西安电子科技大学高等数学试卷试卷一(1)
- 格式:doc
- 大小:94.50 KB
- 文档页数:2
2020-2021西安电子科技大学附中太白校区高中必修一数学上期末第一次模拟试卷带答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-3.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,14.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-5.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为( )A .0B .1C .2D .36.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .19.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c << B .a c b <<C .c a b <<D .b c a <<10.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .11.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个14.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________15.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.0.11.1a =,12log 2b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 18.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 19.已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________20.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.已知()()()22log 2log 2f x x x =-++. (1)求函数()f x 的定义域; (2)求证:()f x 为偶函数;(3)指出方程()f x x =的实数根个数,并说明理由. 23.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .24.已知全集U =R,函数()lg(10)f x x =-的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂. 25.已知幂函数()()223m m f x xm --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式; (2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)26.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≤-.(1)求()U A C B ⋂;(2)若函数()lg(2)f x x a =+的定义域为集合C ,满足A C ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.C解析:C 【解析】当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.3.B解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行解析:D 【解析】 【分析】采用逐层求解的方式即可得到结果. 【详解】∵(] 121∈-∞,,∴112f ⎛⎫= ⎪⎝⎭, 则110102f ⎛⎫=⎪⎝⎭,∴()1(())21010f f f =, 又∵[)102∈+∞,,∴()103f =,故选D . 【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题.6.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.7.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 8.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 9.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以c ∈, 所以a c b <<,故选B.10.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内,()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3. 故答案为:3. 【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.14.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为:方程有两个根即有两个正根解得:故答案为:【点睛】本题考查复合函数所对应的方程根的问题关键换元法的使用难度一般解析:1(,0)4-【解析】 【分析】令20x t =>,42x x a -=,可化为20t t a --=,进而求20t t a --=有两个正根即可. 【详解】令20x t =>,则方程化为:20t t a --=Q 方程42x x a -=有两个根,即20t t a --=有两个正根,1212140100a x x x x a ∆=+>⎧⎪∴+=>⎨⎪⋅=->⎩,解得:104a -<<.故答案为: 1(,0)4-. 【点睛】本题考查复合函数所对应的方程根的问题,关键换元法的使用,难度一般.15.【解析】【分析】由题意知函数在上是减函数在上是增函数其规律是自变量的绝对值越小其函数值越大由此可直接将转化成一般不等式再结合其定义域可以解出的取值范围【详解】解:函数是偶函数定义在上的偶函数在区间上解析:11,2⎡⎫-⎪⎢⎣⎭【解析】 【分析】由题意知函数在[]0,2上是减函数,在[]2,0-上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将(1)()f m f m -<转化成一般不等式,再结合其定义域可以解出m 的取值范围 【详解】解:Q 函数是偶函数, (1)(|1|)f m f m ∴-=-,()(||)f m f m =, Q 定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,(1)()f m f m -<,0|||1|2m m ∴<-剟,得112m -<…. 