人教版六年级数学上册圆知识点专题复习
- 格式:docx
- 大小:33.83 KB
- 文档页数:2
人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。
每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。
加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。
2.通过圆心并且两端都在圆上的线段叫做直径。
3.一个圆有无数条半径,无数条直径。
4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。
5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。
把圆沿任意一条直径对折,两边可以重合。
6.圆心确定了,圆的中心位置就确定了。
半径决定了圆的大小。
7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。
知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。
2.围成圆的曲线的长是圆的周长。
3.圆的周长=直径×圆周率。
4.C=πd 或C=2πr 。
知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。
2.圆的面积 S=πr ²。
知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。
知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。
2.外圆内方的图形称为圆内接正方形。
3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。
2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
第5讲圆(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:圆的认识1.圆心、半径、直径用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示,连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
在任意一个圆中都可以画出无数条半径和无数条直径。
2.同圆或等圆中半径、之间的关系在同圆或等圆中,所有的半径都相等,所有的直径也都相等,直径是半径的2倍;圆心相同,半径不同的圆叫做同心圆;圆是轴对称图形,它有无数条对称轴。
3.用圆规画圆用圆规画圆的方法:先定好两脚之间的距离,再把带有针尖的脚固定在一点上,最后把装有铅笔的脚旋转一周,就画出了一个圆。
知识点二:圆的周长1.意义:围成圆的曲线的长叫做圆的周长,周长一般用字母C来表示。
2.测量方法:滚动法、绕绳法、直接测量法。
3.圆周率:圆的周长总是它的直径的3倍多一些,这个固定的比值叫做圆周率,用字母Π来表示,Π是一个无线不循环小数。
C=Πd或2Πr。
已知圆的半径,求周长时,用C=2Πr进行计算;已知圆的直径,求周长时,用C=Πd进行计算。
知识点三:圆的面积1.意义:圆所占平面的大小叫做圆的面积,圆的面积一般用S表示。
2.已知圆的半径为r,S=Πr2已知直径或周长求面积时,都要先求出半径,再求出面积。
3.圆环:两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。
S=ΠR2-Πr23.圆与正方形组合的面积问题的应用(1)“外方内圆”图形中,圆的直径等于正方形的边长。
如果圆的半径为r,那么正方形和圆之间部分的面积为0.86r2。
(2)“外圆内方”图形中,这个正方形的对角线等于圆的直径。
如果圆的半径为r,那么圆和正方形之间部分的面积为1.14r2。
知识点四:扇形1.意义:圆上两点之间的部分叫做弧;一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
注意:扇形的大小由圆心角的度数和半径的长短决定。
期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第五单元圆知识点01:圆的认识1. 圆是轴对称图形,直径所在的直线是圆的对称轴。
2. 一个圆有无数条半径,有无数条直径。
圆有无数条对称轴。
3. 在同圆或等圆中,所有的半径都相等,所有的直径都相等。
4. 在同圆或等圆中,r=d 或d=2r 。
知识点02:圆的周长及圆周率的意义1.测量圆的周长的方法:绕绳法和滚动法。
2.圆的周长除以直径的商是一个固定的数。
我们把它叫做圆周率,用字母π表示。
3.圆的周长的计算公式:C=πd ,C=2πr知识点03:圆的面积公式的推导及应用1.圆的面积计算公式是 :S =πr ²2.求圆的面积,要根据圆的面积计算公式来求。
3.圆环面积的计算方法:S =πR2-πr ²或S =π(R -r)²。
4.“外方内圆”图形中,圆的直径等于正方形的边长。
如果圆的半径为r ,那么正方形和圆之间部分的面积为0.86r ²。
5.“外圆内方”图形中,这个正方形的对角线等于圆的直径。
