选修3-3中打气和抽气问题
- 格式:pptx
- 大小:116.56 KB
- 文档页数:6
变质量问题的求解方法分析变质量问题时,可以通过巧妙地选择合适的研究对象,使这类问题转化为一定质量的气体问题,用气态方程求解。
1.打气问题向球、轮胎中充气是一个典型的变质量的气体问题。
只要选择球内原有气体和即将打入的气体作为研究对象,就可把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题。
2.抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题。
解析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程看做是等温膨胀过程。
3.灌气问题将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题。
解决这类问题时,可以把大容器中的气体和多个小容器中的气体看做整体来作为研究对象,可将变质量问题转化为定质量问题。
4.漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解。
如果选容器内剩余气体为研究对象,便可使问题变成一定质量的气体状态变化,可用理想气体状态方程求解。
[典例1]钢瓶中装有一定质量的气体,现在用两种方法抽取钢瓶中的气体,第一种方法是用小抽气机,每次抽出1 L气体,共抽取三次,第二种方法是用大抽气机,一次抽取3 L气体,这两种抽法中,抽取气体质量较多的是()A.第一种抽法B.第二种抽法C.两种抽法抽出气体质量一样多D.无法判断[解析]设初状态气体压强为p0,抽出气体后压强为p,对气体状态变化应用玻意耳定律,则:第一种抽法:p0V=p1(V+1)p1=p0·VV+1p1V=p2(V+1)p 2=p 1·V V +1=p 0(V V +1)2p 2V =p 3(V +1) p 3=p 2·V V +1=p 0(V V +1)3即三次抽完后:p 3=p 0·V 3V 3+3V 2+3V +1第二种抽法:p 0V =p ′(V +3) p ′=V V +3p 0=V 3V 3+3V 2p 0由此可知第一种抽法抽出气体后,剩余气体的压强小,即抽出气体的质量多。
第8章 气体 章末总结1气体这一章,是选修3-3的重点,在高考时候要考一个8分-10分的大题。
但是,这一章课本讲的很浅,很多知识和方法需要补充,典型题目需要总结。
下面,就这一章前2节的讲课心得做一下总结。
一、知识补充。
1、等温变化:玻意耳定律。
PV=C 。
注意:C 是与气体质量m 和温度T 有关的物理量。
质量大,C 大;温度高,C 大。
要学会认识P-V 图像和P-1/v 图像,并能迅速找出温度哪条线温度高,哪条线温度低。
例1:【考查实验问题导致图像变形的原因分析。
知识点:质量大,C 大;温度高,C 大。
】 (2)某同学测出了注射器内封闭气体的几组压强p 和体积V 的值后,用p 作纵轴,1/V 作横轴,画出p -1/V 图象如图甲、乙、丙,则甲可能产生的原因是________;乙可能产生的原因是________;丙可能产生的原因是________.A .各组的p 、1/V 取值范围太小B .实验过程中漏气现象C .实验过程中气体温度升高D .在计算压强时,没有计入由于活塞和框架的重力引起的压强2、等容变化:查理定律。
(1)C TP T P T P =∆∆==2211 注意:①温度T 是热力学温度。
②C 与质量、体积有关。
③同一质量的气体,体积一定,变化相同的温度时,压强变化相同。
(4)P-T 图像,斜率越大,体积越小。
(2)P t =P 0(1+273t ),其中P t 是t ℃时气体的压强,P 0是0℃时气体的压强。
例2.【考查(1)(2),如果掌握,直接背结论】一定质量的某气体密封在固定容器里,在0℃时压强为p 0,在27℃时压强为p ,则当气体从27℃升高到28℃时,增加的压强为( )A. p 0/273B.p/273C.p 0/300D.p/3003、等压变化:盖吕萨克定律。
(1)C TV T V T V =∆∆==2211 注意:①温度T 是热力学温度。
②C 与质量、压强有关。
③同一质量的气体,压强一定,变化相同的温度时,体积变化相同。
3-3物理抽气-打气问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN抽气和打气专题抽气和打气的问题是属于气体变质量问题的常见题型.若抽气和打气过程中的温度不变,则一般用玻意耳定律求解.[例一] 用最大容积为ΔV的活塞打气机向容积为V0的容器中打气.设容器中原来空气压强与外界大气压强P O相等,打气过程中,设气体的温度保持不变.求:连续打n次后,容器中气体的压强为多大?[例二]用容积为ΔV的活塞式抽气机对容积为V O的容器中的气体抽气、设容器中原来气体压强为P0,抽气过程中气体温度不变.求抽气机的活塞抽动n次后,容器中剩余气体的压强P n为多大?打气和抽气不是互为逆过程,气体的分装与打气有时可视为互为逆过程.气体的分装有两种情况,一种是将大容器中的高压气体同时分装到各个小容器中,分装后各个小容器内气体的状态完全相同,这种情况实质上是打气的逆过程,每个小容器内的气体相当于打气筒内每次打进的气体,大容器中剩下的气体相当于打气前容器中的原有气体.另一种是逐个分装,每个小容器中所装气体的压强依次减小,事实上,逐个分装的方法与从大容器中抽气的过程很相似,其解答过程可参照抽气的原理.[例三]钢筒容积20升,贮有10个大气压的氧气,今用5升真空小瓶取用,直到钢筒中氧气压强降为2个大气压为止,设取用过程中温度不变,小瓶可耐10个大气压.(l)若用多个5升真空小瓶同时分装,可装多少瓶(2)若用5升真空小瓶依次取用,可装多少瓶(强化练习)1.一只两用的活塞打气筒,其筒体积为V0,现在它与另一只容积为 V的容器连接,V容器内空气的压强为po,打气时,活塞工作n次后,容器内气体压强为多少若是抽气,n次后压强又为多少2.某容积为20L的氧气装有30atm的氧气,现把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中的氧气的压强为5atm,如每个小钢瓶中原有氧气压强为1atm,问共能分装多少瓶(设分装过程中无漏气,且温度不变)3.某压缩喷雾器贮液桶的容积是5.7×10的(-3次方)M3,往桶内倒入4.2×10(-3次方)M3的药液后开始打气,打气过程中药液不会向外喷出,如果每次能打进2.5×10(-4次方)M3的空气,要使喷雾器内空气的压强达到4atm应打气几次?这个压强能否使喷雾器内的药液全部喷完(设大气压强为1atm)4.一容器容积为V1,一抽气筒的容积为V2,容器内原来气体压强为p,问抽二次后容器内气体的压强。
1用最大容积为△ V的活塞打气机向容积为V)的容器中打气•设容器中原来空气压强与外界大气压强P O相等,打气过程中,设气体的温度保持不变•求:连续打n次后,容器中气体的压强为多大?
