人教版高中三角形公式
- 格式:doc
- 大小:88.50 KB
- 文档页数:2
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
高中人教版数学必修1,2,3,4,5的公式,结论1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学人教B 必修5第一章解三角形知识建构综合应用专题一判断三角形的形状正弦定理、余弦定理是反映三角形中边角关系的重要定理,是处理有关三角形问题的有力工具,要注意两定理的变形运用及实际应用.判断三角形的形状,其常用方法是:将已知式子都化为角的式子或边的式子再判断.通常利用正弦定理的变形如a =2R ·sin A 将边化角,b 2+c 2-a 2a 利用余弦定理的推论如cos A =把角的余弦化边,或利用sin A =把角的正弦化2bc 2R边,然后利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法进行转化、化简,从而得出结论.常见结论有:设a ,b ,c 是△ABC 的角∠A ,∠B ,∠C 的对边,①若a 2+b 2=c 2,则∠C =90°;②若a 2+b 2>c 2,则∠C <90°;③若a 2+b 2<c 2,则∠C >90°;π④若sin 2A =sin 2B ,则∠A =∠B 或∠A +∠B =.2应用1在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则该三角形是__________三角形.提示:考虑到已知条件是三个角正弦的比值,可用正弦定理得出三边的关系,再利用余弦定理判断最大角的大小即可.应用2在△ABC 中,若∠B =60°,2b =a +c ,试判断△ABC 的形状.提示:已知条件中等式只有边,故结合其特点,可选择利用正弦定理化边为角,再结合三角函数关系化简求解;本题也可利用∠B =60°这一条件,用余弦定理,找出边之间的关系来判断.专题二恒等式的证明证明有关三角形中边角关系的恒等式,若出现边角混合关系式,通常情况下,有两种方法:化边为角,将已知条件统一用角表示;化角为边,将已知条件用边表示,然后利用角的关系或边的关系进行求解,从而使问题得到解决.应用1在△ABC 中,求证:a 2+b 2sin 2A +sin 2B (1)2=;c sin 2C(2)a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).提示:本题(1)可从左边证到右边,利用正弦定理将边的关系转化为角的关系;本题(2)可从右边证到左边,利用余弦定理将角的关系转化为边的关系.应用2已知在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,△ABC 的面积为S .a 2+b 2+c 2求证:cot A +cot B +cot C =.4S提示:解本题的关键是化切为弦,再结合余弦定理变形.专题三三角形的面积问题求三角形面积与正弦定理、余弦定理、三角函数、函数的有关知识紧密地联系在一起,是高考中的常见题型.常用三角形面积公式:111(1)S △ABC =ah a =bh b =ch c .222111(2)S △ABC =ab sin C =bc sin A =ac sin B .222a +b +c (3)S =p (p -a )(p -b )(p -c )(其中p =).2应用在△ABC 中,sin A +cos A =2,AC =2,AB =3,求tan A 的值和△ABC 的面积.2提示:由已知可把角A 算出来,再求tan A ,并求出sin A ,直接代入面积公式即可求面积.专题四正、余弦定理的综合应用以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查解三角形问题是近几年高考中一类热点题型.在具体解题中,除了熟练使用正弦、余弦定理这个工具外,也要根据条件,合理选用三角函数公式,达到简化解题的目的.cos C 2a -c 应用1在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且=.cos B b(1)求cos B 的值;(2)若b =7,a +c =4,求△ABC 的面积.提示:(1)先利用正弦定理化简,再用三角变换整理即得.(2)利用余弦定理及面积公式,再注意整体求ac 的技巧.应用2在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .(1)确定角C 的大小;33(2)若c =7,且△ABC 的面积为,求a +b 的值.2提示:(1)利用正弦定理将边转化为角即可;(2)利用余弦定理和面积公式列出关于a ,b 的方程求解,注意整体技巧.专题五正、余弦定理在实际问题中的应用解决有关三角形的应用问题时,首先要认真分析题意,找出各量之间的关系,根据题意画出示意图,将要求的问题抽象为三角形模型,然后利用正弦定理、余弦定理求解,最后将结果还原为实际问题,这一程序可用框图表示为:实际问题――→解三角形问题――→三角形问题的解――→实际问题的解概括演算应用1如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧抽象推理还原远处一山顶D 在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD .提示:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可.根据已知条件,可以计算出BC 的长.应用2如图,某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才能追赶上该走私船?提示:在求解三角形中,可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.真题放送1.(2011·天津高考)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为().A .3366B .C .D .36362.(2011·福建高考)若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于__________.→→3.(2011·上海高考)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB ·AD=______.4.(2011·湖南高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;π(2)求3sin A -cos(B +)的最大值,并求取得最大值时角A ,B 的大小.45.(2011·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b1=2,cos C =.4(1)求△ABC 的周长;(2)求cos(A -C )的值.6.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .b (1)求;a(2)若c 2=b 2+3a 2,求∠B .7.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C1=p sin B (p ∈R ),且ac =b 2.45(1)当p =,b =1时,求a ,c 的值;4(2)若角B 为锐角,求p 的取值范围.