。
根据布拉格方程,当入射X射线或中子与晶体中的原子或点阵相互作用时,会发生衍射现象。
衍射波的干涉效应会形成衍射条纹,并且这些条纹之间会存在干涉最大值和最小值的位置差异。
布拉格方程的数学表达式为:n*λ = 2*d*sin(θ),其中,n为衍射级数,λ为波长,d为晶格常数,θ为衍射角。
布拉格方程与劳厄方程的主要区别在于,布拉格方程侧重于描述晶体的结构和周期性,而劳厄方程侧重于描述物体的周期性结构。
最后是衍射矢量方程。
衍射矢量方程是一个更为复杂的方程,它综合了劳厄方程和布拉格方程的内容,并进一步描述了衍射的矢量性质。
根据衍射矢量方程,我们可以将衍射现象看作是一个矢量的相位干涉过程,即不同衍射波的矢量和决定了衍射的结果。
衍射矢量方程可以用于描述波导模式、光纤衍射和晶体衍射等各种情况。
衍射矢量方程的具体形式与具体问题的复杂性有关,其一般形式为:p + G = k,其中,p是衍射矢量,G是布拉格矢量,k是波矢量。
通过求解衍射矢量方程,我们可以得到衍射矢量的取值范围和衍射的特性,进一步深入了解衍射现象的本质。
一、劳厄方程:波长为λ的一束X射线,以入射角α投射到晶体中原子间距为a的原子列上(图1)。
假设入射线和衍射线均为平面波,且晶胞中只有一个原子,原子的尺寸忽略不计,原子中各电子产生的相干散射由原子中心点发出,那么由图1可知,相邻两原子的散射线光程差为:若各原子的散射波互相干涉加强,形成衍射,则光程差必须等于入射X射线波长λ德整数倍:式中:H为整数(0,1,2…),称为衍射级数。
入射X射线的方向S0确定后,则决定各级衍射方向α/角可由下式求得:由于只要α/角满足上式就能产生衍射,因此,衍射线将分布在以原子列为轴,以α/角为半顶角的一系列圆锥面上,每一个H值对应于一个圆锥。
在三维空间中,设入射X射线单位矢量S0与三个晶轴a,b,c的交角分别为α,β,γ。
若产生衍射,则衍射方向的单位矢量S与三个晶轴的交角α/,β/,γ/必须满足:a(COSα/-COSα)= Hλb(COSβ/-COSβ)= Kλc (COSγ/-COSγ)= Lλ式中H,K,L均为整数,a,b,c分别为三个晶轴方向的晶体点阵常数。
上式由劳厄在1912年提出,称为劳厄方程,是确定衍射方向的基本方程。
由于S 与三晶轴的交角具有一定的相互约束,因此,α/,β/,γ/不是完全相互独立,也受到一定关系的约束。
图1 一维原子列的衍射二、布拉格方程:X射线在传播途中,与晶体中束缚较紧的电子相遇时,将发生经典散射。
晶体由大量原子组成,每个原子又有多个电子。
各电子所产生的经典散射线会相互干涉,使在某些方向获得加强,另一些方向则被削弱。
电子散射线干涉的总结果被称为衍射。
可以回顾一个波的干涉的概念:振动方向相同、波长相同的两列波叠加,将造成某些固定区域的加强或减弱。
如若叠加的波为一系列平行波,则形成固定的加强和减弱的必要条件是:这些波或具有相同的波程(周相),或者其波程差为波长的整数倍(相当于周相差为2π的整数倍)。
排列在一直线上无穷多的电子称为电子列。
早期的研究指出,当X射线照射到电子列时,散射线相互干涉的结果,只能在某些力向上获得加强。
固体物理概念总结——期末考试、考研必备!!第一章1、晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2、晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3、单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4、基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5、原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6、晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7、原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8、布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9、简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
晶体学基础31.5.2倒格子的性质倒格子具有以下基本性质:(1)以倒格子基矢b 1,b 2,b 3为棱边构成的平行六面体称为倒格子原胞,其体积为v *。
()31232*()cv v π=⋅⨯=b b b …………………(1-5-3)(2)倒格矢112233h h h h =++G b b b 和正格子空间中面指数为(h 1h 2h 3)的晶面族正交,即G h 沿晶面族的法线方向。
我们知道,晶面族中最靠近原点的晶面ABC 在123,,a a a 上的截距分别为312123,,a a a h h h ,如图1-18所示,易写出矢量CA 和CB :31133223h h h h =-=-=-=-a a CA OA OC a a CB OB OC ………………………………………………………(1-5-4)矢量CA 和CB 都在ABC 面上,因此,只要证明00h h ⋅=⎧⎨⋅=⎩G CA G CB ,则就能说明112233h h h h =++G b b b 与面指数为(h 1h 2h 3)的晶面族正交。
实际上,利用关系式(1-5-2),有31112233133211223323()()0,()()0.h h h h h h h h h h h h ⋅=++⋅-=⋅=++⋅-=a a G CA b b b a a G CB b b b …………………………………………(1-5-5)(3)晶面族(h 1h 2h 3)的面间距d h 与倒格矢G h 的模成反比,关系为2h hd π=G 。