2、用容积为△ V的活塞式抽气机对容积为V O的容器中的气体抽气、设容器中原来气体压强
为P。
,抽气过程中气体温度不变.求抽气机的活塞抽动n次后,容器中剩余气体的压强P n
为多大?
3钢筒容积20升,贮有10个大气压的氧气,今用5升真空小瓶取用,直到钢筒中氧气压强降为2个大气压为止,设取用过程中温度不变,小瓶可耐10个大气压.(I )若用多个5升
真空小瓶同时分装,可装多少瓶?(2)若用5升真空小瓶依次取用,可装多少瓶?
4.某容积为20L的氧气装有30atm的氧气,现把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中的氧气的压强为5atm,如每个小钢瓶中原有氧气压强为1atm,问共能分装多少瓶(设分装过程中无漏气,且温度不变)?。
抽气和打气抽气和打气的问题是属于气体变质量问题的常见题型.若抽气和打气过程中的温度不变,则一般用玻意耳定律求解.[例一]用最大容积为ΔV的活塞打气机向容积为V0的容器中打气.设容器中原来空气压强与外界大气压强P O相等,打气过程中,设气体的温度保持不变.求:连续打n次后,容器中气体的压强为多大[解答]如图所示是活塞充气机示意图.由于每打一次气,总是把ΔV体积,相等质量(设Δm)压强为P O的空气压到容积为V0的容器中,所以打n次后,共打入压强为P0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为P O、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为P n、体积为V0.由于整个过程中气体质量不变、温度不变,由玻意耳定律得: P O(V0+nΔV)=P n V0∴P n= P O(V0+nΔV)/ V0[例二]用容积为ΔV的活塞式抽气机对容积为V O的容器中的气体抽气、设容器中原来气体压强为P0,抽气过程中气体温度不变.求抽气机的活塞抽动n次后,容器中剩余气体的压强P n为多大[解答]如图是活塞抽气机示意图,当活塞上提抽第一次气,容器中气体压强为P1,根据玻意耳定律得:P1(V0+nΔV)=P0V0P1=P0V0/(V0+nΔV)当活塞下压,阀门a关闭,b打开,抽气机气缸中ΔV体积的气体排出.活塞第二次上提(即抽第二次气),容器中气体压强降为P2.根据玻意耳定律得:P2(V0+nΔV)=P1V0P2=P1V0/(V0+nΔV)= P0[V0/(V0+nΔV)]2抽第n次气后,容器中气体压强降为:P n=P0[V0/(V0+nΔV)]n打气和抽气不是互为逆过程,气体的分装与打气有时可视为互为逆过程.气体的分装有两种情况,一种是将大容器中的高压气体同时分装到各个小容器中,分装后各个小容器内气体的状态完全相同,这种情况实质上是打气的逆过程,每个小容器内的气体相当于打气筒内每次打进的气体,大容器中剩下的气体相当于打气前容器中的原有气体.另一种是逐个分装,每个小容器中所装气体的压强依次减小,事实上,逐个分装的方法与从大容器中抽气的过程很相似,其解答过程可参照抽气的原理.[例]钢筒容积20升,贮有10个大气压的氧气,今用5升真空小瓶取用,直到钢筒中氧气压强降为2个大气压为止,设取用过程中温度不变,小瓶可耐10个大气压.(l)若用多个5升真空小瓶同时分装,可装多少瓶(2)若用5升真空小瓶依次取用,可装多少瓶[解答](l)用多个5升真空小瓶同时分装,相当于打气的逆过程,则由玻意耳定律可解为:P1V1=P2(V1+nΔV)代入数据,得n=16(瓶)即用5升真空小瓶同时分装可装16瓶。
一、气体压强的计算(一). 1. 知识要点(1 (2 2. 典型例1 如图1、2、3、4大气压强P cmHg 076=)。
练习:1两段空气柱1和2。
已p 0=76cmHg ,求空气柱1和2. 有一段12cm 图所示。
的压强(设大气压强为P 0A. 76cmHg C. 88cmHgA 的上表面是M 。
( ) (P 0 被轻刚性细杆连接在一起,S A =4.0×10-2m2,间。
活塞外侧大气压强g=10m/s 2。
二、图像类问题一定质量的理想气体状态变化时,可以用图像表示气体状态的变化过程。
应用图像解题,形象、直观、思路清晰,既能达到化难为易的目的,又能训练学生灵活多变的思维能力。
1、利用图像判断气体状态变化过程, 和能的转化和守恒定律判断气体做功、热传递及气体内能的变化例3一定质量的理想气体,温度经过不同状态变化回到初始状态温度,可能的过程是:A.先等压膨胀,后等容降压B.先等压压缩,后等容降压C.先等容升压,后等压膨胀D.先等容降压,后等压膨胀例4一定质量的理想气体沿如图所示箭头方向发生状态变化,则下列说法正确的是:A.ab 过程放热,内能减少B.bc 过程吸收的热量多于做功值C.ca 过程内能一直不变D.完成一个循环过程,气体放出热量练习5.一定质量的理想气体状态变化的p-T 图像如图所示,由图像知().(A)气体在a 、b 、c 三个状态的密度ρa <ρc <ρb (B)在a→b 的过程中,气体的内能增加 (C)在b→c 的过程中,气体分子的平均动能增大 (D)在c→a 的过程中,气体放热6.一定质量的理想气体的状态变化过程如图中直线段AB 所示,C 是AB 的中点,则( ).(A )从状态A 变化到状态B 的过程中,气体的内能保持不变 (B )从状态A 变化到状态B 的过程巾,气体的温度先升高后降低 (C )从状态A 变化到状态C ,气体一定吸热(D )从状态A 变化到状态B 的整个过程,气体一定吸热 2、图像与规律的转换, 图像与图像之间的转换.通过对物理图像的分析,根据图像提供的物理信息,我们可以将图像反映的物理过程“还原”成数学公式,而达到快捷、准确的解题目的。
充气问题:1、一只篮球的体积为V0,球内气体的压强为p0,温度为T0。
现用打气筒对篮球充入压强为p0、温度为T0 的气体,使球内气体压强变为3p0,同时温度升至2T0。
已知气体内能U与温度的关系为U=a T(a为正常数),充气过程中气体向外放出Q的热量,篮球体积不变。
