高中数学双曲线抛物线知识点总结
- 格式:doc
- 大小:1.54 MB
- 文档页数:14
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
双曲线抛物线知识点⼤总结绝对好和全第⼆章 2.3 双曲线双曲线标准⽅程(焦点在x 轴))0,0(12222>>=-b a by a x 标准⽅程(焦点在y 轴))0,0(12222>>=-b a bx a y 定义第⼀定义:平⾯内与两个定点1F ,2F 的距离的差的绝对值是常数(⼩于12F F )的点的轨迹叫双曲线。
这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。
{}a MFMF M 221=-()212F F a <第⼆定义:平⾯内与⼀个定点F 和⼀条定直线l 的距离的⽐是常数e ,当1e >时,动点的轨迹是双曲线。
定点F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数e (1e >)叫做双曲线的离⼼率。
范围 x a ≥,y R ∈ y a ≥,x R ∈对称轴x 轴,y 轴;实轴长为2a ,虚轴长为2b对称中⼼原点(0,0)O焦点坐标1(,0)F c - 2(,0)F c1(0,)F c - 2(0,)F c焦点在实轴上,22c a b =+;焦距:122F F c =顶点坐标(a -,0) (a ,0) (0, a -,) (0,a )xy P1F 2F xy P xyP1F2FxyxyP1F 2F xyxyP1F 2F xy P离⼼率 e ace (=>1)= 准线⽅程 ca x 2±=ca y 2±=准线垂直于实轴且在两顶点的内侧;两准线间的距离:c a 22顶点到准线的距离顶点1A (2A )到准线1l (2l )的距离为ca a 2-顶点1A (2A )到准线2l (1l )的距离为a ca +2焦点到准线的距离焦点1F (2F )到准线1l (2l )的距离为cac 2-焦点1F (2F )到准线2l (1l )的距离为c ca +2渐近线⽅程x a b y ±= x b a y ±=共渐近线的双曲线系⽅程k b y a x =-2222(0k ≠) k b x a y =-2222(0k ≠)1. 双曲线的定义①当|MF 1|-|MF 2|=2a 时,则表⽰点M 在双曲线右⽀上;当a MF MF 212=-时,则表⽰点M 在双曲线左⽀上;②注意定义中的“(⼩于12F F )”这⼀限制条件,其根据是“三⾓形两边之和之差⼩于第三边”。
椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
对称性:椭圆关于 x 轴、y 轴和原点对称。
顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。
高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
抛物线双曲线椭圆知识点抛物线、双曲线、椭圆,这三个名词似乎很陌生的样子,但它们实际上是我们经常在生活中接触到的数学概念。
高中数学中,关于这三个曲线的内容是必修的。
虽然它们各有不同的性质,但它们都有一个共同的特征,那就是它们是二次函数图像。
本文将详细介绍抛物线、双曲线与椭圆的知识点,并探讨它们的性质和应用。
1. 抛物线抛物线是平面内的一条曲线,其形状类似于一个开口朝下或开口朝上的 U 形。
在数学中,抛物线是由一条直线(半轴)和一个固定点(焦点)构成的图形。
在图像上,焦点位于抛物线的顶点处,而半轴则与抛物线相切。
根据它的方程式,我们可以将抛物线分为两种类型:开口朝上的抛物线和开口朝下的抛物线。
开口朝上的抛物线方程式为:y = ax² + bx + c,其中a > 0 。
开口朝下的抛物线方程式为:y = ax² + bx + c,其中a < 0 。
在现实生活中,抛物线通常用来描述物体的运动轨迹。
例如,抛体在空气中的运动轨迹就是一个抛物线。
此外,抛物线也广泛用于建筑设计、工程、电信和电子等领域。
2. 双曲线双曲线是平面内一种曲线,以其非对称的形状而著称。
它看上去像两个并排的抛物线,我们也可以将两条抛物线相减得到双曲线的方程。
不同于抛物线的开口朝上或开口朝下的 U 形,双曲线的形状可以在横轴和纵轴两个方向都无限延伸。
双曲线方程式为:y²/a² − x²/b² = 1,其中a和b是该双曲线长度的参数。
当 a 和 b 相等,即a = b时,双曲线便可以转化为下面要介绍的椭圆。
双曲线在现代科学中有着广泛的应用,例如,它们可以被用于描述电磁波传播的方式、质能传播、黑洞引力等一系列现象。
此外,双曲线也被广泛应用到天文学、航空航天、电磁学和通讯领域等。
3. 椭圆椭圆是平面内一种闭合曲线,以其对称的 U 形或胎心形状而著称。
