SX-7-038、第二章整式的加减复习课导学案
- 格式:doc
- 大小:137.00 KB
- 文档页数:3
《整式的加减》复习课课型:复习展示课 设计: 审核:审批:班级:小组:姓名:使用时间: 月 日 星期 课题:《整式的加减》章节总复习(2)第 课时累计 课时学习过程(定向导学:教材 P62 页至 P74 页)流程及学习内容学习要求和方法一、明确目标 1、进一步掌握合并同类项,去括号法则。
2、能正确、熟练地进行整式加减运算。
一、自主复习: 1、知识回顾 (1)合并同类项,就是把多项式的 。
合并同类项后,所得项的系数是 , 且字母 。
(2)去括号法则: 法则1:如果括号外的因数是正数,去括号后原括号内各项的符号 。
法则2:如果括号外的因数是负数,去括号后原括号内各项的符号 。
(3)整式的加减: 整式的加减的运算法则:一般地,几个整式相加减,如果有括号,就先 ,然后再 。
2、自检自测 1、下列合并同类项正确的是( ) A .4610x y xy += B .2222x x -=C .22990ax ax -=D .243a b ab a -=2、下列各项中,去括号正确的是( ) A .22)22(22++-=+--y x x y x x B .mn n m mn n m -+=-+-)(C .y x y x y x x 22)2()35(+-=-+--D .3)3(=+--ab ab师生共同解读学习目标 独学【要求】:仔细回顾本章的知识点,独立完成左边的几个问题,有疑问的地方,用红笔在对应处用“?”做出标记。
☻☺小组长负责批改本组成员的,并答疑。
其他组展示时,纠错、质疑、补充也可以加分。
【口诀】 合并同类项,法则不要忘只把系数加,字母不变样对学【要求】:对子互批互改,互评互议,记得使用双色笔更正。
流程及学习内容学习要求和方法 三、合作探究 1、化简:(1)(145224+--x x x )-(x x x 35323--)(2)-[-(-21+x )]-)(1-x (3)-3(22221y xy x +-)+21(2222y xy x --)2、求值:(1))]214(3[252ab ab ab ab +--,其中21=a ,=b 32-.(2)已知xy x A 22-=,xy y B 32+=,求B A 32-的值。
第2章《整式的加减》学习目标:1.使学生对本章内容的认识更全面、更系统化.2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握. 学习重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算. 学习难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算. 复习过程知识点1 单项式、多项式、整式的概念及它们的联系和区别.单项式:由_______________________组成的式子叫做单项式,单独一个_______或一个______也是单项式。
如:ab 21,2m ,y x 3-,5,a . 多项式:______________________叫多项式。
如:222y xy x -+、22b a -.整式:_______和_______统称整式.2a 练习:把下列各式填在相应的横线上.y x 2,b a -21,522-+y x ,2x ,x2-,29-,1-xy ,m -单项式_____________________________ .多项式 ___________________________. 整式_______________________________________________________. 知识点2 单项式的系数和次数单项式的系数是指单项式中的____________.单项式的次数是指单项式中___________________________.练习:(1)b a 231的系数是_________,次数是_______.(2) 2πR 系数是_________, 次数是 _________ . (3)2a 的系数是_______ , 3m -的系数是_________ . 当一个单项式的系数是1或 -1,1通常省略不写. (4) 232a 中系数是__________, 次数是_________ .(5) 如果baxy -是关于x 、y 的单项式,且系数是2,次数是3,则a=______b=______。
第二章 整式的加减《2.1整式--单项式》导学案 NO :25班级_______姓名___________小组_______小组评价_________ 教师评价_______一、学习目标1、会用含有字母的式子表示数量关系,理解字母表示数的意义;2、理解并掌握单项式的有关概念;3、能用单项式表示具体问题中的数量关系。
二、自主学习自学教材54-55页 1、用含字母的式子填空(1)全校学生总数是x ,其中女生占总数48%,则女生人数是 ,男生人数是 (2)每包书有12册,n 包书有 册。
(3)一辆汽车3小时行驶了S 千米,这辆汽车的平均速度是 (4)产量由m 千克增长10%,就达到 千克。
2、列含字母的式子时应该注意的问题(1)数与字母、字母与字母相乘时,常省略乘号“⨯” “⋅”.如:22a a -⨯=-,33a b ab ⨯⨯=,2255x x -⨯=-.(2)数字通常写在字母前面。
如:(7)7mn mn ⨯-=-,3(2)3(2)a b a b ⨯-=-. (3)带分数与字母相乘时要化成假分数。