求:①充入气体的体积;②充气过程中打气筒对气体做的功。
2、如图蹦蹦球是一种儿童健身玩具,某同学在17O C的室内对蹦蹦球充气,已知充气前球的总体积为2L,压强为latm,充气筒每次充入0.2L压强为latm的气体,忽略蹦蹦球体积变化及充气过程中气体温度的变化,求:①充气多少次可以让气体压强增大至3atm;②将充气后的蹦蹦球拿到温度为-13O C的室外后,压强将变为多少?灌气问题:3、某容积为20 L的氧气瓶装有30 atm的氧气, 现把氧气分装到容积为5 L的小钢瓶中, 使每个小钢瓶中氧气的压强为5 atm, 若每个小钢瓶中原有氧气压强为1 atm, 则共能分装的瓶数为?(设分装过程中无漏气, 且温度不变)( )4、容积为20L的钢瓶充满氧气后,压强为150atm,打开钢瓶的阀门让氧气同时分装到容积为5L的小瓶中,若小瓶原来是抽空的,小瓶中充气后压强为10atm,分装过程中无漏气,且温度不变,那么最多能分装( )A、4瓶B、50瓶C、56瓶D、60瓶漏气问题:5、一个瓶子里装有空气,瓶上有一个小孔跟外面大气相通,原来瓶里气体的温度是7℃,如果把它加热到47℃,瓶里留下的空气的质量是原来质量的几分之几?6、盛有氧气的钢瓶,在27℃的室内测得其压强是9.0×106Pa.将其搬到-13℃的工地上时,瓶内氧气的压强变为7.2×106Pa.请通过计算判断钢瓶是否漏气.气体混合问题:7、如下图所示,两个充有空气的容器A,B,以装有活塞栓的细管相连通,容器A浸在温度为t1=23℃的恒温箱中,而容器B浸在t2=27℃的恒温箱中,彼此由活塞栓隔开。
3-3物理抽气打气问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN抽气和打气抽气和打气的问题是属于气体变质量问题的常见题型.若抽气和打气过程中的温度不变,则一般用玻意耳定律求解.[例一]用最大容积为ΔV的活塞打气机向容积为V0的容器中打气.设容器中原来空气压强与外界大气压强P O相等,打气过程中,设气体的温度保持不变.求:连续打n次后,容器中气体的压强为多大?[解答]如图所示是活塞充气机示意图.由于每打一次气,总是把ΔV体积,相等质量(设Δm)压强为P O的空气压到容积为V0的容器中,所以打n次后,共打入压强为P0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为P O、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为P n、体积为V0.由于整个过程中气体质量不变、温度不变,由玻意耳定律得:P O(V0+nΔV)=P n V0∴P n= P O(V0+nΔV)/ V0[例二]用容积为ΔV的活塞式抽气机对容积为V O的容器中的气体抽气、设容器中原来气体压强为P0,抽气过程中气体温度不变.求抽气机的活塞抽动n次后,容器中剩余气体的压强P n为多大?[解答]如图是活塞抽气机示意图,当活塞上提抽第一次气,容器中气体压强为P1,根据玻意耳定律得:P1(V0+nΔV)=P0V0P1=P0V0/(V0+nΔV)当活塞下压,阀门a关闭,b打开,抽气机气缸中ΔV体积的气体排出.活塞第二次上提(即抽第二次气),容器中气体压强降为P2.根据玻意耳定律得:P2(V0+nΔV)=P1V0P2=P1V0/(V0+nΔV)= P0[V0/(V0+nΔV)]2抽第n次气后,容器中气体压强降为:P n=P0[V0/(V0+nΔV)]n打气和抽气不是互为逆过程,气体的分装与打气有时可视为互为逆过程.气体的分装有两种情况,一种是将大容器中的高压气体同时分装到各个小容器中,分装后各个小容器内气体的状态完全相同,这种情况实质上是打气的逆过程,每个小容器内的气体相当于打气筒内每次打进的气体,大容器中剩下的气体相当于打气前容器中的原有气体.另一种是逐个分装,每个小容器中所装气体的压强依次减小,事实上,逐个分装的方法与从大容器中抽气的过程很相似,其解答过程可参照抽气的原理.[例]钢筒容积20升,贮有10个大气压的氧气,今用5升真空小瓶取用,直到钢筒中氧气压强降为2个大气压为止,设取用过程中温度不变,小瓶可耐10个大气压.(l)若用多个5升真空小瓶同时分装,可装多少瓶(2)若用5升真空小瓶依次取用,可装多少瓶[解答](l)用多个5升真空小瓶同时分装,相当于打气的逆过程,则由玻意耳定律可解为:P1V1=P2(V1+nΔV)代入数据,得n=16(瓶)即用5升真空小瓶同时分装可装16瓶。
《物理选修3-3》——气体一、考点聚焦1.气体状态和状态参量。
热力学温度。
2.气体的体积、温度、压强之间的关系.。
3.气体分子运动的特点。
气体压强的微观意义。
二、知识扫描1.1atm= 1.01×105 pa= 76 cmHg,相当于 10.3 m高水柱所产生的压强。
2.气体的状态参量有:(p、V、T)①压强(p):封闭气体的压强是大量分子对器壁撞击的宏观表现,其决定因素有:1)温度;2)单位体积内分子数。
②体积(V):1m3=103l= 106ml 。
③热力学温度T= t+273.15 。
4.一定质量的理想气体的体积、压强、温度之间的关系是:PV/T=常数,克拉珀珑方程是: PV/T=RM/μ。
5.理想气体分子间没有相互作用力。
注意:一定质量的某种理想气体内能由温度决定。