图1-18中ABC 面就是晶面族(h 1h 2h 3)中距原点最近的晶面,所以这族晶面的面间距d h 就等于原点到面ABC 的距离,而之族晶面的法线方向即为G h 的方向,其面间距为1112233111112233()2h h h hh h h d h h h h h π⋅++=⋅==++G a b b b a G b b b G 。
从劳厄发现晶体X射线衍射谈起摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。
劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。
文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。
今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。
从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。
在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。
我们先来了解一下劳厄发现的前因后果。
1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。
除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。
当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。
身在这样的学府中,劳厄当时通过耳闻目睹也就对晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。
而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。
真可谓机遇不负有心人了。
这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。
这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。
他意识到,说不定晶体正是能衍射X射线的三维光栅呢。
现在劳厄需要考虑的大事是做实验来证实这个想法。
当时索末菲正好有个助教弗里德里希(Friedrich W),他曾从伦琴教授那里取得博士学位。
第二章 晶体中的衍射主要内容:● 晶体的倒格子和布里渊区 ● 晶体衍射的条件✓ 劳厄方程、布拉格反射● 原子散射因子和几何结构因子 2.1 晶体结构的实验确定方法:利用入射的射线束受晶体内部原子的相干散射-衍射。
● X 射线衍射光子与电子作用,晶体内部结构测量● 电子衍射电子与电子作用,表面结构测量● 中子衍射中子与原子核作用,磁性物质结构测量● 一般性地讨论波动在晶体中的衍射 衍射的条件:波长与晶格常数同数量级现在,我们可以利用高分辨电子显微镜、场粒子显微镜和扫描遂穿显微镜直接观察原子排列和晶格结构,虽然往往只能看到表面和局部的原子排列,但无论如何这是一种直接的观察,一种对原子规则结构的周期排列的直接验证。
X 射线衍射:有关晶体在0.1纳米尺度结构的主要知识主要来源于此。
本课程的核心-周期结构中传播的波。
2.2 晶体的倒格子和布里渊区 倒格子的定义根据布拉菲格子的基矢量定义三个新的基矢量,它们之间的关系为:以 为基矢构成的格子称为正格子以 为基矢构成的格子称为倒格子正格子中每个格点的位置为:倒格子中每个格点的位置为:K h 称为倒格矢量,简称倒格矢倒格子空间也叫倒易点阵,每一个布拉菲正格子都有与之对应的倒格子。
[]321a a a ⨯=Ω∙321a a a 、、321b b b 、、()()⎩⎨⎧≠==⋅j i i=j j i j i 0 22 ππδb a[][][]Ω⨯=Ω⨯=Ω⨯=213132321222a a b a a b a a b πππ倒格子的性质1 正格子中的一族晶面(h 1h 2h 3)和倒格矢332211b b b Kh h h h ++= 正交2 倒格矢332211b b b K h h h h ++= 的长度正比于晶面族(h 1h 2h 3)面间距321h h h d 的倒数:34 倒格点与正格子中的一晶面相对应周期性物理量的傅里叶变换晶体中任一处r 的物理量具有晶格周期性:将其展开为傅里叶级数:比较以上两式,可得R,r+R 对于晶格平移保持不变的任何函数,都可以展成傅立叶级数 倒格子和正格子互相是对应的傅立叶空间。
晶体衍射中劳厄方程和布拉格方程的一致性
《晶体衍射中劳厄方程和布拉格方程的一致性》是晶体衍射理论中一个重要的问题。
晶体衍射理论中有两个重要的方程,即劳厄方程和布拉格方程。
劳厄方程是用来描述晶体衍射现象的,而布拉格方程则是用来解释晶体衍射现象的。
这两个方程之间的一致性是晶体衍射理论的基础。
研究发现,劳厄方程与布拉格方程之间的一致性是由晶体衍射现象的物理本质决定的。
晶体衍射的物理本质是晶体中的电子结构,它是由晶体中的原子组成的,晶体中的原子之间存在着一定的相互作用。
当X射线照射到晶体表面时,晶体中的电子会发生振动,从而产生晶体衍射现象。
由于晶体中的电子结构是由晶体中的原子组成的,所以劳厄方程与布拉格方程之间的一致性也可以由晶体中的原子结构来解释。
因此,晶体衍射中劳厄方程和布拉格方程的一致性是由晶体衍射现象的物理本质决定的,可以由晶体中的原子结构来解释。
这种一致性是晶体衍射理论的基础,是理解晶体衍射现象的重要依据。