故答案为:11,2⎡⎫-⎪⎢⎣⎭. 【点睛】本题考点是奇偶性与单调性的综合,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[]22-,来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.16.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得解析:10,2⎡⎫⎪⎢⎣⎭【解析】 【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围. 【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.17.【解析】【分析】根据指数函数和对数函数的图象与性质分别求得实数的取值范围即可求解得到答案【详解】由题意根据指数函数的性质可得由对数函数的运算公式及性质可得且所以abc 从小到大的关系是故答案为:【点睛 解析:b c a <<【解析】 【分析】根据指数函数和对数函数的图象与性质,分别求得实数,,a b c 的取值范围,即可求解,得到答案. 【详解】由题意,根据指数函数的性质,可得0.101.111.1a >==,由对数函数的运算公式及性质,可得12112211log log ()222b ===,1ln 2ln 2c =>=,且ln 2ln 1c e =<=, 所以a ,b ,c 从小到大的关系是b c a <<. 故答案为:b c a <<. 【点睛】 本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答中熟记指数函数与对数函数的图象与性质,求得实数,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.18.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考 解析:4 【解析】 【分析】设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.19.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系解析:6 【解析】 【分析】根据偶函数的关系有()(2)2g g =-,代入即可求解. 【详解】由题:函数()()g x f x x =-是偶函数, (2)(2)24g f -=-+=,所以(2)(2)24g f =-=,解得:(2)6f =. 故答案为:6 【点睛】此题考查根据函数的奇偶性求函数值,难度较小,关键在于根据函数奇偶性准确辨析函数值的关系.20.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.三、解答题21.(1){}1|0x x <<;(2)12k =-. 【解析】 【分析】 【详解】试题分析:()1由题意得()()()221log 1log f x f x x x +-=+-,然后解不等式即可(2) 图象关于y 轴对称即为偶函数,即:()()22log 21log 21xx kx kx -+-=++成立,从而求得结果解析:(1)因为()()11f x f x +->,所以()22log 1log 1x x +->,即:21log 1x x +>,所以12x x+>,由题意,0x >,解得01x <<,所以解集为{}1|0x x <<.(2)()()21x gx f kx =++ ()2log 21x kx =++,由题意,()g x 是偶函数,所以x R ∀∈,有()()g x g x -=,即:()()22log 21log 21x xkx kx -+-=++成立,所以()()22log 21log 212xxkx -+-+=,即:221log 221x x kx -+=+,所以2log 22xkx -=,所以2x kx -=,()210k x +=,所以12k =-. 22.(1)()2,2-;(2)证明见解析;(3)两个,理由见解析. 【解析】 【分析】(1)根据对数函数的真数大于0,列出不等式组求出x 的取值范围即可; (2)根据奇偶性的定义即可证明函数()f x 是定义域上的偶函数. (3)将方程()f x x =变形为()22log 4x x -=,即242xx-=,设()242xgx x =--(22x -≤≤),再根据零点存在性定理即可判断. 【详解】解:(1) ()()()22log 2log 2f x x x =-++Q2020x x ->⎧∴⎨+>⎩,解得22x -<<,即函数()f x 的定义域为()2,2-; (2)证明:∵对定义域()2,2-中的任意x , 都有()()()()22log 2log 2f x x x f x -=++-= ∴函数()f x 为偶函数;(3)方程()f x x =有两个实数根, 理由如下:易知方程()f x x =的根在()2,2-内, 方程()f x x =可同解变形为()22log 4x x -=,即242x x-=设()242x gx x =--(22x -≤≤).当[]2,0x ∈-时,()g x 为增函数,且()()20120g g -⋅=-<, 则在()2,0-内,函数()g x 有唯一零点,方程()f x x =有唯一实根,又因为偶函数,在()0,2内,函数()g x 也有唯一零点,方程()f x x =有唯一实根, 所以原方程有两个实数根.【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题. 23.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-Q ,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x Q 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.24.(1) {}|310A x x =≤< (2) {}()|35710U C B A x x x ⋂=≤<≤<或 【解析】试题分析:(1)根据真数大于零以及偶次根式被开方数非负列不等式,解得集合A (2)先根据数轴求U C B ,再根据数轴求交集 试题解析:(1)由题意可得:30100x x -≥⎧⎨->⎩,则{|310}A x x =≤<(2){|57}U C B x x x =<≥或(){|35710}U C B A x x x ⋂=≤<≤<或25.