如:15222ab ab ⨯=,切勿错误写成“122ab ”. (4)除法常写成分数的形式。
如S÷x=xS. 问题:填空中列出的式子有什么特点?归纳:上面列出的式子 ,它们都是 ,这样的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的叫做这个单项式的系数。
一个单项式中,所有 叫做这个单项式的次数。
3、自学检测 (1)填表(2)把56页练习2做在此三、合作探究1、下列说法正确的是( ) A 、x 的系数为0 B 、223ab 是三次单项式 C 、-7是一次单项式 D 、x1是单项式 2、式子21,2x y ,0,132--b ,222y x -,t s 中单项式一共有( )个A 、 2B 、3C 、 4D 、53、下列单项式中,书写规范的一个是( )A 、1aB 、3x ⨯C 、0.5xyD 、mn 211 4、.若212n x y -是四次单项式,则n =5、一台电视机的原价为a 元,降价4%后的价格为 元四、达标检测1、写出一个系数为5-且含x ,y 的三次单项式2.、有一个三角形的底为x 厘米,高是底的一半,则此三角形的面积是 平方厘米3、单项式232y x m 与y x 22-的次数相同,则m = 4、李老师到文体商店为学校买篮球,篮球的单价为a 元,商店规定:买10个或10个以上的篮球按8折优惠,请你表示:(1)购买30个篮球应付多少钱?(2)购买x 个篮球要付多少钱?五、拓展提高有一列单项式:2x ,32x -,43x ,54x -,……,2019x ,2120x -,……(1)请你写出第100个、第2010个单项式;(2)请你写出第n 个、第n+1个单项式。
班级学习小组学生姓名【复习目标】1、熟练掌握单项式、多项式、整式及同类项等概念;2、熟练掌握合并同类项法则和去括号法则;3、熟练进行整式的加减运算。
【复习过程】一、课前自主阅读教材《整式的加减》一章的内容。
二、知识梳理1._________和__________统称整式.⑴单项式:由与的乘积式子称为单项式.单独一个数或一个字母也是单项式,如a,5. 单项式的系数:单式项里的叫做单项式的系数单项式的次数:单项式中叫做单项式的次数⑵多项式:几个的和叫做多项式.其中,每个单项式叫做多项式的,不含字母的项叫做. 多项式的次数:多项式里的次数,叫做多项式的次数.2.同类项:必须同时具备的两个条件(缺一不可):①所含的相同;②相同也相同;所有的常数项都是同类项.合并同类项,就是把多项式中的同类项合并成一项.方法:把各项的相加,而不变.3.去括号法则法则1:法则2:去括号法则的依据实际是.4.整式的加减整式的加减运算法则:如遇到括号,则先,再;5.本章需要注意的几个问题①整式(即单项式和多项式)中,分母一律不能含有字母.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数.⑤注意书写规范.如系数应写在字母前面、系数不能是带分数、式子中的“×”往往可省略、“÷”应写成分数线、1a应写成a、-1a应写成-a等.组长检查等级:组长签名:三、交流展示1、填空:(1)全校学生总数是x,其中女生占48%,则女生人数是,男生人数是。
(2)一辆长途汽车从A地出发,3h后到达距出发地skm的B地,这辆长途汽车的平均速度是km/h.(3)产量由mkg增长10%,就达到kg.(4)a,b分别表示长方形的长和宽,则长方形的周长是,面积是。
(5)体重由xkg增加2kg后是kg.2、填表:3、计算:(1);(2);(3)4、化简求值:四、当堂检测1、(1)3a-2a=; (2)=.2、如果是同类项,则a=,b=。
七年级第二章整式的加减复习教案一、教学目的与考点分析:1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
二、教学内容(一)、复习整式⎩⎨⎧升降幂排列)多项式(项同类项次数)单项式(定义系数次数 整式的加减⎩⎨⎧合并同类项。
去(添)括号。
(二)、教学内容一、1.单项式:单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
单独一个数或一个字母也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式?(1)21+x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
以四个单项式31a 2h ,2πr ,a bc ,-m 为例,说出它们的数字因数是什么?4.例题:例1:判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;③是,它的系数是π,次数是2; ④是,它的系数是-23,次数是3。
例2:下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2;④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
通过其中的反例练习及例题,强调应注意以下几点:①圆周率π是常数; ②单项式次数只与字母指数有关。
