麦克斯韦速率分布律与平动动能分布律关系
- 格式:doc
- 大小:121.00 KB
- 文档页数:3
气体平均平动动能公式和分子平均平动动能气体是由大量分子组成的物质,这些分子不断地做无规律的热运动。
在热学中,我们常常关注气体内部的平均平动动能,这对于研究气体性质和行为具有重要意义。
本文将从气体平均平动动能公式和分子平均平动动能两个方面展开讨论。
一、气体平均平动动能公式1.1 动能的定义在物理学中,动能是描述物体运动状态的物理量,它与物体的质量和速度有关。
对于气体内部的分子而言,它们具有的平均平动动能可以通过以下公式来表示:\[KE_{avg} = \frac{3}{2} kT\]其中,\(KE_{avg}\)表示气体分子的平均平动动能,\(k\)是玻尔兹曼常数,\(T\)是气体的绝对温度。
1.2 推导过程这个公式的推导过程可以通过统计力学的方法进行。
由分子动能定理可知,一个分子的平均平动动能大小与温度成正比。
而对于气体而言,由于分子具有三个独立的平动方向,因此气体分子的平均平动动能为3kT。
气体内部所有分子的平均平动动能可以表示为3kT的总和,即\(KE_{avg} = \frac{3}{2} kT\)。
1.3 公式意义这个公式的意义在于,它揭示了气体分子的平均平动动能与温度之间的关系。
从宏观角度来看,气体的温度越高,分子的平均平动动能就越大,这也说明了温度对气体热运动的影响。
二、分子平均平动动能2.1 分子速度的分布气体分子的速度分布是描述气体分子热运动状态的重要物理量。
根据麦克斯韦-玻尔兹曼分布律,气体分子在热平衡状态下的速度分布可以用以下公式来表示:\[f(v) = \sqrt{\frac{m}{2\pi kT}} e^{-\frac{mv^2}{2kT}}\]其中,\(f(v)\)表示速度为\(v\)的分子的概率密度函数,\(m\)为分子的质量,\(k\)为玻尔兹曼常数,\(T\)为气体的绝对温度。
2.2 分子平均平动动能气体分子的平均平动动能可以通过速度分布函数来进行求解。
根据统计力学的理论,气体分子的平均平动动能可以表示为:\[KE_{avg} = \int_0^\infty \frac{1}{2}mv^2 f(v) dv\]将速度分布函数带入上式,可以得到气体分子的平均平动动能。
从玻尔兹曼分布推导麦克斯韦速度分布律和能量均分定理玻尔兹曼分布是热力学中描述粒子分布的重要概念。
麦克斯韦速度分布律和能量均分定理则基于玻尔兹曼分布,对分子在气体中的速度和能量分布进行了详细研究。
本文将从玻尔兹曼分布开始,逐步推导出麦克斯韦速度分布律和能量均分定理,并解释其重要性和指导意义。
首先,我们来回顾一下玻尔兹曼分布的概念。
玻尔兹曼分布描述了在热平衡状态下,粒子的能级分布情况。
在一个封闭系统中,粒子的分布与其能量有关,服从玻尔兹曼分布的概率可以用以下公式表示:P(E) = (1/Z) * e^(-E/kT)其中,P(E)表示粒子能量为E的概率,Z是配分函数,k是玻尔兹曼常数,T是系统的温度。
通过玻尔兹曼分布,我们可以了解不同能量级别上粒子的分布情况。
基于玻尔兹曼分布,我们可以推导出麦克斯韦速度分布律。
麦克斯韦速度分布律描述了气体中粒子的速度分布情况。
根据分子动理论,气体分子的速度服从高斯分布。
在二维情况下,麦克斯韦速度分布律可以表示为:f(v) = (m/(2πkT))^0.5 * e^(-mv^2/(2kT))其中,f(v)表示速度为v的粒子的概率密度函数,m是粒子质量。
这个分布函数说明了粒子速度随温度和质量的变化。
接下来,我们来推导能量均分定理。
能量均分定理是基于麦克斯韦速度分布律的一项重要结果。
根据能量均分定理,系统中每个自由度的平均动能为kT/2。
自由度可以理解为能够存储和传递能量的独立振动模式或轨道数。
对于一个分子来说,自由度通常包括平动、转动和振动。