三、典型例题例1.已知大气压强为p0 cmHg,一端开口的玻璃管内封闭一部分气体,管内水银柱高度为h cm,(或两边水银柱面高度差为h cm),玻璃管静止,求下列图中封闭理想气体的压强各是多少?解析:将图中的水银柱隔离出来做受力分析;⑺中取与管内气体接触的水银面为研究对象做受力分析.本题的所有试管的加速度都为零.所以在⑴中:G=N,p0S=PS;在⑵图中:p0S+G=pS,p0S+ρghS=pS,取cmHg(厘米汞柱)为压强单位则有:p= p0+h;同理,图⑶中试管内气体的压强为:p= p0-h;采用正交分解法解得:图⑷中:p= p0+hsinθ;图⑸中:p=p0-hsinθ;图⑹中取高出槽的汞柱为研究对象,可得到:p= p0-h;图⑺中取与管内气体接触的水银面(无质量)为研究对象:p 0S+ρghS=pS ,p= p 0+h点评:(1) 确定封闭气体压强主要是找准封闭气体与水银柱(或其他起隔绝作用的物体)的接触面,利用平衡的条件计算封闭气体的压强.(2) 封闭气体达到平衡状态时,其内部各处、各个方向上压强值处处相等.(3) 液体压强产生的原因是重力(4)液体可将其表面所受压强向各个方向传递.例2.两个完全相同的圆柱形密闭容器,如图8.3—1所示,甲 中装有与容器等体积的水,乙中充满空气,试问:(1)两容器各侧壁压强的大小关系及压强大小决定于哪些因素?(2)若两容器同时做自由落体运动,容器侧壁所受压强将怎样变化?解析:(1)对于甲容器,上壁压强为零,底面压强最大,侧壁压强自上而下由小变大其大小决定于深度,对于乙容器各处器壁上的压强均相等,其大小决定于气体分子的温度和气体分子的密度。
高中物理选修3-3气体大题训练(带答案)本文为物理专业内部资料,包含了几道气体计算题,需要注意格式和表述的准确性。
1.题目描述:一个圆柱形气缸内有一个活塞,气缸上部有挡板,内部高度为d。
活塞封闭一定量的理想气体,开始时活塞离底部加热。
求:①当活塞刚好到达气缸口时,气体的温度;②气体温度达到387℃时,活塞离底部的高度和气体的压强。
2.题目描述:一个U形管,左端封闭着水银和气体,右端开口,两管的气体温度始终不变。
现在用小活塞封住开口端,并缓慢推动活塞,使两管液面相平。
求:①粗管中气体的最终压强;②活塞推动的距离。
3.题目描述:一个U形玻璃管,左端封闭着理想气体,右端开口。
封闭气体的温度为T=312K时,两管水银面的高度差△h=4cm。
现对封闭气体缓慢加热,直到两管水银面相平。
设外界大气压p=76cmHg。
①求左、右两管中的水银面相平时封闭气体的温度;②若保持气体温度不变,从右管的开口端缓慢注入水银,直到右侧管的水银面比左侧管的高△h′=4cm,求注入水银柱的长度。
4.题目描述:一个由三个粗细不同的同轴绝热圆筒组成的气缸,两活塞之间密封有温度为T的空气。
开始时,两活塞静止在图示位置。
现对气体加热,使其温度缓慢上升,两活塞缓慢移动。
求:①加热前被封闭气体的压强和细线中的拉力;②气体温度上升到多少时,其中一活塞恰好移至其所在圆筒与b圆筒连接处;③气体温度上到时,封闭气体的压强。
5.题目描述:一个圆柱形气缸内有一个活塞,活塞封闭一定质量的气体,活塞与汽缸间无摩擦且不漏气。
总质量为m2的砝码盘通过左侧竖直的细绳与活塞相连。
当环境温度为T 时,活塞离缸底的高度为h。
现使活塞离缸底的高度为0.求:当活塞再次平衡时,环境温度是多少?10.在光滑水平面上放置一个质量为2m的气缸,内外壁都光滑,气缸内有一质量为m、横截面积为s的活塞密封住一定质量的理想气体。
大气压强为p,不考虑环境温度变化。
问题如下:①现在对气缸施加一个水平向左的恒力F(如图A),稳定后封闭气柱长为l1,求此时气缸的加速度a和气体的压强p1.②若用大小仍为F的XXX水平向左推活塞,如图B,求稳定后封闭气柱的长度l2.11.如图,高度足够大、导热的圆柱形汽缸A、B竖直放置,其内部的横截面积分别为Sa = 4×10^3 m^2、Sb =1.0×10^-3 m^2,两气缸底部用容积不计的细管连通。
充气问题:1、一只篮球的体积为V0,球内气体的压强为p0,温度为T0。
现用打气筒对篮球充入压强为p0、温度为T0 的气体,使球内气体压强变为3p0,同时温度升至2T0。
已知气体内能U与温度的关系为U=a T(a为正常数),充气过程中气体向外放出Q的热量,篮球体积不变。
求:①充入气体的体积;②充气过程中打气筒对气体做的功。
2、如图蹦蹦球是一种儿童健身玩具,某同学在17O C的室内对蹦蹦球充气,已知充气前球的总体积为2L,压强为latm,充气筒每次充入0.2L压强为latm的气体,忽略蹦蹦球体积变化及充气过程中气体温度的变化,求:①充气多少次可以让气体压强增大至3atm;②将充气后的蹦蹦球拿到温度为-13O C的室外后,压强将变为多少?灌气问题:3、某容积为20 L的氧气瓶装有30 atm的氧气, 现把氧气分装到容积为5 L的小钢瓶中, 使每个小钢瓶中氧气的压强为5 atm, 若每个小钢瓶中原有氧气压强为1 atm, 则共能分装的瓶数为?(设分装过程中无漏气, 且温度不变)( )4、容积为20L的钢瓶充满氧气后,压强为150atm,打开钢瓶的阀门让氧气同时分装到容积为5L的小瓶中,若小瓶原来是抽空的,小瓶中充气后压强为10atm,分装过程中无漏气,且温度不变,那么最多能分装( )A、4瓶B、50瓶C、56瓶D、60瓶漏气问题:5、一个瓶子里装有空气,瓶上有一个小孔跟外面大气相通,原来瓶里气体的温度是7℃,如果把它加热到47℃,瓶里留下的空气的质量是原来质量的几分之几?6、盛有氧气的钢瓶,在27℃的室内测得其压强是9.0×106Pa.将其搬到-13℃的工地上时,瓶内氧气的压强变为7.2×106Pa.请通过计算判断钢瓶是否漏气.气体混合问题:7、如下图所示,两个充有空气的容器A ,B ,以装有活塞栓的细管相连通,容器A 浸在温度为t 1=23℃的恒温箱中,而容器B 浸在t 2=27℃的恒温箱中,彼此由活塞栓隔开。
高中物理选修3-3《气体》重点题型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN选修3-3《气体》复习一、气体压强的计算(一).液体封闭的静止容器中气体的压强 1. 知识要点(1)液体在距液面深度为h 处产生的压强:P gh h =ρ(式中ρ表示液体的密度)。
(2)连通器原理:在连通器中,同种液体的同一水平面上的压强相等; 2. 典型例1 如图1、2、3、4玻璃管中都灌有水银,分别求出四种情况下被封闭气体A 的压强P A (设大气压强P cmHg 076=)。
