第2课时 互余两角的三角函数关系
- 格式:ppt
- 大小:2.50 MB
- 文档页数:22
三角函数解三角形两角和与差的正弦余弦和正切公式课件xx年xx月xx日CATALOGUE目录•三角函数的定义•三角函数的基本性质•三角形中的边角关系•两角和与差的正弦余弦和正切公式•解直角三角形的方法•实例讲解01三角函数的定义1正弦函数23正弦函数是三角函数的一种,记作sin(x),定义域为所有实数,值域为[-1,1]。
定义正弦函数的图像也称为正弦曲线,它是以原点为圆心,以1为半径的圆上的一部分。
图像正弦函数是周期函数,最小正周期为2π。
性质余弦函数是三角函数的一种,记作cos(x),定义域为所有实数,值域为[-1,1]。
余弦函数定义余弦函数的图像也称为余弦曲线,它是由一系列的水平和垂直线段组成的。
图像余弦函数是周期函数,最小正周期为2π。
性质图像正切函数的图像也称为正切曲线,它是由一系列的斜线组成的。
定义正切函数是三角函数的一种,记作tan(x),定义域为所有不等于π/2+kπ(k∈Z)的实数,值域为所有实数。
性质正切函数是奇函数,图像关于原点对称。
正切函数02三角函数的基本性质正弦函数和余弦函数的周期都是2π,即$f(x+2\pi)=f(x)$和$g(x+2\pi)=g(x)$。
正切函数的周期是π,即$h(x+π)=h(x)$。
周期性1 2 3正弦函数的振幅是1,即$f(x) \in [-1,1]$。
余弦函数的振幅也是1,即$g(x) \in [-1,1]$。
正切函数的振幅需要特别注意,它的振幅不是1,而是没有限制的,即$h(x) \in \mathbf{R}$。
正弦函数和余弦函数的相位可以用正负号来表示,例如$f(x)=sin\omega x$和$g(x)=cos\omega x$,其中$\omega >0$。
正切函数的相位需要特别注意,它没有固定的相位,也就是说$h(x)$中不存在相位的概念。
正弦函数和余弦函数的初相都是一个常数,例如$f(0)=A$和$g(0)=B$。
正切函数的初相需要特别注意,它没有固定的初相,也就是说$h(x)$中不存在初相的概念。
28.1 锐角三角函数第2课时一、教学目标【知识与技能】1.通过类比正弦函数,理解余弦函数、正切函数的定义,进而得到锐角三角函数的概念;2.能灵活运用锐角三角函数进行相关运算.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】理解余弦、正切概念,知道当直角三角形的锐角固定时,它的邻边与斜边的比值、直角边之比是固定值.【教学难点】熟练运用锐角三角函数的概念进行有关计算.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2)如图,在Rt△ABC中,∠C=90°.当∠A确定时,∠A的对边与斜边的比就确定,此时,其他边之间的比是否也确定呢?(二)探索新知知识点一余弦的定义如图,△ABC和△DEF都是直角三角形,其中∠A=∠D,∠C=∠F=90°,则AC DF=成立吗?为什么?(出示课件4)AB DE学生思考后,师生共同解答:(出示课件5)∵∠A=∠D,∠C=∠F=90°,∴∠B=∠E.从而sinB=sinE,因此AC DF=.AB DE教师归纳:(出示课件6)在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜边的比值是一个常数,与直角三角形的大小无关.如下图所示,在直角三角形中,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=.A b c∠=的邻边斜边教师强调:从上述探究和证明过程,可以得到互余两角的三角函数之间的关系:对于任意锐角α,有cos α=sin(90°-α),或sin α=cos(90°-α).(出示课件7)出示课件8,教师对照正弦、余弦的定义,对两个概念注意事项加以强调:1.sinA 、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形).2.sinA 、cosA 是一个比值(数值).3.sinA 、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.出示课件9,学生独立思考后口答,教师订正.知识点二 正切的定义如图,△ABC 和△DEF 都是直角三角形,其中∠A=∠D ,∠C=∠F=90°,则BC EF AC DF=成立吗?为什么?(出示课件10)学生自主证明,一生板演,教师巡视,并用多媒体展示. 证明:∵∠C=∠F=90°,∠A=∠D ,∴Rt △ABC ∽Rt △DEF. ∴BC AC EF DF =, 即BC EF AC DF=. 教师问:当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?(出示课件11)学生独立思考后,师生共同总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(出示课件12)如图:在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA.即tanA=a .A A b∠=∠的对边的邻边出示课件14,教师问:如果两个角互余,那么这两个角的正切值有什么关系?学生答:互为倒数.教师问:锐角A 的正切值可以等于1吗?为什么?可以大于1吗?学生答:锐角A 的正切值可以等于1;当a=b 时;可以大于1,当a >b 时.出示课件15,学生独立思考后口答,教师订正.知识点三 锐角三角函数的定义出示课件16:锐角A 的正弦、余弦、和正切统称∠A 的锐角三角函数.考点1 已知直角三角形两边求锐角三角函数的值.例 如图,△ABC 中,∠C=90°,AB=10,BC=6,求sinA ,cosA ,tanA 的值.(出示课件17)学生思考后,师生共同解答.解:由勾股定理,得2222=106AC AB BC --, 因此,63sin ==105BC A AB =, 84cos 105AC A AB ,===63tan ==.84BC A AC = 师生共同总结:已知直角三角形中的两条边求锐角三角函数值的一般思路是:当所涉及的边是已知时,直接利用定义求锐角三角函数值;当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的长度,然后根据定义求锐角三角函数值.(出示课件18)出示课件19,学生独立思考后口答,教师订正.考点2 已知一边及一锐角三角函数值求函数值.例 如图,在Rt △ABC 中,∠C=90°,BC=6,3sin 5A =,求cosA,tanB 的值.学生独立思考后,师生共同解答.解:∵在Rt △ABC 中,sin BC A AB=, ∴5610sin 3BC AB A =⨯==. 又22221068AC AB BC =-=-=, ∴4cos 5AC A AB ==,4tan .3AC B BC == 教师强调:在直角三角形中,如果已知一边长及一个锐角的某个三角函数值,即可求出其它的所有锐角三角函数值.出示课件21,学生独立思考后一生板演,教师订正.(三) 课堂练习(出示课件22-28)练习课件22-28相应题目,约用时15分钟。