双曲线基础知识练习题
- 格式:docx
- 大小:131.51 KB
- 文档页数:4
双曲线基础练习1双曲线题目:1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足条件|PF 1|-|PF 2|=6,则动点P 的轨迹方程是题目:2.双曲线36x 2-49y 2=1的渐近线方程是题目:3.双曲线5x 2-4y 2=1与5x 2-4y 2=k 始终有相同的()(A )焦点(B )准线(C )渐近线(D )离心率题目:4.双曲线x 2-ay 2=1的焦点坐标是()题目:5.设双曲线1by a x 2222=-(b>a>0)的半焦距为c ,直线l 过(a, 0)、(0, b)两点,已知原点到直线l 的距离是43c ,则双曲线的离心率是()题目:6.若双曲线x 2-y 2=1右支上一点P(a, b)到直线y=x 的距离是2,则a +b 的值为()。
题目:7.双曲线9x 2-7y 2=1的离心率是。
题目:8.已知方程k 3x 2++k2y 2-=1表示双曲线,则k 的取值范围是。
题目:9.若双曲线2222k4y k 9x -=1与圆x 2+y 2=1没有公共点,则实数k 的取值范围是。
题目:10. 曲线3sin 2x 2+θ+2sin y 2-θ=1所表示的图形是()。
(A )焦点在x 轴上的椭圆(B )焦点在y 轴上的双曲线(C )焦点在x 轴上的双曲线(D )焦点在y 轴上的椭圆题目:11. 双曲线4x 2-9y 2=1的渐近线方程是题目:12. 若双曲线与椭圆x 2+4y 2=64共焦点,它的一条渐近线方程是x +y=0,则此双曲线的标准方程是题目:13. 双曲线的两准线之间的距离是532,实轴长是8,则此双曲线的标准方程是题目:14. 若双曲线的两条准线间的距离等于它的半焦距,则双曲线的离心率为题目:15. 以F(2, 0)为一个焦点,渐近线是y=±x 的双曲线方程是()。
题目:16. 方程m 3x 2--2m y 2+=1表示双曲线,则m 的取值范围是()。
《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7.已知双曲线22219y xa-=的两条渐近线与以椭圆221259yx+=的左焦点为圆心、半径为165的圆相切,则双曲线的离心率为( A )A.54B.53C.43D.658.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63 D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。
双曲线相关知识双曲线的焦半径公式:1:定义:双曲线上任意一点P 与双曲线焦点的连线段,叫做双曲线的焦半径。
2.已知双曲线标准方程x^2/a^2-y^2/b^2=1 点P(x,y)在左支上│PF1│=-(ex+a) ;│PF2│=-(ex-a) 点P(x,y)在右支上│PF1│=ex+a ;│PF2│=ex-a运用双曲线的定义例1.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限练习1.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( )A .7 B.23 C.5或23 D.7或23例2. 已知双曲线的两个焦点是椭圆10x 2+32y 52=1的两个顶点,双曲线的两条准线分别通过椭圆的两个焦点,则此双曲线的方程是( )。
(A )6x 2-4y 2=1 (B )4x 2-6y 2=1 (C )5x 2-3y 2=1 (D )3x 2-5y 2=1练习2. 离心率e=2是双曲线的两条渐近线互相垂直的( )。
(A )充分条件 (B )必要条件 (C )充要条件 (D )不充分不必要条件例3. 已知|θ|<2π,直线y=-tg θ(x -1)和双曲线y 2cos 2θ-x 2 =1有且仅有一个公共点,则θ等于( )。