练习:1如图所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。
已知h 1=15cm ,h 2=12cm ,外界大气压强p 0=76cmHg ,求空气柱1和2的压强。
2. 有一段12cm 长汞柱,在均匀玻璃管中封住了一定质量的气体。
如图所示。
若管中向上将玻璃管放置在一个倾角为30°的光滑斜面上。
在下滑过程中被封闭气体的压强(设大气压强为P 0=76cmHg )为( )A. 76cmHgB. 82cmHgC. 88cmHgD. 70cmHg(二).活塞封闭的静止容器中气体的压强 1. 解题的基本思路(1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。
注意:不要忘记气缸底部和活塞外面的大气压。
2. 典例例2 如图5所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。
不计圆板与容器内壁之间的摩擦。
若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( )A. P Mg S 0+cos θB. P MgS 0cos cos θθ+C. P Mg S 02+cos θD. P Mg S 0+练习:3如图所示,活塞质量为m,缸套质量为M,通过弹簧吊在天花板上,气缸内封住了一定质量的空气,而活塞与缸套间无摩擦,活塞面积为S,则下列说法正确的是( )(P0为大气压强)A、内外空气对缸套的总作用力方向向上,大小为MgB、内外空气对缸套的总作用力方向向下,大小为mgC、气缸内空气压强为P0-Mg/SD、气缸内空气压强为P0+mg/S4. 如图7,气缸由两个横截面不同的圆筒连接而成。
高中物理学习材料金戈铁骑整理制作应用理想气体状态方程解题复习导入新课:复述应用理想气体状态方程解题的一般步骤。
一、动态问题:尝试求解下面的二个例题,并分析共同点。
例1、如图所砂,一端封闭粗细均匀的直玻璃管下端插入水银槽,管内水银柱上方有空气,若把玻璃管再稍向上提,管口仍示离开水银面,则管内外水银术的高度差h和封闭气体的压强P的变化是A、h增大,P增大B、h增大,P减小C、h变小,P增大D、h变小,P减小例2、如图所示,开口向下的竖直玻璃管的末端有一段水银柱,当玻璃管从竖直位置转过450时,开口端的水银柱将A、从管的开口端流出一部分B、不发生变化C、沿着管子向上移动一段距离D、无法确定其变化情况小结:自己总结此种类型题目的解题方法是:二、变质量问题的分析例3、贮气筒内压缩气体的温度是270C,压强是20atm,从筒内放出一半质量的气体后,并使筒内剩余气体的温度降到120C,问剩余气体的压强为多大?点拨:通过巧妙地选择合适的研究对象,使这类问题转化为一定质量的气体问题。
小结:总结此类题目的分析方法。
拓展:此类分析思想还有如打气问题、抽气问题、漏气问题等。
针对练习:钢瓶内装有3kg气体,当温度是-230C时,压强为4atm,如果用掉1kg后并把温度升高到270C,求此时钢瓶内气体的压强。
当堂练习:1、如图所示,容器A的体积是B的体积的2倍用带阀门K的细管相连通,K关闭时A贮存100atm270C理想气体,B中贮存有30C的同种气体,打开K,A中有14的气体进入B中平衡后的温度为150C,试求容器B中原气体的压强。
2、某容积为20L的氧气瓶装有30atm的氧气,现把氧气分装到容积为5L的小说钢瓶中,使每个小钢瓶中氧气的压强为5atm,若每个钢瓶中原有氧气压强为1atm问能分装多少瓶?3、用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0、压强为P0的空气打入容器内。
若容器内原有空气的压强为P0,大气过程中温度不变,这打了n次后容器内的气体的压强为多少?。
抽气和打气抽气和打气的问题是属于气体变质量问题的常见题型.若抽气和打气过程中的温度不变,则一般用玻意耳定律求解.[例一]用最大容积为ΔV的活塞打气机向容积为V0的容器中打气.设容器中原来空气压强与外界大气压强P O相等,打气过程中,设气体的温度保持不变.求:连续打n次后,容器中气体的压强为多大?[解答]如图所示是活塞充气机示意图.由于每打一次气,总是把ΔV体积,相等质量(设Δm)压强为PO的空气压到容积为V0的容器中,所以打n 次后,共打入压强为P0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为PO、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为P n、体积为V0.由于整个过程中气体质量不变、温度不变,由玻意耳定律得:PO(V0+nΔV)=Pn V0∴P n=PO(V0+nΔV)/ V0[例二]用容积为ΔV的活塞式抽气机对容积为VO的容器中的气体抽气、设容器中原来气体压强为P0,抽气过程中气体温度不变.求抽气机的活塞抽动n次后,容器中剩余气体的压强P n为多大?[解答]如图是活塞抽气机示意图,当活塞上提抽第一次气,容器中气体压强为P1,根据玻意耳定律得:P1(V0+nΔV)=P0V0P1=P0V0/(V0+nΔV)当活塞下压,阀门a关闭,b打开,抽气机气缸中ΔV体积的气体排出.活塞第二次上提(即抽第二次气),容器中气体压强降为P2.根据玻意耳定律得:P2(V0+nΔV)=P1V0P2=P1V0/(V0+nΔV)= P0[V0/(V0+nΔV)]2抽第n次气后,容器中气体压强降为:P n=P0[V0/(V0+nΔV)]n打气和抽气不是互为逆过程,气体的分装与打气有时可视为互为逆过程.气体的分装有两种情况,一种是将大容器中的高压气体同时分装到各个小容器中,分装后各个小容器内气体的状态完全相同,这种情况实质上是打气的逆过程,每个小容器内的气体相当于打气筒内每次打进的气体,大容器中剩下的气体相当于打气前容器中的原有气体.另一种是逐个分装,每个小容器中所装气体的压强依次减小,事实上,逐个分装的方法与从大容器中抽气的过程很相似,其解答过程可参照抽气的原理.[例]钢筒容积20升,贮有10个大气压的氧气,今用5升真空小瓶取用,直到钢筒中氧气压强降为2个大气压为止,设取用过程中温度不变,小瓶可耐10个大气压.(l)若用多个5升真空小瓶同时分装,可装多少瓶?(2)若用5升真空小瓶依次取用,可装多少瓶?[解答] (l)用多个5升真空小瓶同时分装,相当于打气的逆过程,则由玻意耳定律可解为:P1V1=P2(V1+nΔV)代入数据,得n=16(瓶)即用5升真空小瓶同时分装可装16瓶。