(1)()4f x x -=(2)见解析【解析】 【分析】(1)由幂函数()f x 在()0,∞+上单调递减,可推出2230m m --<(m Z ∈),再结合()f x 为偶函数,即可确定m ,得出结论;(2)将()f x 代入,即可得到()F x ,再依次讨论参数,a b 是否为0的情况即可. 【详解】(1)∵幂函数()()223mm f x x m --=∈Z 在区间()0,∞+上是单调递减函数,∴2230m m --<,解得13m -<<, ∵m Z ∈,∴0m =或1m =或2m =. ∵函数()()223m m f x x m --=∈Z 为偶函数,∴1m =, ∴()4f x x -=;(2)()()4b b F x xf x x x-==⋅23ax bx -=-, 当0a b ==时,()F x 既是奇函数又是偶函数; 当0a =,0b ≠时,()F x 是奇函数; 当0a ≠,0b =时,()F x 是偶函数; 当0a ≠,0b ≠时,()F x 是非偶非偶函数. 【点睛】本题主要考查了幂函数单调性与奇偶性的综合应用,学生需要熟练掌握好其定义并灵活应用. 26.(1){}23x x <<(2)()2,+∞ 【解析】 【分析】(1)先化简集合B ,再根据集合的交并补运算求解即可;(2)函数()lg(2)f x x a =+定义域对应集合可化简为2a C x x ⎧⎫=>-⎨⎬⎩⎭,又A C ⊆,故由包含关系建立不等式即可求解; 【详解】(1)由题知,{}2B x x =≤,{}2U C B x x ∴=>{}13A x x =-≤<Q(){}23U A C B x x ∴⋂=<<(2)函数()lg(2)f x x a =+的定义域为集合2a C x x ⎧⎫=>-⎨⎬⎩⎭,A C ⊆Q ,12a∴-<-, 2a ∴>.故实数a 的取值范围为()2,+∞. 【点睛】本题考查集合的交并补的混合运算,由集合的包含关系求参数范围,属于基础题。
西安电子科技大学2012级《高等数学》第二学期期末考试(试题A )及解答一、单项选择题(每小题3分,共15分)1. 设2(,)()()x yx y u x y x y x y t dt ψ+-=++-+⎰,其中:()t ψ具有一阶导数,则( )(A )2222u ux y ∂∂=∂∂; (B )2222u u x y ∂∂=-∂∂;(C )222u u x y x ∂∂=∂∂∂; (D )222u ux y y ∂∂=∂∂∂.解 2()1()(x u x y x y x y ψψ=++++--,2()()xx u x y x y ψψ''=++--,2()1()(y u x y x y x y ψψ=+-+++-,2()()yy u x y x y ψψ''=++--,答案:A2. 函数(3)z xy x y =--的极值点是 ( ) (A )(0,0); (B )(1,1); (C )(3,0); (D )(0,3). 解1 232x z y xy y =--,232y z x xy x =--,A 、B 、C 、D 都是驻点,2xx z y =-,322xy z x y =--,2yy z x =-,224(322)0AC B xy x y -=--->,仅当(1,1)满足 答案:B解2 ,x y 对称,C 对,D 也对,单选题,故排除C ,D ,(3)3z xy x y xy =--≈,(,)(0,0)x y ≈,3z xy ≈可正可负,不是极值点,答案:B3. 设有空间区域22221:,0x y z R z Ω++≤≥与22222:,0,0,0x y z R x y z Ω++≤≥≥≥,则 ( )(A )124xdV xdV ΩΩ=⎰⎰⎰⎰⎰⎰; (B )124ydV ydV ΩΩ=⎰⎰⎰⎰⎰⎰;(C )124zdV zdV ΩΩ=⎰⎰⎰⎰⎰⎰; (D )124xyzdV xyzdV ΩΩ=⎰⎰⎰⎰⎰⎰.解 答案:C4. 一个形如1sin n n b nx ∞=∑的级数,其和函数()S x 在(0,)π上的表达式为1()2x π-,则()S x 在32x π=处的值3()2S π= ( ) (A )4π; (B )4π-; (C )2π; (D )2π-.解 33111()(2)()()()2222224S S S S ππππππππ=-=-=-=--=- 答案:B5. 若级数2(1)(1)na nn n ∞=-+-∑收敛,则a 的取值范围是 ( ) (A )0a >; (B )13a >; (C )12a >; (D )1a >. 解 22(1)(1)[(1)](1)[(1)][(1)]nn a n a n an a nn n n n n n ∞∞==----=+-+---∑∑22(1)11n a a n n n ∞=--=-∑ 2222(1)(1)11n a a naan n n n nn∞∞==-=---∑∑,0a >时收敛,2211an n ∞=--∑,21a >,即12a >时收敛, 答案:C二、填空题(每小题3分,共15分)6. 设{(,)||||1}D x y x y =+≤,则二重积分(||)Dx y dxdy +=⎰⎰__________解 1(||)4DD x y dxdyydxdy +=⎰⎰⎰⎰ 11100044(1)ydy ydx y y dy -==-=⎰⎰⎰237. 向量场222(2)(2)(2)A x y i y z j z x k =-+-+-,则rotA =__________.解 r o t A=222222ij k x y z x yy zz x∂∂∂=∂∂∂---(2,2,2) 8.曲面z =在点(1,9,4)处的切平面方程是:________________. 解(,,1)(x y n z z =--=,(1,9,4)11|(,,1)26n =--,或(3,1,6)-,切平面:3(1)(9)6(4)0x y z -+---=,或 36120x y z +-+=9. 设C 为球面2222x y z a ++=与平面0x y z ++=的交线,则2Cx ds ⎰=____解222222111()2333CCCx d sx y zd s ad s aa π=++==⋅=⎰⎰⎰323π 10. 级数212n n n x∞=∑的收敛域为 :___________ 解 210,||1||1||,||1222,||1nnn nx x x x x <⎧⎪⎪=→=⎨⎪+∞>⎪⎩,收敛域为:[1,1]- 三、计算下列各题(第1小题6分,第2小题8分, 共14分)11. 设(,)z z x y =由方程(23,2)0F x z y z --=所确定,其中:F 是可微函数,求dz .