如果圆的半径为r ,那么圆和正方形之间部分的面积为1.14r ²。
知识点04:扇形的认识1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;2.顶点在圆心的角叫做圆心角;3.扇形的大小和半径的长短、圆心角的大小有关。
考点01:圆的认识1.(2018秋•朝阳区校级期中)圆的周长是直径的( )倍A .3.14B .3.1415926C .3D .π【思路引导】根据圆的周长公式,求出周长和直径的关系。
12【完整解答】解:C=πd=π所以圆的周长是直径的π倍。
故选:D。
2.(2015秋•龙泉驿区校级期中)在一个长10cm,宽5cm的长方形中画一个最大的圆,它的半径是()cm.A.10 B.5 C.2.5 D.1.5【思路引导】根据题意可知:在这个长方形中画一个最大的圆,这个圆的直径等于长方形的宽,根据同圆中直径是半径的2倍,半径是直径的,根据一个数乘分数的意义,用乘法解答.【完整解答】解:5×(厘米),答:它的半径是2.5厘米.故选:C。
第四单元圆一、基本概念1、圆心一个圆最中心的那一点,用大写字母O 表示(1) 圆心决定圆的位置。
(2) 圆心到圆上任意一点的距离都相等。
(3) 一张圆形纸片至少对折两次,就能找到圆心。
2、半径圆心到圆上任意一点的线段,用小写字母r 表示(1) 半径决定圆的大小。
(2) 在同一个圆里面,半径都相等。
(3) 在同一个圆里面,半径有无数条。
(4) 半径是直径的一半,即d 21r =3、直径通过圆心并且两端都在圆上的线段,用小写字母d 表示(1) 在同一个圆里面,直径都相等。
(2) 在同一个圆里面,直径有无数条。
(3) 直径是半径的两倍,即r 2d =(4) 在一个正方形内画最大的圆,圆的直径等于正方形的边长(5) 在一个长方形内画最大的圆,圆的直径等于长方形的宽二、使用圆规的步骤1、先确定圆心的位置和半径。
(1) 轴对称图形中,两条对称轴的交点就是中心点(2) 如果知道直径,那么直径的一半就是半径2、用直尺量出两脚之间的距离为半径。
(1) 量好后不能再改变两脚之间的距离3、把针尖放在圆心位置,保持针尖不动,旋转另一只脚一周,即可画出指定的圆。
(1)如果旋转圆规一周不顺手,可以保持圆规不动,旋转纸一周。
(2)如果旋转一周画出来的线条不清晰,可以多旋转几周加深线条。
三、轴对称图形1、轴对称图形沿对称轴对折之后,两边可以完全重合。
2、常见的轴对称图形以及它们的对称轴条数:(1)只有一条对称轴的图形:角、等腰三角形、等腰梯形、扇形、半圆(2)有2条对称轴的图形:长方形(3)有3条对称轴的图形:等边三角形(4)有4条对称轴的图形:正方形(5)有无数条对称轴的图形:圆、圆环【圆的对称轴就是直径】四、周长与面积1、圆周率ππ是一个无限不循环小数,一般取 3.14π≈。
我国数学家祖冲之是第一个把圆周率算出来的人。
2、圆的周长(1)圆的周长用大写字母C 表示,计算公式是πd πr 2C ==即圆的周长等于两倍的π乘以半径,也等于π乘以直径(2) 半圆的周长半圆的周长等于半个圆的周长加上直径,即r 2πr +3、圆的面积圆的面积用大写字母S 表示,计算公式是2πr S =4、周长与面积的关系(1) 在同一个圆中,半径扩大或缩小几倍,直径和周长就扩大或缩小几倍,而面积扩大或者缩小这个倍数的平方倍,例如:在同一个圆内,如果半径扩大3倍,那么直径和周长就扩大3倍,面积扩大9倍。
六年级上第五单元圆的归纳【题型1 判断】【题型2 圆的认识】【题型3 圆的周长】【题型4 圆的面积】1.圆的面积2.圆环的面积3.组合图形求面积【题型5 扇形】【题型1 判断】【练习1】长方形、正方形、圆形、平行四边形都是轴对称图形()【练习2】圆的周长的一半等于半圆的周长,圆面积的一半等于半圆面积()【练习3】周长相等的两个圆,它们的面积也一定相等()【练习4】圆的周长越长,圆的面积越大()【练习5】圆有无数条对称轴,半圆也有无数条对称轴()【练习6】圆的对称轴一定过圆心()【练习7】圆的中心位置是由圆心决定的()【练习8】同一个圆中所有的半径都相等,所有的直径也都相等()【练习9】直径都比半径大()【练习10】甲乙两个圆的半径比是2:9,它们的周长比也是2:9()【练习11】如果大圆和小圆的半径之比是5:1,那么这两个圆的周长之比是5:1,直径之比也是5:1()【练习12】一个圆越大,它的圆周率就越大()【练习13】两个圆的直径相差4分米,这两个圆的周长相差12.56分米()【练习14】半经为2m的圆的周长和面积相等()【练习15】把一个圆形平均分成16份,然后剪开,拼成一个近似的长方形,这个转化过程中周长没变,面积变了()【练习16】两个圆的半径比为3:4,它们的周长比、面积比也为3:4()【题型2 圆的认识】【练习1】用圆规画圆时,针尖所在的点叫做( ),连接圆心和圆上任意一点的( )叫做半径,通过圆心并且两端都在( )的线段叫做直径。
【练习2】在一张长30厘米,宽25厘米的长方形纸片上,最多能剪出拼成( )个半径是4厘米的圆形纸片。
【练习3】下列图形中,对称轴最少的是()A.等腰梯形B.等边三角形C.正方形D.圆形【练习4】一张圆形的纸,至少要对折()次,才得到圆心。
A.1次B.2次C.3次【练习5】如图,直角三角形的一个顶点在圆心上,AB的长度是a厘米,则阴影三角形的周长是( )厘米、面积是( )平方厘米。