它看上去像两个抛物线,其一侧延伸,形成一个“尖角”,而另一侧则弯曲的更严密、圆润。
高中抛物线知识点:双曲线双曲线是高中数学中的一个重要知识点,它在几何图形和函数的研究中起着重要的作用。
在本文中,我们将逐步介绍双曲线的定义、性质和应用。
一、双曲线的定义双曲线是平面上一条特殊的曲线,它的定义是到两个固定点的距离差的绝对值等于一个常数的点的集合。
这两个固定点称为焦点,常数称为离心率。
双曲线的数学表示形式为:(x-h)²/a² - (y-k)²/b² = 1 (焦点在 x 轴上时) (y-k)²/a² - (x-h)²/b² = 1 (焦点在 y 轴上时)其中,(h, k)是双曲线的中心点,a和b分别是 x 轴和 y 轴的半轴长度。
二、双曲线的性质 1. 双曲线的形状:双曲线在中心点附近呈现出两条分离的曲线,形状类似于两个对称的开口。
这两个开口的形状由离心率决定,离心率越大,开口越窄。
2.对称性:双曲线关于中心点对称。
3.渐近线:双曲线有两条渐近线,分别接近于曲线的两个分支。
渐近线的方程为 y = k ± (b/a)(x-h)。
4.焦点和直纹的关系:对于双曲线上的任意一点P,其到两个焦点的距离差的绝对值等于双曲线的离心率。
三、双曲线的应用双曲线不仅仅是一种数学图形,它在物理学、工程学和经济学等领域都有着广泛的应用。
1.物理学中的光学系统:双曲线可以用来描述光线在光学系统中的传播路径。
例如,抛物面镜和椭圆面镜都是双曲线的特殊情况。
2.工程学中的电子设备:双曲线可以用来描述天线的辐射模式和电磁波的传播。
在雷达和卫星通信等领域,双曲线经常被用来分析和设计天线系统。
3.经济学中的成本函数:在经济学中,双曲线可以用来描述成本函数和供应曲线。
这对于研究企业的生产和供应决策非常重要。
双曲线作为一种重要的几何图形和函数形式,在高中数学中占据着重要的地位。
通过了解双曲线的定义、性质和应用,我们可以更好地理解和应用这一知识点,进一步拓宽数学的视野。
高考双曲线抛物线知识点高考数学考试中,高中数学知识占据了很大的比重,其中双曲线和抛物线是高考必考的重要知识点。
本文将对双曲线和抛物线的相关概念、特点以及应用进行介绍,帮助考生全面理解和掌握这两个知识点。
1. 双曲线的概念和特点双曲线是由二次方程的图像所得,常见的双曲线方程有两种形式:$x^2/a^2 - y^2/b^2 = 1$ 和 $y^2/a^2 - x^2/b^2 = 1$,其中 a 和b 是正实数。
双曲线的形状特点是两支分离,且与坐标轴无交点。
双曲线的中心在坐标原点 O(0,0) 处。
在坐标平面上,双曲线的两个分支分别向 x 轴和 y 轴无限延伸。
2. 双曲线的应用双曲线在现实生活中有许多应用。
例如,光的折射是双曲线的一个重要应用。
当一束光从一个介质折射到另一个介质中时,光的传播路径将形成一个双曲线。
这个现象在眼镜、显微镜、望远镜等光学仪器中都有应用。
此外,双曲线还广泛应用于电磁场、无线通信和经济学等领域。
在电磁场中,电荷的分布和电场力线之间的关系可以由双曲线来描述。
在无线通信中,天线辐射和接收的信号模式也可以用双曲线表示。
在经济学中,供求关系也可以通过双曲线来进行分析和预测。
3. 抛物线的概念和特点抛物线是由二次方程的图像所得,常见的抛物线方程是 $y = ax^2 + bx + c$,其中 a、b 和 c 是实数且a ≠ 0。
抛物线的形状特点是开口方向,即上开或下开,取决于抛物线方程中 a 的正负。
抛物线的对称轴是与 y 轴平行的直线,其方程为 x = h,其中 h 是实数。
抛物线的顶点是位于对称轴上的点,其坐标为 (h, k),其中 k 是实数。
4. 抛物线的应用抛物线在现实生活中也有许多实际应用。
例如,抛物线的形状是喷泉水柱的弹射轨迹,喷泉中的水从喷嘴射出后形成一个抛物线形状的水柱。
这种形状使得喷泉的水能够均匀地覆盖大面积区域,增加景观效果。
此外,抛物线还广泛应用于桥梁设计、体育运动和火箭发射等领域。
八、圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222b x a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
双曲线平面到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨迹。
方程 22221(0,0)x y a b a b-=>> 22221(0,0)y x a b a b-=>> 简图围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或顶点 (,0)a ± (0,)a ± 焦点 (,0)c ±(0,)c ±渐近线 b y x a=± a y x b=± 离心率 (1)ce e a => (1)ce e a=> 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称准线方程 2a x c =±2a y c=±a 、b 、c 的关系 222c a b =+考点题型一 求双曲线的标准方程1、给出渐近线方程ny x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线22221x y a b-=共渐近线的方程可设为2222(0)x y a b λλ-=≠。