答案:综合应用专题一应用1:钝角∵sin A ∶sin B ∶sin C =2∶3∶4,根据正弦定理,得a ∶b ∶c =2∶3∶4.设a =2m ,b =3m ,c =4m (m >0),∵c >b >a ,∴∠C >∠B >∠A .a 2+b 2-c 24m 2+9m 2-16m 21∴cos C ===-<0.2ab 42×2m ×3m∴∠C 是钝角.∴△ABC 是钝角三角形.应用2:解:解法一:由正弦定理,得2sin B =sin A +sin C .∵∠B =60°,∴∠A +∠C =120°.∴∠A =120°-∠C ,代入上式,得2sin 60°=sin (120°-C )+sin C ,31展开,整理得sin C +cos C =1.22∴sin(C +30°)=1.∴∠C +30°=90°.∴∠C =60°.故∠A =60°.∴△ABC 为等边三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .a +c ∵∠B =60°,b =,2a +c 2∴()=a 2+c 2-2ac cos 60°.2整理,得(a -c )2=0,∴a =c .从而a =b =c .∴△ABC 为等边三角形.专题二a b c 应用1:证明:(1)由正弦定理,设===k ,sin A sin B sin Ck 2sin 2A +k 2sin 2B sin 2A +sin 2B 显然k ≠0,所以,左边===右边,即原等式成立.k 2sin 2C sin 2Cb 2+c 2-a 2c 2+a 2-b 2a 2+b 2-c 2(2)根据余弦定理,右边=2(bc ·+ca ·+ab ·)=(b 2+c 2-a 2)2bc 2ca 2ab222222222+(c +a -b )+(a +b -c )=a +b +c =左边,即原等式成立.222b 2+c 2-a 2cos A b +c -a 应用2:证明:由余弦定理,得cos A =,所以cot A ===2bc sin A 2bc sin Ab 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2,同理可得cot B =,cot C =,所以cot A +cot B +cot C =4S 4S 4Sb 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2a 2+b 2+c 2++=.4S 4S 4S 4S专题三2应用:解:∵sin A +cos A =2cos (A -45°)=,21∴cos (A -45°)=.2又∵0°<∠A <180°,∴∠A =105°.tan 45°+tan 60°∴tan A =tan (45°+60°)==-2-3,1-tan 45°tan 60°2+6sin A =sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°=.4又∵AC =2,AB =3,2+6311∴S △ABC =AC ·AB ·sin A =×2×3×=(2+6).2244专题四cos C 2a -c 2sin A -sin C 应用1:解:(1)由==,得cos B b sin Bcos C ·sin B =2sin A ·cos B -cos B ·sin C .∴2sin A ·cos B =sin B ·cos C +cos B ·sin C=sin (B +C )=sin (π-A )=sin A .1∵sin A ≠0,∴cos B =.2(2)∵b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,又a +c =4,∴(a +c )2-3ac =7.∴ac =3.11333∴S △ABC =ac sin B =×3×=.2224应用2:解:(1)由3a =2c sin A 及正弦定理,得a 2sin A sin A ==.c sin C 33∵sin A ≠0,∴sin C =.2∵△ABC 是锐角三角形,π∴∠C =.3π(2)∵c =7,∠C =.由面积公式,得31π33ab sin =,∴ab =6.①232π由余弦定理,得c 2=a 2+b 2-2ab cos =7,即a 2+b 2-ab =7.②3由①②,得(a +b )2=25,故a +b =5.专题五应用1:解:在△ABC 中,∠BAC =15°,∠ACB =25°-15°=10°.根据正弦定理,AB sin ∠BAC 5sin 15°得BC ==≈7.452 4(km),sin 10°sin ∠ACBCD =BC tan ∠DBC =BC ×tan 8°≈1.047 (km).答:山的高度约为1.047 km.应用2:解:设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x ,AB =14x ,AC =9,∠ACB =75°+45°=120°,222∴(14x )=9+(10x )-2×9×10x cos 120°,2化简,得32x -30x -27=0.39解得x =或x =-(舍去).216∴BC =10x =15,AB =14x =21.BC sin 120°15353又∵sin ∠BAC ==×=,AB 21214∴∠BAC =38°13′或∠BAC =141°47′(钝角不合题意,舍去).∴38°13′+45°=83°13′.答:巡逻艇应该沿北偏东83°13′方向去追,经过1.5小时才能追赶上该走私船.真题放送31.D 设BD =a ,则BC =2a ,AB =AD =a .2在△ABD 中,由余弦定理,得33(a )2+(a )2-a 222222AB +AD -BD 1cos A ===.2AB ·AD 3332×a ·a 2222又∵∠A 为△ABC 的内角,∴sin A =.3BC AB 在△ABC 中,由正弦定理,得=.sin A sin C3a 222AB 6∴sin C =·sin A =·=.BC 2a 361132.2在△ABC 中,由面积公式得S =BC ·CA ·sin C =×2·AC ·sin60°=AC =3,∴AC 2221=2.再由余弦定理,得AB 2=BC 2+AC 2-2·AC ·BC ·cos C =22+22-2×2×2×=4.∴AB =2.23.15如图,在△ABD 中,由余弦定理得2AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=9+1-2×3×cos 60°=7,∴AD =7,AB 2+AD 2-BD 29+7-15∴cos ∠BAD ===.2AB ·AD 2×3×727515于是,AB ·AD =|AB ||AD |cos ∠BAD =3×7×=.2724.解:(1)因为c sin A =a cos C ,由正弦定理,得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .π又cos C ≠0,所以tan C =1,则∠C =.43π(2)由(1)知,B =-A .