第二章整式的加减复习课(导学案)一、本章学习目标1.理解单项式、多项式、整式等概念(系数、次数、多项式的次数、多项式的项与项数等),弄清它们之间的区别与联系.2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号.在准确判断、正确合并同类项的基础上,进行整式的加减运算.3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立.4.能分析实际问题中的数量关系,并用含有字母的式子表示出来.进一步体会用字母表示数,体会从算术到代数的进步,用字母表示数的一般性和应用的广泛性.二、本章知识结构框图和知识点梳理(一)本章知识结构框图(二)本章知识点梳理三、典例解析 1.单项式的定义例1 下列各式子中,是单项式的有______________(填序号).2. 单项式的系数与次数例2 指出下列单项式的系数和次数:3. 多项式的项数与次数例3 下列多项式次数为 3 的是( )例4 请说出下列各多项式是几次几项式,并写出多项式的 最高次项和常数项.523(1)2x y xy --是 次 项式,最高次项是 ,常数项是 .3221(2)3x x y π-+是 次 项式,最高次项是 ,常数项是 .4.书写格式中的易错点例5 下列各个式子中,书写格式最规范准确的是( )A.a b ⨯B. 112ab - C. 3a ÷ D. 3a E. 1ab - F. 23a b -例6 王强班上有男生 m 人,女生比男生的一半多 5 人,王强班上的总人数(用m 表示)为 人.;;21;2;;;21;ππxx x xy y x a ⑦⑥⑤④③②①++-5.同类项的概念例7.若32nx y 与2mx y -是同类项,则m+n= . 变式:若64a a x y ++-与43bx y 的和是一个单项式,则b a = .6. 整式的加减(整体思想)例8.若x 2-2y =1,则2x 2-4y+3 = .7. 整式的加减(去括号法则与合并同类项)例9.去括号:(1)()a b c d +-+= ;(2)2()c a b --= . 例10.化简:2222(22)3(2a b ab a b ab ---).例11.当 a=2, b=-2 时,求下列多项式的值.小明同学做题时错把a=2抄成a=-2,小华同学没抄错题,但他们做出的结果一样,你说这是怎么回事?33332332211(3)(2)2322a b a b a b b a b a b b -+-+---+.8.与整式的加减有关的规律探索性问题例12.如图,用同样大小的黑色棋子按如图所示的规律摆放:(1)则第⑦个图案有 个黑色棋子. (2)则第n 个图案有 个黑色棋子. (3)则第2020个图案有 个黑色棋子.四、知识检测1.下列代数式中,单项式共有( )个. A .3 B .4 C .5 D .63ab ,0,a+1,2x ,2m - ,1-y ,3xy , x 2-xy+y 22.多项式221312x xy y --+是( )A .二次四项式B .三次三项式C .四次四项式D .三次四项式3.下面的说法错误的个数有( ) A .1 B .2 C .3 D .4 ①单项式mn π-的次数是3次;②-a 表示负数;③1是单项式;④13x x++是多项式. 4.下列各式中,是同类项的是: .5.若62n x y 与2m mx y +-是同类项,则m+n= . 6.判断下列各式是否正确:(1)()a b c a b c --+=-+-( ) 22333(2)(2)442x x x x -+=-+( )7.化简下列各式:222222(1)(321)(3)(2)(22)3(2).x x x x a b ab a b ab -+--++---;8.一个多项式A 加上一个多项式2253x x +-,计算结果是237x x -+-,试求多项式A.33123451234.x ax bx x ax bx =++=-++9.如果当时,代数式的值是,那么当时,求代数式的值10.23213(41)(346) 2.3x x x x x -+-++=-求多项式的值,其中11.观察下列图形:它们是按一定 规律排列的,依照此规律, 第2020个图形中共有 个五角星.。
第二章 “整式的加减”复习导学案班级: 姓名:知识要点回顾一、基本概念1、列式:用 表示数叫做列式.2、单项式:由数与字母的 组成的式子叫单项式.单独的一个数或一个字母也是 .3、单项式的系数:单项式中的 叫做这个单项式的系数.4、单项式的次数:一个单项式中, 的和叫做这个单项式的次数.5、多项式:几个单项式的 叫做多项式. 在多项式中,每个单项式叫做这个 多项式的 ,不含字母的项叫做 .多项式里, 的 次数叫做多项式的次数.6、单项式与多项式统称 .7、同类项:所含 相同,并且相同字母的 也相同的项叫做同类项. 几个常数项也是同类项.8、把多项式的 合并成一项,叫做合并同类项.二、基本法则1、合并同类项法则:把同类项的 相加减,所得的结果作为同类项的系数, 且字母连同它的 不变.2、去括号法则:若果括号外的因数是 ,去括号后原括号内各项的符号与原来 的符号相同;若果括号外的因数是负数,去括号后原括号内各项的 符号与原来的符号 .3、整式加减运算法则实质上就是:如果有括号先 ,然后再合并 .典型题型归纳题型1、用字母表示数例题1:懒羊羊在“肥羊”商店买了m 瓶饮料,每瓶4元,QQ 糖n 袋, 每袋2元.那么他一共花 了 元?例题2:一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,则这个三位数可以表示为 .练习追踪:练习1:(2016年海南中考)某工厂去年的产量是a 万元,今年比去年增加10%, 今年的产值是 万元.题型2、整式的相关概念理解例题3:在式子:-2,m -n ,2x -,x 2016,3b a -, 3x +4x 中, 单项式有: ;多项式有: .例题4:多项式:134452+--ab b a ,是 次 项式. 