习题课 气体实验定律和理想气体状态方程的应用[学习目标] 1.会巧妙地选择研究对象,使变质量气体问题转化为定质量的气体问题.2.会利用图象对气体状态、状态变化及规律进行分析,并应用于解决气体状态变化问题.3.会应用气体实验定律和理想气体状态方程解决综合问题.一、变质量问题分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为定质量的气体问题,从而用气体实验定律或理想气体状态方程解决.以常见的两类问题举例说明: (1)打气问题向球、轮胎中充气是一个典型的变质量的气体问题.只要选择球内原有气体和即将打入的气体作为研究对象,就可把充气过程看成等温压缩过程. (2)抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,总质量不变,故抽气过程可看成是等温膨胀过程.例1 一只两用活塞气筒的原理如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V 0,现将它与另一只容积为V 的容器相连接,容器内的空气压强为p 0,当分别作为打气筒和抽气筒时,活塞工作n 次后,在上述两种情况下,容器内的气体压强分别为(大气压强为p 0)( )图1A .np 0,1n p 0B.nV 0V p 0,V 0nVp 0 C .(1+V 0V )n p 0,(1+V 0V )n p 0D .(1+nV 0V )p 0,(V V +V 0)np 0答案 D解析 打气时,活塞每推动一次,就把体积为V 0、压强为p 0的气体推入容器内,若活塞工作n 次,就是把压强为p 0、体积为nV 0的气体压入容器内,容器内原来有压强为p 0、体积为V 的气体,根据玻意耳定律得: p 0(V +nV 0)=p ′V .所以p ′=V +nV 0V p 0=(1+n V 0V)p 0.抽气时,活塞每拉动一次,就把容器中的气体的体积从V 膨胀为V +V 0,而容器中的气体压强就要减小,活塞推动时,将抽气筒中的体积为V 0的气体排出,而再次拉动活塞时,又将容器中剩余的气体的体积从V 膨胀到V +V 0,容器内的压强继续减小,根据玻意耳定律得: 第一次抽气p 0V =p 1(V +V 0), p 1=VV +V 0p 0.活塞工作n 次,则有:p n =(V V +V 0)np 0.故正确答案为D.二、理想气体的图象问题例2 使一定质量的理想气体的状态按图2甲中箭头所示的顺序变化,图中BC 段是以纵轴和横轴为渐近线的双曲线的一部分.图2(1)已知气体在状态A 的温度T A =300 K ,求气体在状态B 、C 和D 的温度各是多少? (2)将上述状态变化过程在图乙中画成用体积V 和温度T 表示的图线(图中要标明A 、B 、C 、D 四点,并且要画箭头表示变化的方向),说明每段图线各表示什么过程. 答案 (1)600 K 600 K 300 K (2)见解析解析 从p -V 图中可以直观地看出,气体在A 、B 、C 、D 各状态下压强和体积分别为p A =4 atm ,p B =4 atm ,p C =2 atm ,p D =2 atm ,V A =10 L ,V C =40 L ,V D =20 L. (1)根据理想气体状态方程 p A V A T A =p C V C T C =p D V DT D, 可得T C =p C V C p A V A ·T A =2×404×10×300 K =600 K ,T D =p D V Dp A V A ·T A =2×204×10×300 K =300 K ,由题意知B 到C 是等温变化,所以T B =T C =600 K.(2)由状态B 到状态C 为等温变化, 由玻意耳定律有p B V B =p C V C ,得 V B =p C V C p B =2×404L =20 L.在V -T 图上状态变化过程的图线由A 、B 、C 、D 各状态依次连接(如图),AB 是等压膨胀过程,BC 是等温膨胀过程,CD 是等压压缩过程.分析状态变化的图象问题,要与状态方程结合起来,才能由某两个参量的变化情况确定第三个参量的变化情况,由pV T =C 知,若气体在状态变化过程中pV 之积不变,则温度不变;若VT 比值不变,则V 不变;若pT 比值不变,则p 不变,否则第三个参量发生变化.三、理想气体的综合问题 1.定性分析液柱移动问题定性分析液柱移动问题常使用假设推理法:根据题设条件,假设液柱不动,运用相应的物理规律及有关知识进行严谨的推理,得出正确的答案. 常用推论有两个:(1)查理定律的分比形式:Δp ΔT =p T 或Δp =ΔTT p .(2)盖—吕萨克定律的分比形式:ΔV ΔT =V T 或ΔV =ΔTT V .2.定量计算问题定量计算问题是热学部分的典型的物理综合题,它需要考查气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题. 解决该问题的一般思路: (1)弄清题意,确定研究对象.(2)分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程进而求出压强. (3)注意挖掘题目中的隐含条件,如几何关系等,列出辅助方程. (4)多个方程联立求解.对求解的结果注意检验它们的合理性.例3 如图3所示,两端封闭、粗细均匀、竖直放置的玻璃管内,有一长为h 的水银柱将管内气体分为两部分,已知l 2=2l 1.