(A )±6π (B )±4π (C )±3π (D )±125π课堂练习1、已知双曲线的渐近线方程是2x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 2、焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x y C .1122422=-x y D .1122422=-y x3. 设e 1, e 2分别是双曲线1b y a x 2222=-和1ay b x 2222=-的离心率,则e 12+e 22与e 12·e 22的大小关系是 。
双曲线练习题一、选择题1. 下列关于双曲线的方程中,正确的是()A. x^2 y^2 = 1B. x^2 + y^2 = 1C. y^2 x^2 = 1D. x^2 y^2 = 02. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1(a>0,b>0),则其渐近线方程为()A. y = ±(a/b)xB. y = ±(b/a)xC. x = ±(a/b)yD. x = ±(b/a)y3. 双曲线的离心率e满足()A. 0 < e < 1B. e = 1C. e > 1D. e ≤ 14. 下列关于双曲线的焦点坐标,正确的是()A. (±c, 0)B. (0, ±c)C. (±a, 0)D. (0, ±a)二、填空题1. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1,则其焦点到中心的距离是 _______。
2. 已知双曲线的一个焦点为(4, 0),实轴长为6,则双曲线的方程为 _______。
3. 双曲线的离心率为2,实轴长为4,则双曲线的虚轴长为_______。
三、解答题1. 已知双曲线方程为 x^2/9 y^2/16 = 1,求:(1)焦点坐标;(2)实轴长;(3)渐近线方程。
2. 设双曲线的方程为 y^2 x^2/4 = 1,求:(1)离心率;(2)焦点坐标;(3)渐近线方程。
3. 已知双曲线的两个焦点分别为(±5, 0),且离心率为2,求双曲线的标准方程。
4. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的离心率。
5. 设双曲线的方程为 x^2/25 y^2/9 = 1,求:(1)焦点坐标;(2)离心率;(3)渐近线方程。
四、计算题1. 已知双曲线的一个焦点为(2, 0),且经过点P(4, 3),求双曲线的标准方程。
2. 设双曲线的方程为 4x^2 9y^2 = 36,求该双曲线与直线 y = (2/3)x + 1 的交点。
双曲线一、单选题(共29题;共58分)1.已知双曲线的焦距为,则的离心率为()A. B. C. D.2.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率为()A. B. C. D.3.双曲线的渐近线方程为()A. B. C. D.4.双曲线的一个焦点到一条渐近线的距离为()A. 4B.C. 2D.5.实轴长为的双曲线上恰有个不同的点满足,其中,分别是双曲线的左、右顶点.则的离心率的取值范围为()A. B. C. D.6.双曲线方程为x2-2y2=1,则它的左焦点的坐标为( )A. (-,0)B. (-,0)C. (-,0)D. (-,0)7.已知双曲线的离心率,且其右焦点,则双曲线的方程为()A. B. C. D.8.已知双曲线的渐近线为,实轴长为,则该双曲线的方程为()A. B. 或C. D. 或9.双曲线的焦点坐标是( )A. B. C. D.10.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B. (1,2), C. D.11.设F1,F2是双曲线的两个焦点,P在双曲线上,当△F1PF2的面积为时,的值为()A. 2B. 3C. 4D. 612.已知双曲线的左、右焦点为、,在双曲线上存在点P满足,则此双曲线的离心率e的取值范围是()A. B. C. D.13.设为双曲线的右焦点,过坐标原点的直线依次与双曲线的左.右支交于点,若,则该双曲线的离心率为()A. B. C. D.14.已知双曲线:的离心率为,则的渐近线方程为()A. B. C. D.15.双曲线C的对称轴与坐标轴重合,两个焦点分别为F1,F2,虚轴的一个端点为A,若△AF1F2是顶角为120°的等腰三角形,则双曲线C的渐近线方程为()A. B. 