在热平衡情况下,每个自由度的平均动能相等。
能量均分定理在热学和统计物理中具有重要的指导意义。
它说明了在热平衡状态下,分子具有与温度相对应的能量。
通过平均动能,我们可以计算出系统的总能量。
这个定理的应用广泛,在材料科学、化学反应动力学以及热力学等领域都扮演着重要角色。
总结起来,玻尔兹曼分布为我们提供了粒子分布的重要理论基础。
基于玻尔兹曼分布,我们可以进一步推导出麦克斯韦速度分布律和能量均分定理,分别描述了气体粒子的速度和能量分布情况。
麦克斯韦气体速率分布律Maxwell Velocity Distribution大家知道,由气体的温度公式可以得出气体分子的方均根速率。
例如在时,氦气。
氧气。
但我们要注意的是,方均根速率仅是运动速率的一种统计平均值,并非气体分子都以方均根速率运动。
事实上,处于平衡状态下的任何一种气体,各个分子均以不同的速率、沿各个方向运动着。
有的速率大于方均根速率,有的速率小于方均根速率,它们的速率可以取零到无穷大之间的任意值。
而且由于气体分子间的相互碰撞,每个分子的速度也在不断地改变,所以在某一时刻,对某个分子来说,其速度的大小和方向完全是偶然的。
然而就大量分子整体而言,在平衡状态下,分子的速率分布遵守一个完全确定的统计性分布规律又是必然的。
下面我们介绍麦克斯韦应用统计理论和方法导出的分子速率分布规律。
气体分子按速率分布的统计规律,最早是由麦克斯韦于1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学中也导出该规律。
由于技术条件的限制,测定气体分子速率分布的实验,直到本世纪二十年代才实现。
1920年斯特恩(O.Stern首先测出银蒸汽分子的速率分布;1934年我国物理学家葛正权测出铋蒸汽分子的速率分布;1955年密勒(Mlier和库士(Kusch测出钍蒸汽分子的速率分布。
斯特恩实验是历史上最早验证麦克斯韦速率分布律的实验。
限于数学上的原因和本课程的要求,我们不推导这个定律,只介绍它的一些基本内容。
*麦克斯韦(J. C. Maxwell,1831—1879)英国物理学家,经典电磁理论的奠基人,气体动理论的创始人之一。
他提出了有旋电场和位移电流概念,建立了经典电磁理论,这个理论包括电磁现象的所有基本定律,并预言了以光速传播的电磁波的存在。
1873年,他的《电磁学通论》问世,这本书凝聚着杜费、富烂克林、库仑、奥斯特、安培、法拉第……的心血,这是一本划时代巨著,它与牛顿时代的《自然哲学的数学原理》并驾齐驱,它是人类探索电磁规律的一个里程碑。
麦克斯韦速率分布律与平动动能分布律关系
卜子明(1号)
摘要:麦克斯韦首先把统计学的方法引入分子动理论,首先从理论上导出了气体分子的速率分布率,现根据麦克斯韦速率分布函数,求出相应的气体分子平动动能分布律,并导出与麦克斯韦分布函数类似的一些性质,求出平动动能的最概然值及平均值。
并比较相似点和不同点。
引言:麦克斯韦把统计方法引入了分子动理论,首先从理论上导出了气体分子的速分分布律。
这是对于大量气体分子才有的统计规律。
现做进一步研究,根据其成果麦克斯韦速率分布函数,导出相应的平动动能分布律,并导出与麦克斯韦分布函数类似的一些性质并求出平动动能的最概然值及平均值,并且由此验证其正确性。
方法:采用类比的方法,用同样的思维,在麦克斯韦速率分布函数的基础上,作进一步研究,导出能反映平均动能在ε附近的单位动能区间内的分子数与总分子数的比的函数
)(εf 的表达式。
并由此进一步推出与麦克斯韦分布函
数相对应的一些性质,并比较分析一些不同点。
麦克斯韦速率分布律Ndv
dN v f =
)(这个函数称为气体分子的速率分布函
数麦克斯韦进一步指出,在平衡态下,分子速率分布函数可以具体地写为
2
223
2
24)(v e
kT m Ndv dN