例题5:多项式若n y x 32与2y x m -是同类项,则m +n= .练习追踪:练习2:单项式-4x 2y 3的系数是 ,次数是 .练习3:下列各式中,是同类项的是: (填序号).①. 322y x 与23y x ;②. yz x 2-与y x 2-;③. mn 10与mn 32; ④. 5)(a -与5)3(-;⑤. y x 23-与221yx ;⑥. -125与π. 题型3、整式的加减运算例题6:计算 3a -2a= .例题7:合并同类项:2222233123yx xy xy y x -+-. 解:原式 练习追踪练习4:计算3a 2-(-2a 2)= .题型4、去括号法则的应用例题8:去掉下列各式中的括号.(1)8m +(3n -5) (2)2(a -2b )- 3(2m -n ) 解:原式=8m +3n -5 解:原式=2a -4b -6m +3n例题9:先化简,再求值:.2),3()123(22=++--+-x x x x x 其中.解:原式=3x 2-2x +1+x 2-x -3=4x 2-3x -2当x=2时,原式=4×22-3×2-2=8练习追踪练习5:去括号:n -4(3-2m)= .练习6:已知多项A=xy x 532-,B=223x xy +-,求2A -3B.题型5、整体思想的应用例题10:若m +n=-1,则(m +n)2-2= .例题11:若x 2-2=y ,则3x 2-3y -4= .练习追踪练习7:若a -b=21-,则 -6(b -a)= . 22223523)312()233(xy y x xy y x -=+-+-=练习8:一个多项式与2532+-x x 的和是x x 432-,则这个多项式是多少?题型6、规律探究应用例题12:一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为 .练习追踪练习9:观察下列图形:它们是按一定规律排列的, 依照此规律,第10个图形中共有 个五角星;第n 个图形中共有 个五角星.自我检测提高练习10:下列各式中:. 2. ⑥; 23. ⑤ ;1. ④ ;31. ③;y .2 ②; 6- ①.32522y-xy -x πa -x x -x x ++ 是单项式的有 ,是多项式的有 , 是整式的有 .(填写序号) 练习11:若46++-a a y x 与by x 43的和是一个单项式, 则b a = .练习12:一个三位数的百位数字为a ,十位数字比百位数字大3,个位数字比百位数字小2,则这个三位数可以表示为 .(要求化简) 练习13:一个两位数,个位上的数是a ,十位上的数是b ,交换个位与十位上的数字 得到一个新两位数,则计算原数与所得新数的差一定能被下列数整除的是( ).A.11B.9C.7D.5练习14:在密码学中,直接可以看到的内容为明码,对明码进行某种处理后得到的内 容为密码.有一种密码,将英文26个字母a ,b ,c ,…,z(不论大小写)依 次对应1,2,3,…,26这26个自然数(见表格):当明码字母对应的序号x 为奇数时,密码字母是明码字母对应序号x +3;当明码字母对应的序号x 为偶数时,密码字母是明码字母对应序号x -3.按上述规定,将明码“ math”译成密码是( )A .keouB .jdwkC .mathD .pdqe练习15:在某住房小区建设中,为了提高业主的宜居环境,某小区规划修建 一个广场(平面图形如图所示)(1)用含x 、y 的代数式表示该广场的面积S ;(2)若x 、y 满足(x -6)2+|y -5|=0,求出该广场的面积.练习16:化简)(59)(41)(51)(43b a b a b a b a --++--+.练习17:试说明多项式(6x +4y -5)-4(x +y)-2(x -3)无论x,y 取何值时,其多项式的值为定值.练习18:窗户形状如图所示,上部是半圆形,下部是长为b ,宽为a 的两个长方形,计算:(1)窗户的面积及窗框的总长;(2)当a=20cm , b=50cm 时,窗户的面积及窗框的总长分别是多少?(π取3.14)b a。
第2章 整式的加减 复习导学案学习目标:1、通过尝试学习的形式来对《整式的加减》这一章节进行的综合复习,以相应的练习来加强对有关概念和法则的理解;通过合作交流来查漏补缺。
2.进一步加深学生对本章基础知识的理解以及基本技能的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点:结合知识要点进行基础训练。
教学难点:立足基础训练,拓展思维空间。
一、知识网络1.2 ②、多项式的项数和次数③、同类项 3.知识回顾 ①、用代数式表示:比a 的5%少5的数是 ;被b 除商为3且余数是1的数是 。
②、单项式n m 3π-的系数是 ,次数是 。
③、多项式a b a a 3323--23b b +是 次 项式,最高次项的系数是___________. ④、下列各组单项式中,不是同类项的是( )(A )5和21- (B )b a 29和2ba - (C )23和2a (D )x π2和x 3-⑤、对于代数式:1,r ,11+x ,312+x ,)(22b a -π,πx 2;属于单项式的有 ,属于多项式的有 。
二、例题讲解:1:找出下列代数式中的单项式、多项式和整式。
3zy x ++,4xy ,a 1,22n m ,x 2+x+x 1,0,x x 212-,m ,―2.01×105解:2:指出下列单项式的系数、次数:a b ,―x 2,53xy 5,353z y x-。