或 C. D. 或16.若双曲线的一条渐近线被圆所截得的弦长为2,则的离心率为()A. 2B.C.D.17.过点,且与双曲线有相同渐近线的双曲线的方程是()A. B. C. D.18.若双曲线的实轴长、虚轴长、焦距成等差数列,则双曲线的渐近线方程是()A. B. C. D.19.设、分别为双曲线的左、右顶点,、是双曲线上关于轴对称的不同两点,设直线、的斜率分别为、,若,则双曲线的离心率是()A. B. C. D.20.双曲线的焦点坐标为()A. B. C. D.21.双曲线的渐近线方程是()A. B. C. D.22.已知双曲线:(,)的左右顶点分别为,,点,若三角形为等腰直角三角形,则双曲线的离心率为()A. B. C. 2 D. 323.已知中心在原点,对称轴为坐标轴的双曲线的一条渐近线方程为,则该双曲线的离心率是()A. B. C. 或 D. 或24.若双曲线与直线无交点,则离心率的取值范围()A. B. C. D.25.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.26.已知点为双曲线上一点,则它的离心率为()A. B. C. D.27.设双曲线的一个焦点为F,虚轴的一个端点为B,焦点F到一条渐近线的距离为d,若,则双曲线离心率的取值范围是()A. B. C. D.28.设点是双曲线上的一点,分别是双曲线的左、右焦点,已知,且,则双曲线的一条渐近线方程是()A. B. C. D.29.以原点为中心,焦点在y轴上的双曲线C的一个焦点为,一个顶点为,则双曲线C的方程为()A. B. C. D.二、填空题(共12题;共13分)30.设为曲线上一点,,,若,则________.31.已知双曲线的离心率为2,则点到的渐近线的距离为________.32.若点在双曲线上,它的横坐标与双曲线的右焦点的横坐标相同,则点与双曲线的左焦点的距离为________33.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为________.34.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点. 设到双曲线的同一条渐近线的距离分别为和,且,则双曲线的方程为________.35.双曲线- =1的渐近线方程是________,实轴长为________.36.已知双曲线C的中心在原点,焦点在x轴上,其渐近线方程为2x±3y=0,焦距为2 ,则双曲线C的标准方程为________.37.双曲线的一个焦点是,一条渐近线是,那么双曲线的方程是________38.已知双曲线(,)满足,且双曲线的右焦点与抛物线的焦点重合,则该双曲线的方程为________.39.设是双曲线上一点,双曲线的一条渐近线方程为,分别是双曲线的左、右焦点,若,则的值为________.40.双曲线的其中一个焦点坐标为,则实数________.41.已知分别为双曲线的左、右焦点,过与双曲线的一条渐近线平行的直线交双曲线于点,若,则双曲线的离心率为________.三、解答题(共5题;共55分)42.已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.(1)求双曲线的方程;(2)若点在双曲线上,求的面积.43.已知双曲线与椭圆有相同焦点,且经过点(4,6).(1)求双曲线方程;(2)若双曲线的左,右焦点分别是F1,F2,试问在双曲线上是否存在点P,使得|PF1|=5|PF2|.请说明理由.44.已知双曲线:的实轴长为2.(1)若的一条渐近线方程为,求的值;(2)设、是的两个焦点,为上一点,且,的面积为9,求的标准方程.45.已知双曲线的中心在原点,焦点,在坐标轴上,离心率为,且过点.(1)求双曲线的方程;(2)若点在双曲线上,求证:;(3)求的面积.46.双曲线x2﹣=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b= ,若l的斜率存在,M为AB的中点,且=0,求l的斜率.答案解析部分一、单选题1.