变质量问题(打气、分装、漏气、抽气)讲课讲稿
- 格式:doc
- 大小:111.00 KB
- 文档页数:5
2)2(P VV V P +=00)(P VnV V P n +=0)(P VnV V P n +=内容讲解例题1:一只轮胎容积为V ,已装有P 0的空气.现用打气筒将压强为P 0的空气打入轮胎中,已知打气筒的容积为V 0,打入n 次后轮胎内气体的压强为多少?(设打气过程中轮胎容积及气体温度保持不变)解析过程:方法一:递推法第一次打气,打入的气体和容器内余下内的气体: 得第二次打气,打入的气体和容器内余下内的气体:得第n 次打气,打入的气体和容器内余下内的气体:得方法二:等效法n 次打入的气体和第一次未打入容器内的气体:得P 0,VPn,VP 0,V 0P 0,V 0P 0,V 0。
P 0,V 0 P 0,VP 1,VP 2,VPn,VP 0,V 0P 0,V 0P 0,V 0。
。
01)(P VV V P +=)0002V V V P V P ++=()001V V P V P +=()0000V V V V P PnV ++++= (VP V P V nP n 000=+202)(P V V VP +=V P V V P n 10n (-=+)1)(P V V VP P V V VP n n n n +=+=-)(VP V V P 001)(=+方法归纳:在打气的问题中可以假设把打进的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。
设想将充进容器内的气体用一根无形的弹性口袋收集起来,那么当我们取容器和口袋内的全部气体为研究对象时,这些气体状态不管怎样变化,其质量总是不变的。
这样,我们就将变质量的问题转化成质量一定的问题了。
例题2:一只容器容积为V ,已装有P 0的空气。
现用抽气筒进行抽气,已知抽气筒的容积为V0,抽出n 次后容器内气体的压强为多少?(设抽气过程中气体温度保持不变) 解析过程:第一次抽气,抽出的气体和容器内余下内的气体:得第二次抽气,抽出的气体和容器内余下内的气体:得第n 次抽气,抽出的气体和容器内余下内的气体:得P 0,VP 1,VP 2,VPn,VP 1,V P 2,V 0P 3,V 0 。
2023年高三物理二轮常见模型与方法强化专训专练专题28 充气、抽气、漏气和灌气变质量模型一、高考真题1.为方便抽取密封药瓶里的药液,护士一般先用注射器注入少量气体到药瓶里后再抽取药液,如图所示,某种药瓶的容积为0.9mL ,内装有0.5mL 的药液,瓶内气体压强为51.010Pa ⨯,护士把注射器内横截面积为20.3cm 、长度为0.4cm 、压强为51.010Pa ⨯的气体注入药瓶,若瓶内外温度相同且保持不变,气体视为理想气体,求此时药瓶内气体的压强。
2.甲、乙两个储气罐储存有同种气体(可视为理想气体)。
甲罐的容积为V ,罐中气体的压强为p ;乙罐的容积为2V ,罐中气体的压强为12p 。
现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。
求调配后:(i )两罐中气体的压强;(ii )甲罐中气体的质量与甲罐中原有气体的质量之比。
3.定高气球是种气象气球,充气完成后,其容积变化可以忽略。
现有容积为1V 的某气罐装有温度为1T 、压强为 1 p 的氦气,将该气罐与未充气的某定高气球连通充气。
当充气完成后达到平衡状态后,气罐和球内的温度均为1T ,压强均为1kp ,k 为常数。
然后将气球密封并释放升空至某预定高度,气球内气体视为理想气体,假设全过程无漏气。
(1)求密封时定高气球内气体的体积;(2)若在该预定高度球内气体重新达到平衡状态时的温度为2T,求此时气体的压强。
4.中医拔罐的物理原理是利用玻璃罐内外的气压差使罐吸附在人体穴位上,进而治疗某些疾病。
常见拔罐有两种,如图所示,左侧为火罐,下端开口;右侧为抽气拔罐,下端开口,上端留有抽气阀门。
使用火罐时,先加热罐中气体,然后迅速按到皮肤上,自然降温后火罐内部气压低于外部大气压,使火罐紧紧吸附在皮肤上。
抽气拔罐是先把罐体按在皮肤上,再通过抽气降低罐内气体压强。
某次使用火罐时,罐内气体初始压强与外部大气压相同,温度为450 K,最终降到300 K,因皮肤凸起,内部气体体积变为罐容积的2021。