于是4π3sin A -cos(B +)4=3sin A -cos(π-A )=3sin A +cos Aπ=2sin(A +).63πππ11π因为0<A <,所以<A +<.46612ππππ从而当A +=,即A =时,2sin(A +)取最大值2.6236ππ5π综上所述,3sin A -cos(B +)的最大值为2,此时∠A =,∠B =.431215.解:(1)∵c 2=a 2+b 2-2ab cos C =1+4-4×=4,4∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.1(2)∵cos C =,4115∴sin C =1-cos 2C =1-()2=.44154a sin C 15∴sin A ===.c 28∵a <c ,∴∠A <∠C .故∠A 为锐角.1527)=.88∴cos(A -C )=cos A cos C +sin A sin C71151511=×+×=.8484166.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .b 故sin B =2sin A ,所以= 2.a(2)由余弦定理和c 2=b 2+3a 2,(1+3)a 得cos B =.2c由(1)知b 2=2a 2,故c 2=(2+3)a 2.12可得cos 2B =,又cos B >0,故cos B =,22所以∠B =45°.5a +c =,47.解:(1)由题设和正弦定理,得1ac =,4∴cos A =1-sin 2A =1-(⎧⎨⎩1a =1,⎧⎧⎪⎪a =4,解得⎨1或⎨c =,⎪⎪⎩4⎩c =1.11(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-b 2-b 2cos B ,2231即p2=+cos B,223因为0<cos B<1,得p2∈(,2).2由题设知p>0,所以6<p< 2. 2。
3.1.3 二倍角的正弦、余弦、正切公式整体设计教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.安排1教学过程导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sinα=53,α∈(2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(αα)=sinαcosαcosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )sin 2( ). ⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(αβ)=sinαcosβcosαsinβsin2α=2sinαcosα(S 2α)cos(αβ)=cosαcosβsinαsinβcos2α=cos 2αsin 2α(C 2α)tan(αβ)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2αcos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ4π和α≠kπ2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ2π,k ∈Z 时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2πα是4π2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cosαsinα=cos4α,tan2α=2tanα(1tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k ∈Z ).若cos2α=2cosα,则2cos 2α2cosα1=0,即cosα=231-(cosα=231+舍去). 若tan2α=2tanα,则aa 2tan 1tan 2-=2tanα,∴tanα=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)应用示例思路1例1 已知sin2α=135,4π<α<2π,求si n4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π.又∵sin2α=135, ∴cos2α=a 2sin 12--=1312)135(12-=--.于是sin4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120- cos4α=cos[2×(2α)]=12sinα=12×(135)2=129119 tan4α=a a 4cos 4sin =(169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值:sin15°cos15°.解:原式=2615cos 15sin 215sin )15cos 15(sin 222=++=+ 点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.(2007年高考海南卷,9) 若22)4sin(2cos -=-πa a,则cosαsinα的值为……( ) A.27- B.21- C.21 D.27 答案:C3.(2007年高考重庆卷,6) 下列各式中,值为23的是( ) A.2sin15°cos15° B.cos 215°sin 215°C.2sin 215°1D.sin 215°cos 215°答案:B例2 证明θθθθ2cos 2sin 12cos 2sin 1++-+=tanθ. 活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=)1cos 21(cos sin 2)cos 211(cos sin 2)2cos 1(2sin )2cos 1(2sin 22-++-++=+-+θθθθθθθθθθ =θθθθθθ22cos cos sin cos 1cos sin +-+ =θθθθθθ22cos cos sin sin cos sin ++ )cos (sin cos )sin (cos sin θθθθθθ++=tanθ=右. 所以,原式成立.方法二:左= =)cos (sin cos 2)cos (sin sin 2θθθθθθ++=tanθ=右. 方法三:左=)sin (cos )cos sin 2cos (sin )sin (cos )cos sin 2cos (sin 2cos )2sin 1(2cos )2sin 1(22222222θθθθθθθθθθθθθθθθ-+•++--•++=++-+ =)sin )(cos sin (cos )cos (sin )sin )(cos sin (cos )cos (sin 22θθθθθθθθθθθθ-+++-+-+ =)sin cos cos )(sin cos (sin )cos sin cos )(sin cos (sin θθθθθθθθθθθθ-+++-+++ =θθθθθθcos 2)cos (sin sin 2)cos (sin •+•+=tanθ=右.点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1 求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20° =20sin 2280cos 40cos 20cos 20sin 233•• =.16120sin 1620sin 20sin 16160sin == 点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律.