3:指出多项式a 3―a 2b ―a b 2+b 3―1是几次几项式,最高次项、常数项各是什么?4:如果32b a x -与a 54y b 是同类项,则=x ,=y 。
三、互助解疑1、如果x m y x n )2(23-+是关于x,y 的五次二项式,求m 和n 的值。
思考:1.题目中关于x,y 是指什么意思2.五次二项式分别代表什么2、单项式4x a+b y a-1与3x 2y 是同类项,则a-b 的值是多少思考:1.同类项满足的条件有几个,分别是什么2.欲求a-b 的值首先需要求出什么五、达标检测1、下列说法正确的是( )A.0不是单项式B.a b 是单项式C. 2x y 的系数是0D.32x -是整式 2、下列单项式中,次数是5的是( ) A.53 B. 322x C. 23y x D. 2y x3、多项式3244327x x y m -+-的项数与次数分别是( )A.4,9B.4,6C. 3,9D. 3,10 4、单项式2237xy π-的系数是 ,次数是 。
示数量关系加减第二章整式的加减小结复习导学案一、导学1.导入课题:同学们,我们学完整式的加减这章后,你的印象如何?掌握得怎么样?还有哪些不够清楚?下面我们一起来进行本章的复习和小结。
2.学习目标:⑴通过回忆小结加深本章学过的有关概念和运算法则的识记和理解。
⑵通过小结理清本章的知识结构,加深本章知识运用的方法技巧。
⑶进一步学会运用整式的加减表示实际问题中的数量关系。
3.学习重、难点:重点:本章学过的有关概念及运算法则难点:整式的加减运算及化简求值。
4.自学指导⑴自学内容:课本P74-76的内容⑵自学时间:8分钟⑶自学方法:对照小结归纳的内容进行边回忆边看书边交流总结的形式复习⑷自学参考提纲:①②___________叫做单项式,____________叫做单项式系数,____________叫做单项式次数。
③___________叫做多项式,____________叫做多项式的项,____________叫做多项式次数,___________叫做常数项。
④___________叫做同类项,____________叫做合并同类项,合并同类项的法则是____________________________。
⑤去括号的法则是________________________________________。
⑥整式加减计算的一般步骤是______________________________。
⑦求整式的值的一般步骤是:先_____________,再______________。
⑧相互交流一下学习本章知识的过程中应注意哪些问题?易错易混易漏点有哪些?二、自学:学生根据自学指导进行自学三、助学师肋生:⑴明了学情:教师巡视课堂了解学生的自学小结进程及自学中存在的问题。
⑵差异指导:教师组织互助帮扶,对个别学生进行小结复习的方法指导及帮助查找知识整理中的遗漏和忽视点。
生助生:引导学生相互交流探讨来弥补学习掌握不足的地方,解决一些学习疑难问题。
【人教版】七年级数学第二章《整式的加减》导学案第二章整式的加减2.1 整式(一)【学习目标】1.能运用代数式表示实际问题中的数量关系.2.明白得单项式、单项式的次数、系数等概念,会指出单项式的次数和系数.【学习重点、难点】1.重点:单项式的有关概念.2.难点:负系数的确定以及准确确定一个单项式的次数.【知识链接】(约1分)我们来看本章引言中的问题(1).青藏铁路线上,假如列车在冻土地段的行驶速度是100千米/时,那么列车2小时能行驶_____千米,3小时能行驶_____ 千米, t小时能行驶______千米.在小学,我们学过用字母表示数,那个地点的100t表示路程.本节中,通过学习“整式”,将进一步感受到用字母表示数的广泛应用.【学习过程】一、自主学习(约10分)认真自学课本p54 ,内容,要求静思独做完成下题.1.想一想:p56摸索栏目中的内容.2. 观看引言与例1中列出的式子100t,0.8p,mn,a2h,-n这些式子有什么共同特点?__________________________________________________________________________________像如此________________________的式子叫做单项式(注意:单独的一个数或一个字母也是单项式).___________________________叫做单项式的系数. __________________________叫做单项式的次数.二、问题探究(约5分)1.判定:(1)x是单项式.()(2)6是单项式.()(3)m的系数是0,次数也是0.()(4)单项式πxy的系数是1 ,次数是3.()2.仿照例1:用单项式填空,并指出它们的系数与次数.(1)每千克苹果a元,12千克苹果共________元; (2)底面半径为r,高为h的圆锥的体积是________..(3)一件上衣原价a元,降价20%后的售价是_____元;(4)长方形的长方形的长是0.8,宽是a,那个长方形的面积是____.三、合作交流(约5分)上述问题中困惑的地点可结对子交流.判定下列各式是否是单项式,假如是指出它们的系数与次数.-13a ,12πxy2 ,-abc,23a2b ,12a+b , x, -2x2y33四、精讲点拨(约5分)1.判定一个式子是否为单项式,关键是看式子中数字、字母之间是不是只有积的关系.即单项式只含有乘法(包括乘方)和数字作为分母的除法运算.例如xy 2 是单项式,而x+y 2 ,y2x就不是单项式. 2.注意圆周率π是常数,当单项式中含有π时,是单项式的系数,且在运算单项式的系数时,应注意不要 加上π的指数.