若使两部分气体同时升高相同的温度,管内水银柱将如何运动?(设原来上、下两部分气体温度相同)图3答案 水银柱上移解析 水银柱原来处于平衡状态,所受合外力为零,即此时两部分气体的压强差Δp =p 1-p 2=p h .温度升高后,两部分气体的压强都增大,若Δp 1>Δp 2,水银柱所受合外力方向向上,应向上移动,若Δp 1<Δp 2,水银柱向下移动,若Δp 1=Δp 2,水银柱不动.所以判断水银柱怎样移动,就是分析其合外力的方向,即判断两部分气体的压强哪一个增大得多. 假设水银柱不动,两部分气体都做等容变化,分别对两部分气体应用查理定律: 上段:p 2T 2=p 2′T 2′,所以p 2′=T 2′T 2p 2,Δp 2=p 2′-p 2=(T 2′T 2-1)p 2=ΔT 2T 2p 2;同理下段:Δp 1=ΔT 1T 1p 1.又因为ΔT 2=ΔT 1,T 1=T 2,p 1=p 2+p h >p 2, 所以Δp 1>Δp 2,即水银柱上移.此类问题中,如果是气体温度降低,则ΔT 为负值,Δp 亦为负值,表示气体压强减小,那么降温后水银柱应该向压强减小得多的一方移动.例4 如图4甲所示,水平放置的汽缸内壁光滑,活塞厚度不计,在A 、B 两处设有限制装置,使活塞只能在A 、B 之间运动,B 左面汽缸的容积为V 0,A 、B 之间的容积为0.1V 0.开始时活塞在B 处,缸内气体的压强为0.9p 0(p 0为大气压强),温度为297 K ,现缓慢加热汽缸内的气体,直至达到399.3 K .求:图4(1)活塞刚离开B 处时的温度T B ; (2)缸内气体最后的压强p ;(3)在图乙中画出整个过程的p -V 图象. 答案 (1)330 K (2)1.1p 0 (3)见解析图解析 (1)汽缸内的气体初状态时p 1=0.9p 0,V 1=V 0,T 1=297 K .当活塞刚离开B 处时,气体的状态参量p 2=p 0,V 2=V 0,T 2=T B .根据p 1T 1=p 2T 2,得0.9p 0297 K =p 0T B,所以T B =330 K.(2)随着温度不断升高,活塞最后停在A 处,此时气体的状态参量p 4=p ,V 4=1.1V 0,T 4=399.3 K .根据p 1V 1T 1=p 4V 4T 4,得0.9p 0V 0297=1.1pV 0399.3,解得p =1.1p 0.(3)随着温度的升高,当活塞恰好停在A 处时,气体的状态参量p 3=p 0,V 3=1.1V 0,T 3=T A ,由p 1V 1T 1=p 3V 3T 3得0.9p 0V 0297=1.1p 0V 0T A ,解得T A =363 K .综上可知,气体温度由297 K 升高到330 K 的过程中,气体做等容变化;气体温度由 330 K 升高到363 K 的过程中,气体做等压变化;气体温度由363 K 升高到399.3 K 的过程中,气体做等容变化,故整个过程的p -V 图象如图所示.1.某种喷雾器的贮液筒的总容积为7.5 L ,如图5所示,装入6 L 的药液后再用密封盖将贮液筒密封,与贮液筒相连的活塞式打气筒每次能压入300 cm 3、1 atm 的空气,设整个过程温度保持不变,求:图5(1)要使贮液筒中空气的压强达到4 atm ,打气筒应打压几次?(2)当贮液筒中空气的压强达到4 atm 时,打开喷嘴使其喷雾,直到内外气体压强相等,这时筒内还剩多少药液? 答案 (1)15 (2)1.5 L解析 (1)设每打一次气,贮液筒内增加的压强为p由玻意耳定律得:1 atm ×300 cm 3=1.5×103 cm 3×p ,p =0.2 atm 需打气次数n =4-10.2=15.(2)设停止喷雾时贮液筒内气体体积为V 由玻意耳定律得:4 atm ×1.5 L =1 atm ×V 解得V =6 L故还剩药液7.5 L -6 L =1.5 L.2.如图6所示,一定质量的气体从状态A 经状态B 、C 、D 再回到状态A .问AB 、BC 、CD 、DA 经历的是什么过程?已知气体在状态A 时的体积是1 L ,求气体在状态B 、C 、D 时的体积各为多少,并把此图改为p -V 图象.图6答案 见解析解析 A →B 为等容变化,压强随温度升高而增大. B →C 为等压变化,体积随温度升高而增大. C →D 为等温变化,体积随压强减小而增大. D →A 为等压变化,体积随温度降低而减小.由题意知V B =V A =1 L .因为V B T B =V C T C ,所以V C =T C T B V B =900450×1 L =2 L .由p C V C =p D V D ,得V D =p C p D V C =31×2 L =6 L .所以V B =1 L ,V C =2 L ,V D =6 L .根据以上数据,题中四个过程的p -V 图象如图所示.3.如图7所示的装置中,装有密度ρ=7.5×102 kg /m 3的液体的均匀U 形管的右端与体积很大的密闭贮气箱相连通,U 形管的左端封闭着一段气体.在气温为-23 ℃时,气柱高62 cm ,右端比左端低40 cm.当气温升至27 ℃时,左管液面上升了2 cm.求贮气箱内的气体在-23 ℃时的压强为多少?(g 取10 m/s 2)图7答案 1.05×104 Pa解析 在下列的计算中,都以1 cm 液柱产生的压强作为压强单位.设贮气箱内的气体在-23 ℃时的压强为p 0,则U 形管左侧气体在-23 ℃时的压强p 0′=p 0-40,设贮气箱内的气体在27 ℃时的压强为p ,则U 形管左侧气体在27 ℃时的压强p ′=p -44, 对U 形管左侧气体据理想气体状态方程得p 0′×62S 250=p ′×60S 300,对贮气箱内的气体,根据查理定律得 p 0250=p 300以上四式联立解得p 0相当于140 cm 液柱的压强,故p 0=7.5×102×10×1.40 Pa =1.05×104 Pa.一、选择题1.