理想气体的变质量问题的处理方法对理想气体变质量问题,可根据不同情况用克拉珀龙方程、理想气体状态方程和气体实验定律进行解答。
方法一:化变质量为恒质量——等效的方法在充气、抽气的问题中可以假设把充进或抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。
方法二:应用密度方程一定质量的气体,若体积发生变化,气体的密度也随之变化,由于气体密度 mVρ=,故将气体体积mV ρ=代入状态方程并化简得:222111T pT p ρρ=,这就是气体状态发生变化时的密度关系方程.此方程是由质量不变的条件推导出来的,但也适用于同一种气体的变质量问题;当温度不变或压强不变时,由上式可以得到:2211ρρp p =和2211T T ρρ=,这便是玻意耳定律的密度方程和盖·吕萨克定律的密度方程. 方法三:应用克拉珀龙方程其方程为nR TPV=。
这个方程有4个变量:p 是指理想气体的压强,V 为理想气体的体积,n 表示气体物质的量,而T 则表示理想气体的热力学温度;还有一个常量:R 为理想气体常数,R =8.31J/mol.K=0.082atm.L/mol.K 。
若理想气体在状态变化过程中,质量为m 的气体分成两个不同状态的部分21m m 、,或由若干个不同状态的部分21m m 、的同种气体的混合,则应用克拉珀龙方程R MmT PV =易推出:12'2'2'1'1'1222111T V P T V P T V P T V P +=+ 上式表示在总质量不变的前提下,同种气体进行分、合变态过程中各参量之间的关系,可谓之“分态式”状态方程。
1. 打气问题向球、轮胎中打气是一个典型的变质量气体问题。
只要选择球内原有气体和即将打入的气体的整体作为研究对象,就可把打气过程中的变质量问题转化为气体总质量不变的状态变化问题。
类似的问题还有将一个大容器里的气体分装到多个小容器中等,处理的方法也类似。
第13点 气体变质量问题的处理方法分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为定质量的气体问题,用理想气体状态方程求解.(1)打气问题向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球、轮胎内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题.(2)抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看做是膨胀的过程.(3)灌气问题将一个大容器中的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,可以把大容器中的气体和多个小容器中的气体看做是一个整体来作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解.如果选容器内剩余气体与漏出的气体为研究对象,便可使问题变成定质量的气体状态变化的问题,可用理想气体状态方程求解.对点例题 贮气筒的容积为100 L ,贮有温度为27 ℃、压强为30 atm 的氢气,使用后温度降为20 ℃,压强降为20 atm ,求用掉的氢气占原有气体的百分比?解题指导 解法1:选取筒内原有的全部氢气为研究对象,且把用掉的氢气包含在末状态中, 则初状态p 1=30 atm ,V 1=100 L ,T 1=300 K ;末状态p 2=20 atm ,T 2=293 K ,根据p 1V 1T 1=p 2V 2T 2得: V 2=p 1V 1T 2p 2T 1=30×100×29320×300L =146.5 L ,用掉的氢气占原有气体的百分比为V 2-V 1V 2×100%=146.5-100146.5×100%≈31.7%. 解法2:取剩下的气体为研究对象,初状态:p 1=30 atm ,T 1=300 K ,末状态:p 2=20 atm ,V 2=100 L ,T 2=293 K ,由p 1V 1T 1=p 2V 2T 2得V 1=p 2V 2T 1p 1T 2=20×100×30030×293L ≈68.3 L , 用掉的氢气占原有气体的百分比为V 2-V 1V 2×100%=100-68.3100×100%=31.7%. 