如2πr 2的系数是2π,次数是2.3.单项式的系数包括前面的符号,且只与数字因数有关.而次数只与字母有关.如-π2 x 3yz 4的系数-π2 ,指数是8.4.确定一个单项式的次数时,不要漏掉指数为1的字母, 如-xy 3中x 的指数是1,故那个单项式的次数是1+3=4.5.当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等; 五、能力提升(约5分)1.x 2yz 的系数是____,次数是____,–n 的系数是______,次数是_______. 2.假如单项式–2x 2y m 与单项式a 4b 的次数相同,则m=_____3.写出系数为5,含有xyz 三个字母且次数为4的所有单项式,它们分别是______ 六、课堂小结(约2分) 我的收成: 我的困惑: 【达标测评】(约7分)1.在2a 2 ,-4x ,– abc ,a,0,a–b,0.95 , 中单项式有( )个 A 4个 B 5个 C 6个 D 7个2.若甲数为x ,乙数是甲数的3倍,则乙数为( ) A 3x B x+3 C x D x-33. –xy 2z2系数是_______,次数是________.4..假如单项式3a 2b 3m-4的次数与单项式 x 2y 3z 2 相同,那么m=________5.一个含有x 、 y 的5次单项式,x 的指数为3,且当 x=2 、 y=-1 时,那个单项式的值是40,求那个单项式? 【课后作业】 〔必做题〕: 1.课本p 56 练习第1、2题, 2.课本p59-60 复习巩固第1、3题. 〔选做题〕: 1.课本p61第8题 2.探究创新题:按照规律填上所缺的单项式并回答. (1)- a, 2a 2, - 3a 3, 4a 4, ____, _____; (2)试写出第2010个和第2011个单项式; (3)试写出第n 个单项式.备课时刻:2020—10—03 主备人:贾洪军 审核人:贾洪军 2.1 整 式(二)【学习目标】1. 明白得多项式,整式的概念,会准确确定一个多项式的项和次数.2. 通过列整式,培养分析问题,解决问题的能力 【学习重点,难点】1. 重点:多项式以及有关概念2. 难点:准确确定多项式的次数和项 【知识链接】(约1分)1. _____________________ 叫做单项式,例如_______2.-3ab 2c 7 的系数是 ____________,次数是_________【学习过程】一、自主学习(约10分) 1.认真自学课本p 55 内容,2.观看课本p 55例2中所表示的式子V+2.5,V-2.5, 3x+5y+2z, 12ab -πr 2, x 2+2x+18回答下列问题:(1)它们_______单项式(填“是”或“不是”)(2)这些式子的共同特点是:__________________ 二、问题探究(约5分)自学课本 p 57-58有关内容,回答下列问题1._________________________叫做多项式.2.在多项式中每个单项式叫做_______ ,不含字母的项叫做____3.在多项式中___________叫做多项式的次数.4.多项式的次数与单项式的次数的区别:_________ ___________________________________________________.5.________ 和_________统称为整式. 三、合作交流(约5分)先静思独做,各小组再以组长带领解决学习中遇到的困惑问题1.指出下列多项式的项和次数: 3x+5y+2z, 12 ab -πr 2 4x-3, a 4-2a 2b 2+b 4易错警示:多项式的每一项都包括它前面的符号,最高项的次数是该多项式的次数 2.仿照例2,完成下题用多项式填空,并指出它们的项和次数(1).X 的2倍与10的和可表示为 ____________ (2)比X 的23 小7的数可表示为______________(3)如课本p 58图2.1--3 圆环的面积为________(4)如课本p 59图 第2(4 ) 钢管的体积为_________ 思路导航:(1)圆环的面积=大圆的面积-小圆的面积 (2)钢管的体积=大圆柱的体积-小圆柱的体积四、精讲点拨(约5分)1.多项式中的每一项必须差不多上单项式,且每一项都包括前面的符号.2.再确定多项式的次数时,应先运算出多项式每一项的次数,然后将各项的次数进行比较,取次数最高项的次数作为该多项式的次数.3.不论是单项式依旧多项式,差不多上整式,但分母中含有字母的式子不是整式,如1x+2, a2+1a+2 都不是整式.4.列整式表示数量关系时,一定要弄清题意,找出正确的数量关系.五、能力提升(约5分)认真自学课本p55例2(1),仿照完成下题. 一条河流的水流速度为3千米/时,(1)假如已知船在静水中的速度为 v 千米/时,那么船在这条河流中顺水行驶的速度是_______千米/时,逆水行驶的速度是 ________千米/时(2)假如甲、乙两船在静水中的速度分别为25千米/时和30千米/时,那么甲船顺水行驶的速度是_____千米/时,逆水行驶的速度是______千米/时.乙船顺水行驶的速度是________千米/时,逆水行驶的速度是________千米/时.六、课堂小结(约2分)1. ________________________ 叫做多项式.2._______________________ 叫做多项式的项,___________叫做常数项.3.______________________叫做多项式的次数.4.多项式_____整式吗?