【答案】C【考点】双曲线的简单性质【解析】【解答】依题意可知,所以,故,所以,故答案为:C.【分析】根据求得的值,进而求得双曲线离心率.2.【答案】C【考点】双曲线的简单性质【解析】【解答】依题意可知双曲线的焦点为,,,三角形高是,,边的中点,,代入双曲线方程得:,整理得:,,,整理得,求得,,.故答案为:C.【分析】先根据双曲线方程求得焦点坐标的表达式,进而可求得三角形的高,则点的坐标可得,进而求得边的中点的坐标,代入双曲线方程求得,和的关系式化简整理求得关于的方程求得.3.【答案】D【考点】双曲线的简单性质【解析】【解答】令,整理得,所以双曲线的渐近线方程为.故答案为:D【分析】令双曲线的为,从而得到方程,化简后即得渐近线方程.4.【答案】C【考点】双曲线的简单性质【解析】【解答】双曲线的,,,一个焦点设为,,一条渐近线设为,可得一个焦点到一条渐近线的距离为.故答案为:C.【分析】求得双曲线的,,,可设一个焦点和一条渐近线方程,由点到直线的距离公式,可得所求值.5.【答案】A【考点】双曲线的简单性质【解析】【解答】依题意可得,,,设,则由,得,整理得.由,得,因为双曲线上恰有个不同的点满足,所以方程有两不等实根,所以只需,解得,则.故答案为:A【分析】先由题意,得到,,,设,根据,得,再与双曲线联立,消去,得到,根据双曲线上存在个不同的点满足,得到只需,求出,进而可求出离心率的范围.6.【答案】C【考点】双曲线的标准方程【解析】【解答】由,可得,,由得,所以左焦点坐标为(-,0)故答案为:C【分析】将双曲线化成标准式,再结合双曲线的关系式求解7.【答案】B【考点】双曲线的标准方程【解析】【解答】由双曲线的离心率,且其右焦点为,可得,所以,所求双曲线的方程为,故答案为:B.【分析】由已知双曲线的离心率,右焦点为列式,得到,即可求出双曲线的标准方程.8.【答案】B【考点】双曲线的标准方程,双曲线的简单性质【解析】【解答】当双曲线的焦点在轴上时, ,又,即,所以,所求双曲线的方程为: ;当双曲线的焦点在轴上时, ,又,即,所以,所以所求双曲线的方程为: .所以所求双曲线方程为: 或.故答案为:.【分析】根据双曲线的焦点所在位置分两种情况讨论: 当双曲线的焦点在轴上时, ; 当双曲线的焦点在轴上时, ,结合可解得.9.【答案】D【考点】双曲线的简单性质【解析】【解答】由得,故,故焦点坐标为故答案为:D【分析】将化简成标准方程再进行焦点坐标运算即可.10.【答案】A【考点】双曲线的简单性质【解析】【解答】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故答案为:.【分析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.11.【答案】C【考点】双曲线的简单性质【解析】【解答】双曲线的两个焦点坐标为,设的坐标为,则△的面积为,,,代入双曲线方程解得,不妨取,,,故答案为:.【分析】求得双曲线的焦点坐标,利用△的面积为,确定的坐标,运用两点的距离公式,即可求得结论.12.【答案】B【考点】双曲线的应用【解析】【解答】因为为的边的中线,可知,双曲线上存在点满足,则,由,可知,则。
(完整版)双曲线基础练习题
1. 引言
该练题旨在帮助读者巩固并提高对双曲线的理解。
通过一系列的基础练题,读者将能够熟悉双曲线的基本特征、图像以及相关的数学概念。
2. 练题
2.1 双曲线图像的分析
给定下列双曲线的方程,请绘制出相应的图像,然后回答相关问题。
1. 双曲线方程:$y = \frac{1}{x}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。
- 该双曲线是否对称于原点?解释原因。
2. 双曲线方程:$y = \frac{2}{x+1}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。
- 该双曲线是否对称于原点?解释原因。
2.2 数学概念的应用
回答下列问题,注意要用双曲线的相关概念来解释答案。
1. 为什么双曲线的渐近线可以帮助我们理解双曲线图像的特征?
2. 双曲线的离心率是什么?如何确定一个双曲线的离心率?
3. 通过改变双曲线方程中的参数,如何调整双曲线的形状?
