结构力学极限荷载
- 格式:pptx
- 大小:2.35 MB
- 文档页数:64
第17章 极限荷载【17-1】 验证:(a )工字形截面的极限弯矩为)41(212δδδσb hbh M s u +=。
(b )圆形截面的极限弯矩为63D M s u σ=。
(c )环形截面的极限弯矩为⎥⎦⎤⎢⎣⎡--=33)21(16D D M su δσ。
【解】(a )工字形截面的等面积轴位于中间。
静距计算公式:2021d xy y xy S y ==⎰考虑上半部分面积对等面积轴的静距(大矩形静距减两个小矩形静距):)41(21)4(21)2)((21)2(21211212222121122222212bhb b h h bh h h b bh hb h b S δδδδδδδδδδδδδδδδ+-+-=+-+-=---= 去除高阶小量后)41(21212δδδb h bh S +=因此极限弯矩为)41()(212δδδσσb h bh S S M s s u +=+= (b )静距计算公式:2021d xy y xy S y==⎰ 6322d 2))2(d(21)2(4d )2(43)2(023)2(0202222202222D uu u y D y D y y y D S D DDD =⋅=⋅=-⋅-=⋅-=⎰⎰⎰关/注;公,众。
号:倾听细雨因此极限弯矩为63D S M s s u σσ==(c )圆的静距为63D S =则圆环的静距为⎥⎦⎤⎢⎣⎡--=-=3333)21(166)2(-6D D D D S δδ 因此极限弯矩为⎥⎦⎤⎢⎣⎡--==33)21(16D D S M ss u δσσ 【17-2】 试求图示两角钢截面的极限弯矩u M 。
设材料的屈服应力为s σ。
【解】设等面积轴距上顶面距离为xmm 。
由面积轴两侧面积相等,也即面积轴以上面积等于总面积的一半,得405550))50(21(22⨯+⨯=-+x x x ,解得mm x 723.4=。
单个角钢上下截面面积矩:32323232233214879mm ])723.440(20)723.440(31)723.445(20)723.445(31[)723.445(521723.431723.4)723.445(21540mm 723.431723.4)723.450(21=+⨯++⨯-+⨯-+⨯-+⨯⨯+⨯-⨯-⨯==⨯+⨯-⨯=S S由此得截面极限弯矩s s s u S S M σσσ10838)4879540(2)(221=+⨯=+=【17-3】 试求图示各梁的极限荷载。
第14章 结构的极限荷载复习思考题1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构?答:(1)极限状态和极限荷载的含义:①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态;②极限荷载是指结构在极限状态时所能承受的荷载。
(2)极限弯矩、塑性铰和破坏机构的含义:①极限弯矩是指某一截面所能承受的弯矩的最大数值;②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面;③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。
2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构?答:(1)静定结构出现一个塑性铰时一定成为破坏机构。
因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。
(2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。
因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。
3.结构处于极限状态时应满足哪些条件?答:结构处于极限状态时应满足如下三个条件:(1)机构条件机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。
(2)内力局限条件内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。
(3)平衡条件平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。
4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何?答:(1)可破坏荷载和可接受荷载的含义:可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件);可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。
(2)与极限荷载的关系极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。
极限荷载的名词解释极限荷载,简称为极限载荷,是指结构在允许的极限条件下所能承受的最大力量或压力。
它是设计师在建筑、航空航天、汽车工程、桥梁和机械工程等领域中必须考虑的关键因素之一。
1. 极限荷载概述极限荷载在工程设计中具有重要意义。
无论是建筑物、桥梁、飞机还是汽车,都必须能够在特定的工作负荷下运行,而这些工作负荷不能超过其极限荷载的承载能力。
极限荷载研究的目的是确保工程或设备在正常工作条件下的安全可靠性,以及在异常负荷情况下的抗击压力和破坏的能力。