整式______多项式吗?(填“是”或“不是”)我的收成:我的困惑:【达标测评】(约7分) 1.课本 p59练习第1、2题.2.在式子- 35ab,2x2y5,2yx, -a2bc, 1, x2-2x+3,a3,x1+1中,单项式是______________________________________,多项式是 _____________________.3.在多项式- x3y2+3x2-7中最高次项是___,常数项是___,该多项式是__次__项式.4.2x2-3xy+x-1的各项分别是__________________________.5.有一个多项式为a10-a9b+a8b2-a7b3+…按那个规律写下去,写出它的第六项和最后一项,那个多项式是几次几项式?【课后作业】必做题:1.课本 p59练习 . 2.课本p60第4—6题. 选做题:课本p60第7—9题.备课时刻:2020—10—03 主备人:贾洪军审核人:贾洪军2.2整式的加减(一)【学习目标】1.了解同类项,合并同类项的概念,把握合并同类项法则,能正确合并同类项.2.能先合并同类项化简后求值.3.培养观看,探究,分类,归纳等能力,养成良好的学习适应.【学习重点,难点】重点:把握合并同类项法则,熟练地合并同类项.难点:多字母同类项的合并【知识链接】(约1分)有理数能够进行加减运算,那么整式能否进行加减运算呢?如何样化简呢?请看本章引言中的问题(2),青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度能够达到120千米/时.假如列车通过冻土地段的时刻t小时,通过非冻土地段的时刻为2.1t小时,则这段铁路全长是__________ 千米. 类比数的运算,我们如何化简式子100t+252t呢?这节课我们来学习整式的加减.【学习过程】一、自主学习(约5分)认真自学课本p62-65内容,独立完成p62的探究.思路导航:课本p62探究(2),100t+252t=________, 100t表示100×t,252表示252×t请用乘法的分配律完成填空.二、问题探究(约5分)1.填空:(1)100t-252t=( )t (2)3x2+2x2=( )x2(3)3ab2-4ab2=( )ab22.观看上述的三个多项式,他们都能够合并为一个单项式,那么具备什么特点的多项式能够合并呢?可结对子交流.3.像如此,所含字母相同,同时相同字母的指数也相同的项叫做________ ,几个常数项也是________.三、合作交流(约5分)1.对上述问题中的困惑地点小组交流解决,必要时教师指导.2..下列各组是不是同类项:(1)a与b (2)x与x2 (3) 0.5x2y 与 0.2xy2 (4)4abc与 4ab1(5)-5m2n3与2n3m2 (6)7x n y n+1与-3x n y n+1 (7)100与2思路点拨:依照同类项定义进行判定,同类项应所含字母相同,同时相同字母的指数也相同.二者缺一不可,与其系数无关,与其字母顺序无关.2.因为多项式中的字母表示的是数,因此我们能够运用交换律,结合律,分配律把多项式中的同类项合并.例如:4x2+3x+9+5x-6x2+7 ( 找出同类项)=(4x2-6x2)+(3x+5x)+(9+7) (交换律与结合律)=(4-6)x2+(3+5)x+16(分配律)=-2x2+8x+16像如此,把多项式中的__________合并成一项,叫做合并同类项.3.议一议:合并同类项前后的项的系数,字母以及字母的指数,有何变化?与同伴交流后,归纳出合并同类项法则:________________________________四、精讲点拨(约4分)1. 合并同类项的实质是乘法分配律的逆用. 如 (2+3)a=2a+3a ,反过来确实是2a+3a=(2+3)a2.若两个同类项互为相反数,则合并同类项的结果为0.3.注意各项系数应包括它前面的符号,专门是系数为负数时,不要遗漏负号,同时注意不要丢项.4.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或从小到大(升幂)的顺序排列. 五、能力提升(约10分) 1.认真自学课本p 64例题,对遇到的困惑问题可上台展现解疑.. 1.合并下列各式的同类项.(仿照课本p 64例1) (1)-7m 2n+5m 2n (2) 3a 2b-4ab 2-4+5a 2b+2ab 2+72. 求多项式3x 2-8x+2x 3-13x 2+2x-2x 3+3的值,其中x=-21(仿照课本p 64例2的解题步骤)思路点拨:在求多项式的值时,能够先合并同类项,再求值,如此能够简化运算.合并时,专门注意系数是负数的情形,规范书写格式.代入字母给定的值时,必要时要正确使用括号,否则易发生错误.3.认真阅读课本p 65 例3,依照思路导航完成此题.思路导航:例3中(1)水位上升量与水位下降量是具有相反意义的两个量,我们能够把下降的水位量记为负,上升的水位量记为正,那么第一天水位的变化量为________cm ,翌日水位的变化量为__________cm,两天水位的总变化量为________ =________________.(2)把进货的数量记为正,售出的数量记为负. 故进货后那个商店共有大米________________=___________ 六、课堂小结(约2分)1.__________________________________________叫做同类项.2.字母相同,次数也相同的项_________ 是同类项.