2、注意:定义法、待定系数法、方程与数形结合。
【例1】求适合下列条件的双曲线标准方程。
(1) 虚轴长为12,离心率为54; (2) 焦距为26,且经过点M (0,12);(3) 与双曲线221916x y -=有公共渐进线,且经过点(3,23A -。
_x_ O_y_x_ O_y解:(1)设双曲线的标准方程为22221x y a b -=或22221y x a b-=(0,0)a b >>。
由题意知,2b=12,c e a ==54。
∴b=6,c=10,a=8。
∴标准方程为236164x -=或2216436y x -=。
(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。
又2c=26,∴c=13。
∴222144b c a =-=。
∴标准方程为22114425y x -=。
(3)设双曲线的方程为2222x y a bλ-=(3,23A -在双曲线上 ∴(222331916-= 得14λ=所以双曲线方程为224194x y -= 题型二 双曲线的几何性质方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a=和222c a b =+的关系式。
【例2】双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c 。
求双曲线的离心率e 的取值围。
解:直线l 的方程为1x ya b-=,级bx+ay-ab=0。
由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离122d a b=+,同理得到点(-1,0)到直线l 的距离222d a b=+,122abs d d c=+==。
由s ≥45c ,得2ab c≥45c,即252c ≥。
于是得22e ≥,即42425250e e -+≤。
解不等式,得2554e ≤≤。
由于e >1>0,所以ee ≤≤ 【例3】设F 1、F 2分别是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且︱AF 1︱=3︱AF 2︱,求双曲线的离心率。
解:∵1290F AF ∠= ∴222124AF AF c +=又︱AF 1︱=3︱AF 2︱,∴12222AF AF AF a -==即2AF a =, ∴222222212222910104AF AF AF AF AF a c +=+===,∴c a ==即e =。
题型三 直线与双曲线的位置关系方法思路:1、研究双曲线与直线的位置关系,一般通过把直线方程与双曲线方程组成方程组,即2222220Ax By C b x a y a b ++=⎧⎨-=⎩,对解的个数进行讨论,但必须注意直线与双曲线有一个公共点和相切不是等价的。
2、直线与双曲线相交所截得的弦长:2121l x x y y =-=- 【例4】如图,已知两定点12(F F ,满足条件212PF PF -=的点P 的轨迹是曲线E ,直线y=kx-1与曲线E 交于A 、B 两点,如果AB =,且曲线E 上存在点C ,使OA OB mOC +=,求 (1)曲线E 的方程; (2)直线AB 的方程;(3)m 的值和△ABC 的面积S 。
解:由双曲线的定义可知,曲线E是以12(F F 为焦点的双曲线的左支,且c =a=1,易知1b ==。
故直线E 的方程为221(0)x y x -=<, (2)设11A(x ,y ), 22B(x ,y ), 由题意建立方程组22y=kx-1x -y =1⎧⎨⎩消去y ,得22(1)220k x kx -+-=。
又已知直线与双曲线左支交于两点A 、B ,有22212212210,(2)8(1)0,20,120.1k k k k x x k x x k ⎧-≠⎪=+->⎪⎪-⎨+=<-⎪⎪-=>⎪-⎩解得1k <<-。
又∵12AB x x =-===依题意得=,整理后得422855250k k -+=, ∴257k =或254k =。
但1k <<-,∴2k =-。
故直线AB的方程为102x y ++=。
(3)设(,)c c C x y ,由已知OA OB mOC +=,得1122(,)(,)(,)c c x y x y mx my +=,∴1212(,)(,)(0)c c x x y y x y m m m++=≠。