例2 在△ABC 中,cosA=54,tanB=2,求tan(2A2B)的值. 活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如ABC=π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A2B 与A,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A2B)的值改为求tan2C 的值.解:方法一:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA=A A cos sin =53×45=43, tan2A=724)43(1432tan 1tan 222=-⨯=-A A 又tanB=2,所以tan2B=.342122tan 1tan 222-=-⨯=-B B 于是tan(2A2B)=.17744)34(7241347242tan 2tan 12tan 2tan =-⨯--=-+B A B A 方法二:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA==A A cos sin 53×45=43.又tanB=2, 所以tan(AB)=2112431243tan tan 1tan tan -=⨯-+=-+B A B A 于是tan(2A2B)=tan[2(AB)]=.11744)211(1)211(2)(tan 1)tan(222=---⨯=+-+B A B A 点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练化简:.4sin 4cos 14sin 4cos 1aa a a +-++解:原式=aa a a a a 2cos 2sin 22sin 22cos 2sin 22cos 222++ =)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2a a a a a a ++ =cot2α.知能训练(2007年高考四川卷,17) 已知cosα=71,cos(αβ)=1413,且0<β<α<2π, (1)求tan2α的值(2)求β.解:(1)由cosα=71,0<α<2π,得sinα=a 2cos 1-=.734)71(12=- ∴tanα=a a cos sin =17734⨯=43.于是tan2α=.4738tan 1342tan 1tan 222-=-⨯--aa a (2)由0<α<β<2π,得0<αβ<2π.又∵cos(αβ)=1413,∴sin(αβ)=.1433)1413(1)(cos 122=-=--βa 由β=α(αβ),得 cosβ=cos [α(αβ)]=cosαcos(αβ)sinαsin(αβ)=71×14131433734⨯=21. ∴β=3π.点评:本题主要考查三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.作业课本习题3.1 A 组15、16、17.课题小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.。
第一章解三角形§1.2应用举例(第四课时)【创设情景引入新知】杭州一避暑山庄占地的平面图如图所示,它由三个正方形和四个三角形构成,其中三个正方形的面积分别为18亩、20亩和26亩.你知道这个整个避暑山庄占地面积是多少吗?怎么计算呢?请同学们开动脑筋,想想办法吧!【探索问题形成概念】前面我们已知知道三角形的面积公式1,2ABCS ah∆=其中a为底面边长,h为底面上的高.三角形的面积公式除上式之外还有其它的表达形式吗?这节课我们首先将给出三角形面积公式的另一种表达形式.1、三角形的面积公式如右图,△ABC中,边BC、CA、AB上的高分别记为ha、hb、hc根据直角三角形中锐角三角函数的定义,容易证明:sin sinsin sinsin sinabch b C c Bh c A a Ch a B b A======将以上三式应用在三角形的面积公式12S ah=中,可以推导出下面的三角形面积公式;AB Ch ahbhc121212sin sin sin S ab C S ac B S bc A===已知三角形的任意两边及夹角便可求出三角形的面积.【例题】在 △ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2) (1)已知a=14.8cm,c=23.5cm,B=148.5°; (2)已知B=62.7°,C=65.8°,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm. 【思路】(1)中已知两边及夹角,可直接应用公式求解;(2)中已知两角和一角的对边,先根据正弦定理求出另一角的对边,再根据三角形内角和定理求出剩余的一角,便可应用面积公式求解;(3)中已知三角形的三边,可根据余弦定理求出其中任意一角,从而应用面积公式求解.【解答】(1)应用S=21acsinB ,得 S=21⨯14.8⨯23.5⨯sin148.5︒≈90.9(cm 2) (2)根据正弦定理,B b sin = Cc sin ,c = BC b sin sinS = 21bcsinA = 21b 2BA C sin sin sin A = 180︒-(B + C)= 180︒-(62.7︒+ 65.8︒)=51.5︒要求三角形的面积需要知道什么条件?思考S = 21⨯3.162⨯︒︒︒7.62sin 5.51sin 8.65sin ≈4.0(cm 2) (3)根据余弦定理的推论,得cosB =ca b a c 2222-+=4.417.3823.274.417.38222⨯⨯-+≈0.7697sinB = B 2cos 1-≈27697.01-≈0.6384应用S=21acsinB ,得 S ≈21⨯41.4⨯38.7⨯0.6384≈511.4(cm 2)【反思】在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形的知识,求出需要的元素,从而求出三角形的面积.【例题】在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68 m,88 m,127 m,这个区域的面积是多少?(精确到0.1 c m 2)?【思路】把这一实际问题化归为一道数学题目,本题已知三角形的三边,先根据余弦定理求角,再利用三角形的面积公式求解。