(填“一定”或“不一定” )3. ______________________________________叫合并同类项.4.合并同类项的法则:________________________________________________________________________我的收成: 我的困惑:【达标测评】(约8分)1.课本p 65练习,可酌情处理. 2.假如5x 2y 与21x m y n是同类项,那么m= ____,n=______ 3.当k=______时,多项式x 2-3kxy+9xy-8中不含xy 项.4.求多项式2(x-2y)2-4(2x-y)+(x-2y)2-3(2x-y)的值,其中x=-1, y=12 [提示:分别把(x-2y) (2x-y)看作一个整体.]【课后作业】必做题:课本 p 69,第1 题备课时刻:2020—10—03 主备人:贾洪军 审核人:贾洪军2.2整式的加减【二(1)】【学习目标】1.能应用运算律探究去括号法则,同时利用去括号法则将整式化简.2.培养观看分析,归纳能力及主动探究合作交流的意识.【学习重点,难点】重点:去括号法则,准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【知识链接】(约2分)我们来看引言中的问题(3)在格尔木到拉萨路段,假如列车通过冻土地段要 t 小时,那么通过非冻土地段的时刻多用0.5小时,即_____小时,因此冻土地段的路程为______千米,非冻土地段的路程为___________千米,因此这段跌路全长为___________千米①,冻土地段与非冻土地段相差___________千米②.式子① 100t+120(t-0.5) 式子②100t-120(t-0.5)都带有括号,如何化简呢?这节课我们连续学习整式的加减【学习过程】一、自主学习(要求静思独做.)(约5分)1.忆一亿:乘法的分配律:a(b+c)=____________2.算一算:(要求应用乘法的分配律)(1)120×(10-0.5)(2)-120×(10-0.5)(3)120×(t-0.5)(4)-120×(t-0.5)二、问题探究(约5分)认真自学课本p65-67内容,完成下题运算:(1)2(50-a)(2)-3(a2-2b)比较上面两式,你能发觉去括号的规律吗?假如括号外的因数是正数,去括号后_____________________ ;假如括号外的因数是负数,去括号后______________________专门地 +(a-8), -(a-8) 能够分别看1×(a-8), -1×(a-8) 利用分配律,能够将式子中的括号去掉得+(a-8)=a-8, -(a-8)=-a+8,这也符合以上发觉的去括号规律三、合作交流(约5分) 1.对上述问题中不明白的地点,小组交流解决.2.化简下列各式(仿照课本p66 例4,可上台展现)(1)10m+8n+(7m-3n) (2)(7x-5y)-2(x2-3y)思路点拨:(1)先判定是哪种类型的去括号,其次去括号后,括号内各项的符号要不要变号.(2)易错警示:括号外的系数不要漏乘括号里的每一项.括号前是“-”号,去括号时,注意括号里的各项符号都要变号.四、精讲点拨(约5分)1.去括号规律要准确明白得,去括号应对括号内的每一项的符号都予考虑,做到要变都变,要不变,则各项符号都不要变.2.括号内原有几项去掉括号后仍有几项.3.有多层括号时,要从里向外逐步去括号.五、能力提升(约5分)细读课本p67例5,仿照例5,完成下题.飞机的无风航速为a千米/时,风速为 20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?思路导航:(1)飞机的航速有如下关系:顺风航速=无风航速+风速,逆风航速=无风航速-风速.因此飞机顺风航速为__________千米/时,顺风飞行4小时的行程是_______千米.飞机逆风航速为_________,逆风飞行3小时的行程是___________千米.两个行程相差________千米. 解答过程仿照课本p 67 例5:【课堂小结】:(约3分)1. 去括号是代数式变形的一种常用方法,去括号的法则是:____________________________________________________________________________________________________ 2. 去括号规律能够简单记为“-”变“+”不变,要变全部变,当括号前带有数字因数时,那个数字要乘以括号内的每一项,切勿漏乘某些项.我的收成: 我的困惑:【达标测评】(约10分) 1. 化简: (1)31(9y-3)+2(y+1) (2)-5a+(3a-2)-(3a-7)2.2x 3y m与-3x n y 2是同类项,则m+n=_____3.化简m+n-(m-n)的结果为( ) A.2m B.-2m C.2n D.-2n4.已知3x 2-4x+6的值为9,则x 2-34x+6 的值为( ). A.7 B.18 C.12 D.95.假如关于x 的多项式ax 4+4x 2-21与 3x b+5是同次多项式,求21b 3-2b 2+3b-4 的值.【课后作业】:1.必做题:课本p 70第2、3、4、8题.2.选做题:〔创新思维〕 规定一种新运算:a*b=a+b,a#b=a-b 其中a 、b 为有理数, 则化简a 2b*3ab+5a 2b#4ab 并求出当a=5,b=3时的值是多少?备课时刻:2020—10—03 主备人:贾洪军 审核人:贾洪军整式的加减【二(2)】学习内容:补充内容(课本没有“添括号”内容,整式的加减过程中要用到。