3. 结论
通过完成上述练习题,读者应该能够更深入地理解双曲线的基
本概念和性质。
这些练习题不仅帮助读者熟悉双曲线的图像和方程,还能够加深对双曲线的数学概念的理解。
继续探索和练习双曲线,
将有助于读者在更高级的数学领域中应用这些概念。
双曲线曲线练习题含答案1. 求下列双曲线的渐近线方程:(1)$ x^2-4y^2+8x-32=0 $(2)$ x^2-9y^2=81 $(3)$ x^2+4y^2+4x+16=0 $答案:(1)$ y=\frac{x+4}{2} $ 或$ y=\frac{1}{2}x-4 $ (斜渐近线)(2)$ x+3\sqrt{y^2+1}=0 $ 或 $ x-3\sqrt{y^2+1}=0 $ (与 $ y $ 轴垂直的渐近线)、$ y=-\frac{x}{9} $ (斜渐近线)(3)$ y=-1 $ 或 $ y=-\frac{(x+2)^2}{16} $ (与 $ y $ 轴平行的渐近线)2. 求双曲线 $ \frac{x^2}{9}-\frac{y^2}{16}=1 $ 的离心率和焦距长度。
答案:离心率为 $ \sqrt{1+\frac{b^2}{a^2}}=\frac{5}{3} $,焦距长度为 $ c=\sqrt{a^2+b^2}=5 $。
3. 求双曲线 $ \frac{x^2}{25}-\frac{y^2}{9}=1 $ 与直线$ y=\frac{3}{5}x-2 $ 的交点坐标。
答案:设交点坐标为 $ (x_0, y_0) $,则 $ \frac{x_0^2}{25}-\frac{(\frac{3x_0}{5}-2)^2}{9}=1 $,解得 $ x_0=\frac{50}{7} $ 或$ x_0=-\frac{50}{7} $,代入方程即可得到交点坐标。
4. 判断曲线 $ \frac{x^2}{4}-\frac{y^2}{16}=1 $ 是否关于直线$ y=-x $ 对称。
答案:首先求出曲线关于直线 $ y=-x $ 对称的公式为$ y=\frac{y_0}{x_0}x $,其中 $ (x_0,y_0) $ 是曲线上任意一点。
假设 $ A(a, b) $ 是曲线上的一点,则 $ B(-b,-a) $ 是曲线上的对称点。
双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-,则n = A.2- B .4 C.6 D.8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是A.B. C. D. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=o,且12PF =,则e =A.B. 1C.D . 19. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D10. 设ABC △是等腰三角形,120ABC ∠=o ,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+ C .21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABCD .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =u u u r u u u u rgA .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =u u u r u u u u r g ,则12PF PF +=u u u r u u u u rA .B .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:x l 与x 轴的交点,若60,PMF ∠=o 45PFM ∠=o ,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是x=,离心率e =(2)中心在原点,离心率e =30.已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点(3P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6.C7.A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144x y-=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21.322.423.324.2π25.826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e=2214yx-=(2)中心在原点,离心率2e=顶点到渐近线的距离为5;2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点(3P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①Q直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(1k∴∈--U U,.②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x 12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。
双曲线经典练习题总结(带答案)1.选择题1.以椭圆x^2/169 + y^2/64 = 1的顶点为顶点,离心率为2的双曲线方程为C,当顶点为(±4,0)时,a=4,c=8,b=√(a^2+c^2)=4√5,双曲线方程为x^2/16 - y^2/20 = 1;当顶点为(0,±3)时,a=3,c=6,b=√(a^2+c^2)=3√5,双曲线方程为y^2/9 - x^2/5 = 1,所以答案为C。
2.双曲线2x^2 - y^2 = 8化为标准形式为x^2/4 - y^2/8 = 1,所以实轴长为2a = 4,答案为C。
3.若a>1,则双曲线2x^2/a^2 - y^2 = 1的离心率的取值范围是C。
由双曲线方程得离心率e = √(a^2+1)/a,所以c^2 =a^2+b^2 = a^2(a^2+1)/(a^2-1),代入离心率公式得√(a^2+1)/a = 2,解得a = 2,所以答案为C。
4.已知双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的距离为D。
由双曲线方程得离心率e = √(a^2+b^2)/a = 2,所以b^2 = 3a^2,又因为点(4,0)到渐近线的距离为c/a,所以c^2 = a^2+b^2 = 4a^2,代入双曲线方程得4x^2/a^2 - 2y^2/3a^2 = 1,化简得y^2 = 6x^2/5,所以渐近线方程为y = ±√(6/5)x,代入点(4,0)得距离为2√5,所以答案为D。
5.双曲线C:x^2/4 - y^2/16 = 1的右焦点坐标为F(6,0),一条渐近线的方程为y = x,设点P在第一象限,由于|PO| = |PF|,则点P的横坐标为4,纵坐标为3,所以△PFO的底边长为6,高为3,面积为9,所以答案为A。
6.若双曲线C:2x^2/a^2 - 2y^2/b^2 = 1(a>0,b>0)的一条渐近线被圆(x-2)^2 + y^2 = 4所截得的弦长为2,则b^2 = a^2-4,圆心为(2,0),半径为2,设截弦的两个交点为P和Q,则PQ = 2,所以PQ的中点M在圆上,即M为(5/2,±√(3)/2),所以PM = √(a^2-25/4)±√(3)/2,由于PM = PQ/2 = 1,所以(a^2-25/4)+(3/4) = 1,解得a = √(29)/2,所以答案为B。
双曲线基础知识练习题
一、选择题(本题共12道小题,每小题5分,共60分)
1.双曲线
22
1169
x y -=的焦点坐标为( )
A.(
B.(0,
, C.(5,0)-,(5,0) D.(0,5)-,(0,5)
2. 双曲线的实轴长是( ) A .2 B .2 2 C . 4 D .4 2
3.双曲线
的渐近线方程为( )
A .