答案 31.7%技巧点拨 巧妙地选择研究对象,把变质量问题转化为定质量问题.一氧气瓶的容积为0.08 m 3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m 3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.答案 4天解析 解法一 设氧气开始时的压强为p 1,体积为V 1,压强变为p 2(2个大气压)时,体积为V 2.根据玻意耳定律得p 1V 1=p 2V 2①重新充气前,用去的氧气在p 2压强下的体积为V 3=V 2-V 1②设用去的氧气在p 0(1个大气压)压强下的体积为V 0,则有p 2V 3=p 0V 0③设实验室每天用去的氧气在p 0下的体积为ΔV ,则氧气可用的天数为N =V 0ΔV④ 联立①②③④式,并代入数据得N =4(天)解法二 对氧气瓶内的氧气,由于温度保持不变,由玻意耳定律和总质量不变得 p 1V 1=np 2V 2+p 3V 1其中p1=20个大气压V1=0.08 m3 p2=1个大气压V2=0.36 m3p3=2个大气压代入数值得n=4(天)。
变质量问题:分装、打气、漏气、抽气一、变质量问题转化为定质量问题的方法1.充气问题:向球、轮胎等封闭容器中充气选择容器内原有气体和即将打入的气体作为研究对象。
2.抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小。
分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象。
3.分装问题:将一个大容器里的气体分装到多个小容器中,把大容器中的气体和多个小容器中的气体看成整体来作为研究对象。
4.漏气问题:容器漏气过程中气体的质量不断发生变化,选容器内剩余气体和漏出气体为研究对象。
二针对训练1.容积为20L的钢瓶充满氧气后,压强为150atm,打开钢瓶的阀门让氧气同时分装到容积为5L的小瓶中,若小瓶原来是抽空的,小瓶中充气后压强为10atm,分装过程中无漏气,且温度不变,那么最多能分装CA.4瓶B.50瓶C.56瓶D.60瓶2.一只两用活塞气筒的原理如图所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V,现,已知气筒和容器导热将它与另一只容积为V的容器相连接,开始时气筒和容器内的空气压强为p性良好,当分别作为打气筒和抽气筒使用时,活塞工作n次后,在上述两种情况下,容器内的气体压强分别为D3.小张开车出差,汽车某个轮胎的容积为20L,在上高速前检验胎压为,此时车胎的温度为27℃,在经过几个小时的行驶进入服务区后,小张发现该轮胎有漏气现象,检测得出胎压变化为2atm,此时轮胎内气体的温度为87℃。
(1)求车胎漏出气体的质量占原来气体质量的比例;(2)求车胎温度恢复到27℃时车胎内气体的压强;(不考虑此过程的漏气和轮胎体积的变化)内有温度调节器,以便调节球内空气的温度,使气球可以上升或下降,设气球的总体积V0=500m(球 (3)补胎后,在第(2)的基础上给轮胎打气,假设每次打入气体的体积为 ,压强为 1atm ,温度为27℃,打多少次能使车胎内气体压强恢复到。
【答案】(1) (2) (3)50 次【解析】(1)对原来气体由理想气体状态方程,其中 ,代入数据可得,漏出的气体占总体积的(2)对轮胎内剩余的气体,由理想气体状态方程,其中 ,解得;(3) ,解得 n=50 次;4. 某热气球的球囊体积 V 1=×103m 3。
变质量问题(打气、分装、漏气、抽气)
变质量问题:分装、打气、漏气、抽气
一、变质量问题转化为定质量问题的方法
1.充气问题:向球、轮胎等封闭容器中充气选择容器内原有气体和即将打入的气体作为研究对象。
2.抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小。
分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象。
3.分装问题:将一个大容器里的气体分装到多个小容器中,把大容器中的气体和多个小容器中的气体看成整体来作为研究对象。
4.漏气问题:容器漏气过程中气体的质量不断发生变化,选容器内剩余气体和漏出气体为研究对象。