又12221kx x k +==--212122222()22811k y y k x x k k +=+-=-==--,∴点8)C m。
将点C 的坐标代入曲线E 的方程,的2280641m m -=, 得4m =±,但当4m =-时,所得的点在双曲线的右支上,不合题意。
∴4m =,C点的坐标为(2),C 到AB13=, ∴△ABC的面积1123S =⨯=一、抛物线 高考动向:抛物线是高考每年必考之点,选择题、填空题、解答题皆有,要求对抛物线定义、性质、直线与其关系做到了如指掌,在高考中才能做到应用自如。
(一) 知识归纳(二)典例讲解题型一 抛物线的定义及其标准方程方法思路:求抛物线标准方程要先确定形式,因开口方向不同必要时要进行分类讨论,标准方程有时可设为2y mx =或2(0)x my m =≠。
【例5】根据下列条件求抛物线的标准方程。
(1)抛物线的焦点是双曲线22169144x y -=的左顶点;(2)经过点A (2,-3);(3)焦点在直线x-2y-4=0上;(4)抛物线焦点在x 轴上,直线y=-3与抛物线交于点A ,︱AF ︱=5.解:(1)双曲线方程可化为221916x y -=,左顶点是(-3,0) 由题意设抛物线方程为22(0)y px p =->且32p-=-, ∴p=6.∴方程为212y x =-(2)解法一:经过点A (2,-3)的抛物线可能有两种标准形式: y 2=2px 或x 2=-2py .点A (2,-3)坐标代入,即9=4p ,得2p =29 点A (2,-3)坐标代入x 2=-2py ,即4=6p ,得2p =34 ∴所求抛物线的标准方程是y 2=29x 或x 2=-34y 解法二:由于A (2,-3)在第四象限且对称轴为坐标轴,可设方程为2y mx =或2x ny =,代入A 点坐标求得m=29,n=-34, ∴所求抛物线的标准方程是y 2=29x 或x 2=-34y(3)令x=0得y=-2,令y=0得x=4,∴直线x-2y-4=0与坐标轴的交点为(0,-2),(4,0)。
∴焦点为(0,-2),(4,0)。
∴抛物线方程为28x y =-或216y x =。
(4)设所求焦点在x 轴上的抛物线方程为22(0)y px p =≠,A (m ,-3),由抛物 线定义得p52AF m ==+, 又2(3)2pm -=, ∴1p =±或9p =±,故所求抛物线方程为22y x =±或218y x =±。
题型二 抛物线的几何性质方法思路:1、凡设计抛物线上的点到焦点距离时,一般运用定义转化为到准线l 的距离处理,例如若P (x 0,y 0)为抛物线22(0)y px p =>上一点,则02p PF x =+。
2、若过焦点的弦AB ,11(,)A x y ,22(,)B x y ,则弦长12AB x x p =++,12x x +可由韦达定理整体求出,如遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似得到。
【例6】设P 是抛物线24y x =上的一个动点。
(1) 求点P 到点A (-1,1)的距离与点P 到直线1x =-的距离之和的最小值; (2) 若B (3,2),求PB PF +的最小值。
解:(1)抛物线焦点为F (1,0),准线方程为1x =-。
∵P 点到准线1x =-的距离等于P 点到F (1,0)的距离,∴问题转化为:在曲线上求一点P ,使点P 到A (-1,1)的距离与P 到F (1,0)的距离之和最小。
显然P 是AF 的连线与抛物线的交点, 最小值为5AF =(2)同理PF 与P 点到准线的距离相等,如图: 过B 做BQ ⊥准线于Q 点,交抛物线与P 1点。
∵11PQ PF =, ∴114PB PF PB PQ BQ +≥+==。
∴PB PF +的最小值是4。
题型三 利用函数思想求抛物线中的最值问题方法思路:函数思想、数形结合思想是解决解析几何问题的两种重要的思想方法。
【例7】已知抛物线y =x 2,动弦AB 的长为2,求AB 的中点纵坐标的最小值。
分析一:要求AB 中点纵坐标最小值,可求出y 1+y 2的最小值,从形式上看变量较多,结合图形可以观察到y 1、y 2是梯形ABCD 的两底,这样使得中点纵坐标y 成为中位线,可以利用几何图形的性质和抛物线定义求解。
解法一:设A(x 1,y 1),B(x 2,y 2),AB 的中点为M(x,y)由抛物线方程y =x 2知焦点1F(0,)4,准线方程14y =-,设点A 、B 、M 到准线的距离分别为|AD 1|、|BC 1|、|MN|,则|AD 1|+|BC 1|=2|MN|,且1MN =2(y+)4,根据抛物线的定义,有|AD 1|=|AF|、yxAOP F|BC 1|=|BF|,∴12(y+)4=|AF|+|BF|≥|AB|=2, ∴12(y+)24≥ ∴3y 4≥,即点M 纵坐标的最小值为34。