B .
C .
D .
4.如果方程表示双曲线,则实数的取值范围是( )
A. B. C. D. 5.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( )
A .双曲线
B .双曲线的一支
C .两条射线
D .一条射线
6.设P 是双曲线192
22=-y a
x 上一点,该双曲线的一条渐近线方程是043=+y x ,21,F F 分别是双曲线的左、右焦点,若101=PF ,则2PF 等于( ) A .2 B .18 C .2或18 D .16
7.已知双曲线)0(132
22>=-a y a x 的离心率为2,则实数=a ( )
A. 2
B. 26
C. 25
D. 1
8.已知1F ,2F 为双曲线C :
22
2=-y x 的左、右焦点,点P 在C 上,212PF PF =,则=∠21cos PF F ( )
A .14
B .35
C .54
D .43
2
2
28x y -=11
22
2=+++m y m x m )1,2(--),1()2,(+∞---∞ )1,1(-)2,3(--
9.椭圆222
212x y m n +=与双曲线22
2212x y m n
-=有公共焦点,则椭圆的离心率是( )
A
B
C
D
10.设椭圆C 1的离心率为
13
5,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )
A.1342222=-y x
B.15132222=-y x
C.1432222=-y x
D. 112
1322
2
2=-y x
11.已知双曲线2
22
2
1x y a
b 0,0a
b
的一条渐近线平行于直线l :210y
x
,双曲
线的一个焦点在直线l 上,则双曲线的方程为( )
A.221
520x y B.2
21
205x y
C.2
2331
25
100
x y D.2
2331
100
25
x y
12.直线(:l y k x =与双曲线22
1x y -=仅有一个公共点,则实数k 的值为( ) A .1 B .-1
C .1或-1 D. 1或-1或0
二、填空题(本题共4道小题,每小题5分,共20分)
13.双曲线x 2
10-y 2=1的顶点坐标是
14.已知P 是双曲线上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|
的值为________
15.双曲线
2212x y m m -=与椭圆22
1530
x y +=有共同的焦点,则m = 16.与双曲线
x 2-
y 2
4
=1有共同渐近线且经过点(2, 2)的双曲线方程
三、解答题
17.求适合下列条件的双曲线的标准方程
(1)焦点在x 轴上,实轴长是10,虚轴长是6 (2)焦点(-5,0),离心率是2
18.求与圆1)3(22=+-y x 及9)3(2
2=++y x 都外切的动圆圆心的轨迹方程
19.已知双曲线与椭圆192522=+y x 共焦点,它们的离心率之和为5
14
,求双曲线的标准方程。
20. 已知双曲线
22
12416x y -=,P 为双曲线上一点,12,F F 是双曲线的两个焦点,且1260F PF ∠=︒,求△12F PF 的面积。
21.已知双曲线的焦点为,且离心率为2; (1)求双曲线的标准方程;
(2)若经过点的直线交双曲线于两点,且为的中点,求直线的方程。
22.已知直线1y ax =+与双曲线2
2
31x y -=交于,A B 两点, (1)求a 的取值范围;
(2)若以AB 为直径的圆过坐标原点,求实数a 的值。
C 12(2,0),(2,0)F F -(1,3)M l C ,A B M AB l。