解1 x y dz z dx z dy =+1212122233F F dx dy F F F F =-+-----1212223F dx F dyF F +=+ 解2 12(23)(2)0F dx dz F dy dz ⋅-+⋅-=1212223F dx F dydz F F +=+12.求二重积分:11211422x x y y x dx dy dx dy +⎰⎰.解 2112x yyy I dy e dx =⎰⎰112()yy e e dy =-⎰123182e e =-四、计算下列各题(每小题10分,共30分)13. 设曲面∑为柱面221x z +=介于平面0y =和2x y +=之间部分,求zdS ∑⎰⎰.分析: 求柱面221x z +=部分的面积 1.用公式:xyD I =⎰⎰,用:S z =√2.用公式:yzD I =⎰⎰,用:S x =3.不能用公式:xzD I =⎰⎰,用???求导解12::z z ∑=∑={(,)02,11}xy D x y y x x =≤≤--≤≤12zdS zdS zdS ∑∑∑=+⎰⎰⎰⎰⎰⎰12∑∑=+⎰⎰⎰⎰0=2()1x=-]14. 计算:331Cx y dx dy r r --+⎰,其中C为上半圆周2y x x =-,方向从()1,0到()0,0,r =解1()522232(1)2[1]P x y y x y ∂-=-⋅∂+-=()522232(1)2[1]Q x y x x y ∂-=-⋅∂+-,(0,0)33(1,0)3311Cx y xy dx dy dx dy rrrr----+=+⎰⎰3122(1)x dx x -=+⎰(1=-解2 111:cos ,sin 222C x t y t =+=,:0t π→, 330321sin cos 112231(cos sin )22C t tx y dx dy dt r r t t π+--+=+-⎰⎰ 12031(cos sin )|22t t π-=+-(1=-15. 计算:22(2)(1)()xy y dydz y dzdx x z dxdy ∑--+-++⎰⎰,其中,∑为曲面2z =-xoy 平面上方部分的上侧。
陕西省西安市电子科技大学附中2025届高一上数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A.{}5B.{}1,2C.{}3,4D.{}1,2,3,4 2.已知集合{|23}A x x =≤,a=3.则下列关系式成立的是A.a ∉AB.a ⊆AC.{a}⊆AD.{a}∈A3.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知lg 20.301≈,lg50.699≈,则10022.5的估算值为()A.19910B.69910C.39910D.398104.当1a >时,在同一平面直角坐标系中,函数x y a =与1log ay x =的图象可能为 A. B.C. D.5.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A.函数()g x 为奇函数B.函数()g x 的最小正周期为2πC.函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD.函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z 6.下列各组函数是同一函数的是( )①()32f x x =-与()2f x x x =-;()3f x 2x y x 2x 与=-=-②()f x x =与()2g x x =;③()0f x x =与()01g x x =;④()221f x x x =--与()221g t t t =-- A.① ②B.① ③C.③ ④D.① ④7.下列函数中,图象关于坐标原点对称的是()A.B. C. D.8.410︒角的终边落在A.第一象限B.第二象限C.第三象限D.第四象限9.已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为() A.3[,1]2- B.3[,1)(1,1]2--⋃- C.[3,7]- D.[3,1)(1,7]--⋃-10.设b ,c 表示两条直线,α,β表示两个平面,则下列命题正确的是A.若b α⊂,//c α,则//c bB.若b α⊂,//b c ,则//c αC.若c α⊂,αβ⊥,则c β⊥D.若c α⊂,c β⊥,则αβ⊥二、填空题:本大题共6小题,每小题5分,共30分。
西安电子科技大学长安学院试卷 考试时间 120 分钟 试卷编号 姓名 学号 班级
一、填空题(每小题4分,共40分)
1. 设()f x 的定义域为[ 0,1],则(ln )f x 的定义域为 .
2. 设函数⎩⎨⎧>+≤=1
,1 ,)(2x b ax x x x f ,为了使函数在1=x 处连续,则=a ,=b .
3. 设, arctan )1(2x x y +=则='y .
4. )ln 11(lim 1x
x x x --→= . 5. =⎪⎭⎫ ⎝⎛-++∞→114lim x x x x .
6. 已知⎰+=C x dx x f arcsin )(,则=-⎰
dx x f x )(12
. 7. =-⎰1 0 24x dx
.
8. 设()f x 是连续函数,则dt t f a x x x a a x ⎰-→ )(lim
= . 9. ⎰∞
+-== 0 dx e x I x n n .
10. 由0 , 0)( , , =≥===y x f y b x a x 所围曲边梯形绕x 轴旋转而成的旋
转体的体积公式为:V = . 则(应用你给的公式计算)由],[,)(22R R x x R x f y -∈-==与x 轴所围成的图形绕x 轴旋转而成的立体的体积=V
.
二、计算下列各题(每小题8分,共48分)
1. 设函数⎪⎩⎪⎨⎧≤+>=0
,0 ,1sin )(2x x a x x x x f ,要使函数)(x f 在),(+∞-∞内连续,应当怎样选择数a ?
2. 设),tan ln(sec x x y +=求dx
dy . 3. 计算⎰⎰→x
t x t x dt te dt e 0 2 0
2022)(lim . 4. 计算⎰dx x arctan
. 5. 计算⎰+dx x x 3122.
6. 计算由 , 1x
y =与直线x y =以及2=x 所围成的平面图形的面积. 三、(6分) 求函数x xe x f -=)(在其定义域内的最大值和最小值.
四、(6分) 若函数)(x f 在]1,0[上连续,证明:
=⎰
π 0 )(sin dx x xf ⎰ 0 )(sin 2ππdx x f ,并计算dx x
x x ⎰+π 0 2cos 1sin .。