2. 极限荷载与结构安全极限荷载的考虑对于确保结构的安全性至关重要。
在设计阶段,工程师需要评估预期荷载以及结构所能承载的极限荷载。
这样的评估通常基于复杂的计算和经验公式,包括静力学、动力学、材料力学和结构力学等知识。
通过对各种力学条件的实际测试和模拟分析,设计团队可以确定结构的极限荷载,并相应地进行结构的加强和改进。
3. 极限荷载的影响因素极限荷载受许多因素的影响。
其中最重要的因素之一是物体的重量和形状。
不同形状的结构将受到不同程度的应力和压力。
其他因素包括运动速度、温度、湿度、材料的强度和刚度,以及使用环境的条件等。
在设计过程中,这些因素必须全面考虑,以确保结构具有足够的强度和稳定性。
4. 极限荷载的实践应用极限荷载的研究和应用广泛应用于各个工程领域。
在建筑设计中,极限荷载的考虑可以确保建筑物在各种自然灾害和外部冲击下的抵御能力。
在航空航天领域,极限荷载的研究应用于飞行器和航天器的设计和制造。
在汽车工程中,极限荷载的概念用来研究汽车零部件的强度和耐久性,确保其在各种驾驶条件下的安全性。
5. 极限荷载的意义和挑战极限荷载的考虑对于工程设计师和研究者而言至关重要。
一个可靠的结构需要经过良好的分析和合理的设计,以保证其在各种情况下的安全和稳定性。
然而,预测和计算极限荷载并非易事,它需要专业知识、经验和计算能力的共同运用。
此外,随着科技的进步和工程技术的发展,我们对于极限荷载的认识还在不断演进和完善中。
Harbin Institute of Technology超静定梁中的极限荷载的研究课程名称:结构力学院系:土木工程学院班级:1433111姓名:李渊学号: 1143310120摘要:大多数工程材料,特别是钢材,受力后发生变形,一般都存在线性弹性阶段、屈服阶段和强化阶段。
因此,随着荷载的增加,结构截面上应力大的点首先达到屈服强度,发生屈服,结构将进入弹塑性状态。
这时虽然截面部分材料已进入塑性状态,但尚有相当大的部分材料仍处于弹性范围,因而结构仍可继续加载。
当荷载增加到一定程度,结构中进入塑形的部分不断扩展直至完全丧失承载能力,导致结构崩溃(或倒塌)。
因此研究结构极限状态下的极限荷载,是十分有必要的,对于结构安全储备的考虑的依据提供有重要意义。
正文:一、极限荷载的有关意义定义:结构出现塑性变形直到崩溃时所能承受的最大荷载,称为极限荷载,它是考虑结构安全储备设计依据的因素之一,且按极限状态设计结构比弹性设计更经济。
通过对弹性设计方法及其许用应力设计法的研究,并在其方面进行了探讨,得到弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。
事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。
因此弹性设计法不能充分的利用结构的承载能力,是不够经济的。
塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准:max []PuP p uF F F k ≤=其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。
u k 是相应的安全系数。
对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。
另外还要采用以下假设:图1(1)材料为理想弹塑性材料。
其应力与应变关系如图所示。
(图1)(2)比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载现象。
(3)结构的弹性变形和塑性变形都很小。
第11章 结构的极限荷载前面各章所讨论的结构计算均是以线弹性结构为基础的,即限定结构在弹性范围内工作。
当结构的最大应力达到材料的极限应力n σ时,结构将会破坏,故强度条件为[]max nKσσσ=≤ 式中,max σ为结构的最大工作应力;[]σ为材料的许用应力;n σ为材料的极限应力,对于脆性材料为其强度极限b σ,对于塑性材料为其屈服极限s σ;K 为安全系数。
基于这种假定的结构分析称为弹性分析。
从结构强度角度来看,弹性分析具有一定的缺点。
对于塑性材料的结构,尤其是超静定结构,在某一截面的最大应力达到屈服应力,某一局部已进入塑性阶段时,结构并不破坏,还能承受更大的荷载继续工作,因此按弹性分析设计是不够经济合理的。
另外,弹性分析无法考虑材料超过屈服极限以后,结构的这一部分的承载能力。
塑性分析方法就是为了弥补弹性分析的不足而提出和发展起来的。
它充分地考虑了材料的塑性性质,以结构完全丧失承载能力时的极限状态作为结构破坏的标志。
此时的荷载是结构所能承受荷载的极限,称为极限荷载,记为u F 。
结构的强度条件可表示为u F F K≤ 式中F 为结构工作荷载,K 为安全系数。
显然,塑性分析的强度条件比弹性分析更切合实际。
塑性分析方法只适用于延展性较好的塑性材料的结构,对于脆性材料的结构或对变形有较大限制的结构应慎用这种方法。
对结构进行塑性分析时,平衡条件和几何条件与弹性分析时相同,如平截面假设仍然成立,所不同的是物理条件。
为了简化计算,对于所用的材料,常用如图11.1所示的应力—应变曲线。
当应力达到屈服极限以前,材料处于弹性阶段,应力与应变成正比;当应力达到屈服极限s σ时,材料开始进入塑性变形阶段,应力保持不变,应变可无限增加;卸载时,材料恢复弹性但存在残余变形。
凡符合这种应力—应变关系的材料,称为理想弹塑性材料。
实际钢结构一般可视为理想弹塑性材料。
对于钢筋混凝土受弯构件,在混凝土受拉区出现裂缝后,拉力完全由钢筋承受,故也可采用这种简化的应力—应变曲线进行塑性分析。