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)一、知识梳理1、圆心:圆中心一点叫做圆心。
用字母“O ”来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示。
直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示。
2、圆心确定圆的位置,半径确定圆的大小。
3、在同一个圆内,所有的半径都相等,所有的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:r d 2= d r 21= 4、圆的周长:围成圆的曲线的长度叫做圆的周长。
5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取14.3π≈。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
6、圆的周长公式:πd C = 或πr 2C =7、圆的面积:圆所占平面的大小叫圆的面积。
8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积2πr r ×r ×π==9、圆的面积公式:22)÷π(d S = 或者2πr S = 或者22)÷π÷π(C S =10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
圆的面积和正方形面积的比是π:4。
在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。
11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是22πr πR S -=或 )r π(R S 22-=(其中R =r +环的宽度.)13、环形的周长=外圆周长+内圆周长14、半圆的周长等于圆的周长的一半加直径。
第五单元圆知识归纳一、圆的认识圆是由曲线围成的封闭的平面图形(一)圆的各部分名称1、圆心:用圆规画出圆以后,针尖固定的一点就是圆心,通常用字母O表示,圆心决定圆的位置2、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
3、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段(二)圆心和半径的作用:圆心O确定圆的位置半径r 确定圆的大小(三)圆规画圆的方法:(1)把圆规的两脚分开,定好两脚间的距离;(2)把有针尖的一只脚固定在一点上;(3)把装有铅笔尖的一只脚绕这个固定点旋转一周,就可以画出一个圆。
(四)圆的主要特征1、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
d用字母表示为:d=2r或23、圆的轴对称性:圆是轴对称图形,直径所在的直线是圆的对称轴,圆是轴对称图形且有无数条对称轴二、圆的周长1、围成圆的曲线的长叫做圆的周长2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示,计算时通常取3.14.3、圆的周长的意义:圆的周长是指围成圆的曲线的长。
直径的长短决定圆周长的大小。
4、圆的周长的计算公式:如果用C表示圆的周长,那么C=πd或C=2πr。
5、圆的周长计算公式的应用:(1)已知圆的半径,求圆的周长:C=2πr。
(2) 已知圆的直径,求圆的周长:C=πd 。
(3) 已知圆的周长,求圆的半径:r =π2C (4) 已知圆的周长,求圆的直径:d =πC 。
三、圆的面积1. 圆的面积的含义:圆形物体所占平面的大小或圆形物体表面的大小就是圆的面积。
2. 圆的面积计算公式:如果用S 表示圆的面积,r 表示圆的半径,那么圆的面积计算公式是:S= π r 23. 圆的面积计算公式的应用:(1) 已知圆的半径,求圆的面积:S= πr 2。
人教版六年级上学期数学 圆 单元总结知识点总结:一、圆的认识:圆是由一条曲线围成的封闭图形。
二、圆的构成:1、 圆心:用圆规画出圆以后,针尖固定的一点就是圆心。
通常用字母O 表示,圆心决定圆的位置。
2、 半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径,半径确定圆的大小。
3、 直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
三、圆的特征:1、在同圆或等圆内,有无数条半径,有无数条直径。
同圆中所有的半径都相等,所有的直径都相等。
要比较两圆的大小,就是比较两圆的直径或半径。
2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
用字母表示为:d=2r 或r=d2或r=d ÷23、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
圆是轴对称图形且有无数条对称轴。
四、圆的周长:1、围成圆的曲线的长叫做圆的周长。
2、周长与圆的直径有关,圆的直径越长,圆的周长就越大。
3、圆周率及圆的周长公式(1)圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示,π是一个无限不循环小数,在计算时,一般取π ≈ 3.14。