第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C解析 由正弦定理a sin A =bsin B,得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C解析 由a sin A =b sin B 得sin B =b sin A a =2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C ) =3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A , 化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb =2×222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°, 即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题: 1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C ,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎤0,403 答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C . 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3 C .3∶5∶7 D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4k c +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2c sin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2, ∴a sin A =b sin B =c sin C =2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A=6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A .证明 因为在△ABC 中,a sin A =b sin B =csin C =2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin Bsin A=右边.所以等式成立,即a -c cos B b -c cos A=sin Bsin A .12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A =sin 120° cos A -cos 120°sin Asin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35,故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ;(3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a =a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.5.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C ,∴C =45° .二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30° 解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60° =12 ∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.答案 120° 解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎪⎨⎪⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∴sin C =22.∴AD =AC ·sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R .(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B . 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角, 则cos C =32+52-722×3×5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2, 则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2. 由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ·AC ·sin A=12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC , ∴(AB +AC )2=BC 2+3AB ·AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3.三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin Bsin C·cos A=a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且·=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵·=-21,∴·=21.∴· = ||·||·cosB = accosB = 21.∴ac=35,∵cosB = 53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542×45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理) ∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C的值;(2)设· =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC =23得ca ·cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a ,∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin ∠ACB sin ∠ABC=50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°.由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎫x -5142-257+100 ∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小.二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得 BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126×2232=24(n mile).(2)在△ADC 中,由余弦定理得 CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile). 即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°,由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形.∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km. 能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. ∴B 1B 2=10 2.因此,乙船速度的大小为10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m答案 A解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△P AB 中,由正弦定理可得60sin (45°-30°)=PBsin 30°,PB =60×12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600·sin 2θ=2003·sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( )A .16B .17.5C .18D .18.53 答案 A解析 设两邻边AD =b ,AB =a ,∠BAD =α, 则a +b =9,a 2+b 2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16.二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =t v ,AC =3t v ,B =120°,由正弦定理知BC sin ∠CAB=ACsin B ,∴1sin ∠CAB =3sin 120°, ∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ·BC cos 120°=a 2+a 2-2a 2·⎝⎛⎫-12=3a 2,∴AC =3a . 8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ·AC ·cos A=82+52-2×8×5×12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12,由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A = 1-⎝⎛⎭⎫782=158. 由12(a +b +c )·r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin (90°-α)=BC sin (α-β), ∴AC =BC cos αsin (α-β)=h cos αsin (α-β). 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β).即山高CD 为h cos αsin βsin (α-β).12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ·AD ·sin A +12BC ·CD ·sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M . DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =(BE -FC )2+BC 2=902+1202=150(m).在△DEF 中,由余弦定理的变形公式,得 cos ∠DEF =DE 2+EF 2-DF 22DE ·EF=1302+1502-102×2982×130×150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ·BD ·cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对 答案 C解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0)C.⎝⎛⎭⎫-12,0D.⎝⎛⎭⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0),∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m (2k +1)>2mk 3mk >m (k +1),∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin (α-β)B.a sin αsin βcos (α-β)C.a sin αcos βsin (α-β)D.a cos αcos βcos (α-β) 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin (α-β)=ADsin β.∴a sin (α-β)=h sin αsin β,∴h =a sin αsin βsin (α-β). 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ·AB ·sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ·AC cos 60°=552+162-2×16×55×12=2 401.∴BC =49.6.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc , sin C =23sin B ,则A 等于( ) A .30° B .60° C .120° D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b=6b 243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12×3×5×45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=____________.答案 2393解析 由S =12bc sin A =12×1×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2解析 如图所示,BC sin 45°=ACsin 30°∴BC =AC sin 30°×sin 45°=2012×22=20 2 (km). 三、解答题11.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.解 由(a +b +c )(b +c -a )=3bc , 得b 2+2bc +c 2-a 2=3bc ,即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =π3.又sin A =2sin B cos C .∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴b 2=c 2,b =c ,∴△ABC 为等边三角形.12.在△ABC 中,若已知三边为连续正整数,最大角为钝角. (1)求最大角的余弦值;(2)求以此最大角为内角,夹此角的两边之和为4的平行四边形的最大面积. 解 (1)设这三个数为n ,n +1,n +2,最大角为θ, 则cos θ=n 2+(n +1)2-(n +2)22·n ·(n +1)<0,化简得:n 2-2n -3<0⇒-1<n <3.。