分离变量法——数学物理定解问题(精选)
- 格式:ppt
- 大小:2.71 MB
- 文档页数:73
分离变量法分离变量法又称Fourier 级数方法,而在波动方程情形也称为驻波法。
它是解决数学物理方程定解问题中的一种基本方法,这个方法建立在叠加原理的基础上,其基本出发点是物理学中的机械振动或电磁振动总可分解为一些简谐振动的叠加。
思想:把偏微分方程的求解问题转化为常微分方程的求解。
常微分方程求解:()()()()()P x dx P x dx P x dx y x Ce e Q x e dx−−∫∫∫=+∫一阶非齐次的常微分方程:()(),dy P x y Q x dx+=它的通解为二阶非齐次的常微分方程:()()()y P x y Q x y f x ′′′++=它的通解为21112212()y f y f y x C y C y y dx y dx W W=+−+∫∫其中1212,0.,y y W y y =≠′′12()()0.y P x y y Q x y y ′′′++=两个线性是无关的解和并且常系数齐次的常微分方程:0y py qy ′′′++=它的特征方程20r pr q ++=,假设特征方程的根为12.r r ,(1)特征方程有两个不等的实根:齐次方程通解为:12.r x r xy Ae Be =+(2)特征方程有两个相等的实根:(3)特征方程有一对共轭的复根:12,,r i r i αβαβ=+=−齐次方程通解为()(cos sin ).xy x e A x B x αββ=+1().r xy A Bx e =+第一节有界弦的自由振动22222,(0,),0(,0)(),(,0)(),[0,](0,)(,)0,0t u u a x l t t x u x x u x x x l u t u l t t ϕψ⎧∂∂=∈>⎪∂∂⎪⎪==∈⎨⎪==≥⎪⎪⎩一根长为l 的弦,两端固定,给定初始位移和速度,在没有强迫外力作用下的振动.物理解释:•求解的基本步骤2XT a X T′′′′=第一步:求满足齐次方程和齐次边界条件的变量分离形式的解(,)()()u x t X x T t =把分离形式的解代入方程可得即2()()()()T t X x a T t X x ′′′′=以及上述等式左端是t 的函数,右端是x 的函数,由此可得两端只能是常数,记为()()0(0)()0X x X x X X l λ′′+=⎧⎨==⎩X (x ):2()()0T t a T t λ′′+=T (t ):固有值问题(0)()()()0X T t X l T t ==.λ−从而有情形(A)下对λ的三种情况讨论固有值问题:0λ<(),x x X x AeBe λλ−−−=+0,A B +=其通解为代入边界条件可得0l l Ae Be λλ−−−+=0A B ==只有零解。
数学物理方程的分离变量法
分离变量法是一种常用的解决物理或数学模型方程的技术。
它是将
模型方程所包含的未知变量首先分离成独立的未知函数,然后根据模
型方程本身和这些未知函数之间的关系,求解较为直接的方法,可以
用于数学物理中的很多复杂方程。
通过分离变量法可以将所有方程分解成几个相对简单的子问题,而不
是把一个整体问题分解成数学上的一个大问题,减少计算量,提高程
序的运行效率。
在复杂的物理力学方程模型中,可以利用分离变量法
来进行解算,由于它可以把复杂的方程分解成若干简单的子问题来解决,这样可以大大减少计算量和运算时间。
此外,分离变量法还可以用来求解波动方程和热传导方程等模型,其
可以把复杂的非线性变换转换成一系列的边界值问题,这可以很好地
帮助研究者解决非线性系统的特征问题。
总之,分离变量法是用来解决数学物理模型方程的一种高效的方法,
它可以用来解决线性的和非线性的方程,它可以把复杂的模型分解成
若干相对简单的子问题,从而大大减少计算量,提高程序的运行效率,而且它也可以用来求解波动方程和热传导方程,帮助研究者解决非线
性系统的特征问题。
因此,分离变量法在数学物理学中具有重要的作用。
第五讲补充常微分方程求解相关知识。
第二章 分离变量法偏微分方程定解问题常用解法,分离变量法。
解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数一阶线性偏微分方程的求解问题,基本方法也是转化为一阶线性常微分方程组的求解问题对于二阶以及更高阶的偏微分方程定解问题,情况有些不同:即使可以先求出通解,由于通解中含有待定函数,一般来说,很难直接根据定解条件定出,因此,通常的办法就是把它转化为常微分方程问题 (第六讲)§2.1 有界弦的自由振动什么是分离变量法?使用分离变量法应具备那些条件? 下面通过两端固定的弦的自由振动问题来说明。
定解问题:考虑长为l ,两端固定的弦的自由振动,其数理方程及定解条件为.0 ),(u ),(u 0,,0u ,0u 0, l,0 ,0t0022222l x x x t t x xu a t u t t l x x ≤≤==>==><<∂∂=∂∂====ψϕ分析:1. 方程和边界条件都是齐次的,求这样的问题可用叠加原理。
2. 我们知道,在解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数。
启发:能否运用类似求常微分方程定解问题的方法求偏微分方程?也既是能否先找出满足齐次方程及齐次边界条件的足够多的特解,再用其作线性组合使其满足初始条件。
由分析,我们现在试求方程的变量分离形式:)()(),(t T x X t x u =的非零解。
将),(t x u 代入方程,可得)()()()()()()()(2''''''2''x T a x T x X x X t T x X a t T x X =⇒= 此式中,左端是关于x 的函数,右端是关于t 的函数。
因此,左端和右端相等,就必须等于一个与t x ,无关的常数。