(2)圆的周长公式:C d π=—→d C π=÷或2C r π=—→2r C π=÷4、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法: 22r π÷ 即r π。
(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:2r r π+即 5.14r 。
5、正方形里最大的圆。
两者联系:边长=直径;圆的面积=78.5%正方形的面积画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
《圆》知识点归纳知识点一、圆的概念1、在一个平面内,一个点绕着另一个定点,以一定长度为距离,旋转一周所形成的封闭曲线叫做圆。
这个定点叫做圆的圆心,一般用字母O表示,这段距离叫做圆的半径,一般用字母r表示,通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
2、圆有1个圆心,无数条半径,无数条直径,无数条对称轴。
在同一个圆中,半径的长度都相等,直径的长度也都相等,直径的长度是半径的2倍,公式表示为:d=2r 。
3、圆的位置是由圆心决定的,圆的大小是由半径决定的。
4、用圆规画圆时,针尖所在的点就是圆心,圆规两只脚之间的距离就是半径,通过圆心并且两端都在圆上的线段就是直径。
知识点二、圆的性质1、圆的周长与这个圆的直径之比值,叫做圆周率,记为π。
π是一个无理数,约等于3.14,计算的时候如无特殊说明,就取3.14来计算。
实际上π大于3.14。
2、圆的周长公式:C=πd=2πr 圆的面积公式:S=πr23、周长相等的封闭图形中,圆的面积最大;面积相等的封闭图形,圆的周长最小。
4、如果把一个圆平均分成若干份,再把它们拼成一个近似的长方形,则这个长方形的长等于这个圆的半周长,即πr,宽等于这个圆的半径,即r 。
知识点三、圆的比1、一个圆,半径扩大为原来的x倍,则直径也会扩大为原来的x倍,周长也会扩大为原来的x倍。
而面积会扩大为原来的x2倍。
例、一个圆,半径扩大为原来的3倍,则直径也会扩大为原来的3倍,周长也会扩大为原来的3倍。
而面积会扩大为原来的9倍。
2、两个圆,半径比=直径比=周长比。
面积比等于这个比的平方。
例、已知两个圆的半径比是2:3,则它们的直径比也是2:3,周长比也是2:3。
但面积比是4:9。
知识点四、扇形与圆环1、一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫做扇形。
2、扇形弧长公式:l=n360×2πr3、扇形面积公式:S=n360×πr2S=12lr4、圆环面积公式:S=S大圆-S小圆=πR2-πr2=π(R2-r2)。
六年级数学上册圆知识点专题复习
1、圆心决定圆的位置,半径决定圆的大小。
圆是轴对称图形,它有无数条对称轴,它的对称轴是直径所在的直线。
扇形的对称轴只有一条。
2、把圆拼成一个近似的长方形,长方形的长相当于(1/2圆周长的,宽相当于(圆的半径)。
因为长方形的面积=长×宽,所以圆的面积=(1/2圆周长×半径),用字母表示是(S= ∏r2)
3、圆的周长是直径的∏倍,周长是半径的2∏倍,直径和周长的比是(1/∏),半径和周长的比是(1/2∏),圆周率是一个无限不循环小数,约是3.1415926……
4、圆的半径扩大3倍,直径扩大3倍,周长扩大3倍,面积扩大9倍
5、小圆的直径是大圆的半径,小圆和大圆的周长比是(1:2),大圆和小圆的面积比(4:1)
6、周长相等的圆,正方形,长方形,圆的面积最大,长方形面积最小。
面积相等的圆,正方形,长方形,长方形的周长最大,圆的周长最小。
7正方形内画最大圆,圆的面积和正方形的面积比是∏:4。
圆内画最大正方形,正方形面积和圆的面积比是:∏:2。
8
大正:圆:小正=4:∏:大圆:正方:小圆=4:∏:2
9、C半圆=∏r+2r=5.14r C半圆=1/2∏d+d C半圆环= ∏R+∏r+2环宽
10、圆环中,大圆周长比小圆周长多(2∏×环宽)
1、圆心决定圆的位置,半径决定圆的大小。
圆是轴对称图形,它有无数条对称轴,它的对称轴是直径所在的直线。
扇形的对称轴只有一条。
2、把圆拼成一个近似的长方形,长方形的长相当于(1/2圆周长的,宽相当于(圆的半径)。
因为长方形的面积=长×宽,所以圆的面积=(1/2圆周长×半径),用字母表示是(S= ∏r2)
3、圆的周长是直径的∏倍,周长是半径的2∏倍,直径和周长的比是(1/∏),半径和周长的比是(1/2∏),圆周率是一个无限不循环小数,约是3.1415926……
4、圆的半径扩大3倍,直径扩大3倍,周长扩大3倍,面积扩大9倍
5、小圆的直径是大圆的半径,小圆和大圆的周长比是(1:2),大圆和小圆的面积比(4:1)
6、周长相等的圆,正方形,长方形,圆的面积最大,长方形面积最小。
面积相等的圆,正方形,长方形,长方形的周长最大,圆的周长最小。
7、正方形内画最大圆,圆的面积和正方形的面积比是∏:4。
圆内画最大正方形,正方形面积和圆的面积比是:∏:2。
8
大正:圆:小正=4:∏:大圆:正方:小圆=4:∏:2
9、C半圆=∏r+2r=5.14r C半圆=1/2∏d+d C半圆环= ∏R+∏r+2环宽
10、圆环中,大圆周长比小圆周长多(2∏×环宽)。