大学物理05_5麦克斯韦速率分布律
- 格式:ppt
- 大小:1.12 MB
- 文档页数:21
麦克斯韦气体速率分布律Maxwell Velocity Distribution大家知道,由气体的温度公式可以得出气体分子的方均根速率。
例如在时,氦气。
氧气。
但我们要注意的是,方均根速率仅是运动速率的一种统计平均值,并非气体分子都以方均根速率运动。
事实上,处于平衡状态下的任何一种气体,各个分子均以不同的速率、沿各个方向运动着。
有的速率大于方均根速率,有的速率小于方均根速率,它们的速率可以取零到无穷大之间的任意值。
而且由于气体分子间的相互碰撞,每个分子的速度也在不断地改变,所以在某一时刻,对某个分子来说,其速度的大小和方向完全是偶然的。
然而就大量分子整体而言,在平衡状态下,分子的速率分布遵守一个完全确定的统计性分布规律又是必然的。
下面我们介绍麦克斯韦应用统计理论和方法导出的分子速率分布规律。
气体分子按速率分布的统计规律,最早是由麦克斯韦于1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学中也导出该规律。
由于技术条件的限制,测定气体分子速率分布的实验,直到本世纪二十年代才实现。
1920年斯特恩(O.Stern首先测出银蒸汽分子的速率分布;1934年我国物理学家葛正权测出铋蒸汽分子的速率分布;1955年密勒(Mlier和库士(Kusch测出钍蒸汽分子的速率分布。
斯特恩实验是历史上最早验证麦克斯韦速率分布律的实验。
限于数学上的原因和本课程的要求,我们不推导这个定律,只介绍它的一些基本内容。
*麦克斯韦(J. C. Maxwell,1831—1879)英国物理学家,经典电磁理论的奠基人,气体动理论的创始人之一。
他提出了有旋电场和位移电流概念,建立了经典电磁理论,这个理论包括电磁现象的所有基本定律,并预言了以光速传播的电磁波的存在。
1873年,他的《电磁学通论》问世,这本书凝聚着杜费、富烂克林、库仑、奥斯特、安培、法拉第……的心血,这是一本划时代巨著,它与牛顿时代的《自然哲学的数学原理》并驾齐驱,它是人类探索电磁规律的一个里程碑。
麦克斯韦速度分布律的推导与实验验证摘要:本文对麦克斯韦速度分布律的内容及其历史来历做了简略概述,重点是用初等方法 推导了麦克斯韦速度分布律,同时简单地描述了一下它的实验验证。
关键词:速度分布函数,实验验证。
一. 内容1麦克斯韦速度分布律的内容当气体处于平衡态时,气体分子的速度在 v~v dv 间隔内,及分子速度分量在V x ~ V x dV x , V y ~ V y dV y , J dV z 间隔内的分子数dN(v)占总分子数 N的比率为:其中m 为分子的质量,T 为气体温度,k 为波尔兹曼常数,-m(v 2 v : v ;) - mv 22 2为气体分子平动能。
dN °)表示速度矢量的端点在速度体元d 内的分子数占总 N 分子数的比率,换言之,一个分子取得 v~v dv 间隔内速度的几率。
2、分子速度分布函数3m 2 m& V: v Z)/ 2kT ( )2e y2 kTf (v )的物理意义是:分子速度在 v 附近,单位时间间隔内的分子数占总分 子数的比率。
3、速度分量分布函数3、麦克斯韦速率分布律dN ( v)m(v X v y v Z )/ 2kTdv x dV y dv Z ,dN(v) NdydV y dV z=( Nd*2 kTdN(V y )NdV y(2 kTdN(V z ) ,m ,(1m 7mv X /2kT )2e xf (VX ) f( V y )fz1 x 2mv Z /2kT)e詁mv y /2kT)e热学研究(论文)将以V x ,V y ,V z 为轴的笛氏坐标进行坐标变换,变为球坐标V,,2v sin d d dv4、分子速率分布函数3i m ,2 ( )2e 2 kT物理意义:分子速率在v 附近,单位速率间隔内的几率。
二. 历史1859年4月,麦克斯韦偶然的读到克劳修斯关于平均自由路程的那篇论文, 很受鼓舞,重燃了他原来在土星卫环问题上运用概率理论的信念,认为可以 用所掌握的概率理论对动理论进行更全面的论证。
推导麦克斯韦速度分布律、速率分布律的简单方法麦克斯韦速度分布律是量子力学中重要的一部分。
1860年,麦克斯韦发现在粒子系统中,粒子运动的速度都遵循一定的分布关系,即概率密度函数与速度成反比,这就是麦克斯韦速度分布律。
那么,如何推导出麦克斯韦速度分布律和速率分布律?
首先,考虑一个温度为T的系统,采用能量有限的情况下可以把粒子的运动视为马尔可夫链的形式。
由于能量有限,可以认为处在同一状态的粒子的总体数量就构成了该状态的热平衡状态。
由此可推出粒子的速度分布概率:
P(v) = e^(-mv^2/2kT)
其中,m为粒子的质量,T为温度,k为Boltzmann常数。
将此式作为粒子的速度分布函数,即可推出其速率分布函数。
即:
f(v) = e^(-mv^2/2kT) * Usqrt(m/2πkT)
此式也叫麦克斯韦分布,概率密度与粒子速率成反比,即概率密度随着粒子速率的增加而减少。
通过此式,可以推导出麦克斯韦速度分布律和速率分布律。
以上便是推导麦克斯韦速度分布律以及速率分布律的简单方法。
虽然在实际应用中,还有许多根据环境情况改变相关参数的变体,但基础思想是一致的:概率密度随着粒子运动速度的增加而减少。