二针对训练
1.容积为20 L的钢瓶充满氧气后,压强为150 atm,打开钢瓶的阀门让氧气同时分装到容积为5 L的小瓶中,若小瓶原来是抽空的,小瓶中充气后压强为10 atm,分装过程中无漏气,且温度不变,那么最多能分装C
A.4瓶B.50瓶C.56瓶D.60瓶
2.一只两用活塞气筒的原理如图所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V0,现将它与另一只容积为V的容器相连接,开始时气筒和容器内的空气压强为p0,已知气筒和容器导热性良好,当分别作为打气筒和抽气筒使用时,活塞工作n 次后,在上述两种情况下,容器内的气体压强分别为D
3.小张开车出差,汽车某个轮胎的容积为20L,在上高速前检验胎压为2.5atm,此时车胎的温度为27℃,在经过几个小时的行驶进入服务区后,小张发现该轮胎有漏气现象,检测得出胎压变化为2atm,此时轮胎内气体的温度为87℃。
(1)求车胎漏出气体的质量占原来气体质量的比例;
(2)求车胎温度恢复到27℃时车胎内气体的压强;(不考虑此过程的漏气和轮胎体积的变化)
(3)补胎后,在第(2)的基础上给轮胎打气,假设每次打入气体的体积为,压强为
1atm,温度为27℃,打多少次能使车胎内气体压强恢复到2.5atm。
【答案】(1)(2)(3)50次
【解析】(1)对原来气体由理想气体状态方程,其中
,
代入数据可得,漏出的气体占总体积的
(2)对轮胎内剩余的气体,由理想气体状态方程,其中,
解得;(3),解得n=50次;
4.某热气球的球囊体积V1=2.3×103m3。
在热气球下方开口处燃烧液化气,使球囊内空气温度由T1=270K如图所示,某同学设计了一个压力送水装置由ABC三部分组成,A为打气筒,B为压力储水容器,C为细管,通过细管把水送到5m高处,细管的容积忽略不计。
k1和k2是单向密闭阀门,k3是放水阀门,打气筒活塞和简壁间不漏气,其容积为,储水器总容积为发V=10L,开始储水器内有V1=4L气体,气体压强为p0。
已知大气压强为p0=1.0×105Pa,水的密度为,求:
①打气筒第一次打气后储水器内的压强;
②通过打气筒给储水器打气,打气结束后打开阀门k3,水全部流到5m高处,求打气筒
至少打气多少次。
【答案】①②次
①取打气筒内气体和储水器内气体为研究对象,发生等温变化
则:解得:;
②储水器内水即将完全排出前的压强为,气体体积为:
设需要打气筒打次,以次所打气体和储水器内开始的气体为研究对象,根据等温变化有:
解得:次。
5.开始逐渐升高,热气球离地后,徐徐升空,当球囊内空气温度T2=300K时热气球停在空中。
假设地面附近的大气压恒为p0,球囊体积始终不变。
(1)求热气球停在空中时球囊内剩余空气与升空前球囊内空气的质量之比k;
(2)若热气球停在空中时停止加热,同时将热气球下方开口处封住,求球囊内空气温度降为T3=280K时球囊内的空气压强p(结果可用分式表示)。
【答案】①0.9 ②
①假设升温后气体(包括跑掉的空气)的总体积为V2,根据盖-吕萨克定律有:
又:k=联立解得:k=0.9②根据查理定律有:解得:
6.如图所示,有一热气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气的温度,使气球可以上升或下降,设气球的总体积V0=500m3(球壳体积忽略不计),除球内空气外,气球质量M=180kg。
已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化。
Ⅰ.为使气球从地面飘起,球内气温最低必须加热到多少?
Ⅱ.当球内温度为480K时,气球上升的加速度多大?
【答案】(1)400K(2)1.32m/s2
【解析】试题分析:Ⅰ. 设气球刚好从地面飘起时气球内的气体温度为,密度为,则气球升起时,浮力等于气球和内部气体的总重力即
由于气球内的气体温度升高时,压强并没有变化,那么原来的气体温度升高后体积设为,根据质量相等,则有原来的气体温度升高后,压强不变,体积从变为,根据理想
气体状态方程则有整理可得
Ⅱ。
当球内温度为480K时,气球升高前体积,温度密度的气体变为体积温度等于
密度的气体,则有,计算得
对气球受到自身重力,空气浮力,根据牛顿第二定律有解得。