v f kT
mv πππ-⎪⎭
⎫ ⎝⎛==式中T 是气体系统的热力学温度,
k 是玻耳兹曼常量,m 是单个分子的质量。
式(8-30)称为麦克斯韦速率分布律。
式子
dv v f v v ⎰=∆2
1
)(N
N 表示在平衡态下,理想气体分子速率在v 1到v 2 区间的分子数
占总分子数的比率。
而应用麦克斯韦速率分布函数可以求出气体分子三个重要的速率: (1)最概然速率p v ,f(v)的极大值所对应的速率
M
RT M
RT m kT v p 41
.1220
≈=
=
其物理意义为:在平衡态的条件下,理
想气体分子速率分布在附近的单位速率的分布区间内的分子数占气体总分子的百分率最大。
(2) 平均速率v ,用于研究分子碰撞M
RT 1.60
M
8T
80
___
≈=
=
ππRT
m k v (3) 方均根速率
2
v
,用于研究分子平均平动动能
M
RT M
RT m kT v 373
.1330
2
≈=
=
反映的是大量分子无规则运动速率的二次方的平均值的二次方根称为方均根速率。
推导及演绎:
由于分子的平动动能可表示为 2
2
1mv =
ε两边同时取微分有
εd m
vdv 22=
带入到麦克斯韦速率函数有
2
1
2
3
)
(2
)(ε
π
ε
εε
kT
e
kT Nd dN f --=
=
现定义为
)(εf 为气体分子的平动动
能的分布函数。
平动动能在从1ε到2ε之间的分子数比率 N /N ,等于曲线下从
1
ε
到2ε之间的面积, 如图中阴影部分所示。
显然,因为所有N 个分子的速率必
然处于从0到 之间,也就是在速率间隔从0到 的范围内的分子数占分子总
数的比率为1,即
1)(0
=⎰+∞
εεd f 这说明和麦克斯韦分布率相似平动动能分布函
数
)(εf 同样必须满足归一化条件。
而
εεεεd f ⎰=∆2
1
)(N
N 表示在平衡态下,
理想气体分子速率在1ε到2
ε
区间的分子数占总分子数的比率。
同样我们也可以
根据平动动能分布函数求出最概然平动动能p ε以及平均平动动能ε
(1)粒子的最概然平动动能p ε同样地,最概然平动动能p ε也是对应着)
(εf 的极值。
由
0==P
d df εεε
化简
0)]1(21
[2
2
12
12
3
=-
+=---p
kT
e
e
kT kT
kT
εεε
ε
εεπ
)(解出 kT 2
1P =
ε
而其所对应的速率M
RT m
kT v pp =
=
由此我们看到,最概然平动动能所对应的速率并不是麦克斯韦速率所求得的最概然速率。
初看起来似乎很奇怪,可仔细想想,最概然速率代表的是速率分布在附近的单位速率的分布区间内的分子数占气体总分子的百分率最大时的速率。
而最平动动能的概然值代表的是平动动能分布在附近的单位动能的分布区间内的分子数占气体总分子的百分率最大时的动能,其对应的速率却不是最该然速率。
而计算发现这是其实是由于两个方程求极大值时对应的导函数不同。
很显然求的的极大值也不同。
(2)粒子的平均平动动能ε
同样的,εεπεεεεε
d e
k d f N
v d N
kT
-∞∞
∞
⎰⎰⎰=
==
2
32
3
)
T (2
)(其中因为
2
50
2
3
4
3
a
dx e
x ax
π
=-∞
⎰所以
kT kT
kT 23)1(43
2
2
5
23===
π
πε)( 这个结果是显然的:有麦克斯韦分布律已经得到,这也证明了上面的推导的正确性。
总结:通过以上的讨论和分析,我们不仅进一步了解了麦克斯韦速率分布函数,及其结论,还能挖掘出衍生出来的气体平动动能的分布情况,这样我们会对气体动理论的本质有跟家深刻的理解。
引文:要善于在前人已有的基础之上做进一步试探性的研究,才能衍生出新的知识点,也能有助于深刻的理解原有的知识。
参考文献:《大学物理基础知识》,《物理热力学基础》。