空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L .设充气过程为等温过程,空气可看做理想气体,则充气后储气罐中气体压强为( ) A .2.5 atm B .2.0 atm C .1.5 atm D .1.0答案 A解析 取全部气体为研究对象,由p 1V 1+p 2V 2=pV 1得p =2.5 atm ,故A 正确.2.两端封闭、内径均匀的直玻璃管水平放置,如图1所示.V 左<V 右,温度均为20℃,现将右端空气柱的温度降为0 ℃,左端空气柱的温度降为10 ℃,则管中水银柱将( )图1A .不动B .向左移动C .向右移动D .无法确定是否移动答案 C解析 设降温后水银柱不动,则两段空气柱均为等容变化,初始状态左右压强相等,即p 左=p 右=p对左端空气柱Δp 左ΔT 左=p 左T 左,则Δp 左=ΔT 左T 左p 左=10293p同理右端空气柱Δp 右=20293p所以Δp 右>Δp 左,即右侧空气柱的压强降低得比左侧空气柱的压强多,故水银柱向右移动,选项C 正确.3.在下列图中,不能反映一定质量的理想气体经历了等温变化→等容变化→等压变化后,又回到初始状态的图是( )答案 D解析 根据p -V 、p -T 、V -T 图象的物理意义可以判断,其中D 反映的是理想气体经历了等温变化→等压变化→等容变化,与题意不符.4. (多选)如图2所示,用活塞把一定质量的理想气体封闭在导热汽缸中,用水平外力F 作用于活塞杆,使活塞缓慢向右移动,气体由状态①变化到状态②.如果环境保持恒温,分别用p 、V 、T 表示该理想气体的压强、体积、温度.气体从状态①变化到状态②,此过程可用下图中哪几个图象表示( )图2答案 AD解析 由题意知,气体由状态①到状态②的过程中,温度不变,体积增大,根据pVT =C 可知压强将减小.对A 图象进行分析,p -V 图象是双曲线即等温线,且由状态①到状态②,气体体积增大,压强减小,故A 项正确;对B 图象进行分析,p -V 图象是直线,气体温度会发生变化,故B 项错误;对C 图象进行分析,可知气体温度不变,但体积减小,故C 项错误;对D 图象进行分析,可知气体温度不变,压强减小,故体积增大,D 项正确. 5.(多选)如图3所示为一定质量的理想气体沿着箭头所示的方向发生状态变化的过程,则该气体压强的变化是( )图3A .从状态c 到状态d ,压强减小B .从状态d 到状态a ,压强不变C .从状态a 到状态b ,压强增大D.从状态b到状态c,压强增大答案AC解析在V-T图上,等压线是延长线过原点的倾斜直线,对一定质量的理想气体,图线上的点与原点连线的斜率越大,压强越小,因此A、C正确,B、D错误.6.用打气筒将压强为1 atm的空气打进自行车胎内,如果打气筒容积ΔV=500 cm3,轮胎容积V=3 L,原来压强p=1.5 atm.现要使轮胎内压强变为p′=4 atm,问用这个打气筒要打气几次(设打气过程中空气的温度不变)()A.5次B.10次C.15次D.20次答案 C解析因为温度不变,可应用玻意耳定律的分态气态方程求解.pV+np1ΔV=p′V,代入数据得1.5 atm×3 L+n×1 atm×0.5 L=4 atm×3 L,解得n=15.7.如图4所示是理想气体经历的两个状态变化的p-T图象,对应的p-V图象应是图中的()图4答案 C二、非选择题8.容积为5×10-3 m3的容器内盛有理想气体,若用最大容积为10-4 m3的活塞抽气筒抽气,在温度不变的情况下抽气10次,容器内剩余气体的压强是最初压强的多少倍?答案0.82解析本题是一道变质量问题,我们必须转化成质量一定的问题.设容器中原有气体的压强为p0,体积为V0,抽气筒容积为ΔV.因为每次抽出的气体压强不一样,但可把抽气等效成容器与真空的抽气筒相通,所以每次抽气可视为质量一定的气体体积增大ΔV.第一次抽气:p0V0=p1(V0+ΔV),第二次抽气:p1V0=p2(V0+ΔV),第三次抽气:p2V0=p3(V0+ΔV),…第十次抽气:p 9V 0=p 10(V 0+ΔV ),各式相乘可得p 10=(V 0V 0+ΔV )10p 0. 所以p 10p 0=(V 0V 0+ΔV )10=(55+0.1)10≈0.82. 9.氧气瓶的容积是40 L ,其中氧气的压强是130 atm ,规定瓶内氧气压强降到10 atm 时就要重新充氧.有一个车间,每天需要用1 atm 的氧气400 L ,一瓶氧气能用几天?假定温度不变. 答案 12天解析 用如图所示的方框图表示思路.由V 1→V 2:p 1V 1=p 2V 2,V 2=p 1V 1p 2=130×4010L =520 L , 由(V 2-V 1)→V 3:p 2(V 2-V 1)=p 3V 3,V 3=p 2(V 2-V 1)p 3=10×4801L =4 800 L , 则V 3400 L=12. 10.如图5所示,均匀薄壁U 形管竖直放置,左管上端封闭,右管上端开口且足够长,用两段水银封闭了A 、B 两部分理想气体,下方水银的左右液面高度相差ΔL =10 cm ,右管上方的水银柱高h =14 cm ,初状态环境温度为27 ℃,A 部分气体长度l 1=30 cm ,外界大气压强p 0=76 cmHg.现保持温度不变,在右管中缓慢注入水银,使下方水银左右液面等高,然后给A 部分气体缓慢升温,使A 部分气体长度回到30 cm.求:图5(1)右管中注入的水银高度是多少?(2)升温后的温度是多少?答案 (1)30 cm (2)117 ℃解析 (1)设右管中注入的水银高度是Δh ,对A 部分气体分析,其做等温变化,根据玻意耳定律有p 1V 1=p 2V 2p 1=p 0+14 cmHg +10 cmHg ,p 2=p 0+14 cmHg +ΔhV 1=l 1S ,V 2=(l 1-12ΔL )S 代入数据解得再加入的水银高Δh =30 cm.(2)设升温前温度为T 0,升温后温度为T ,缓慢升温过程中,对A 部分气体分析,升温前V 2=(l 1-12ΔL )S ,p 2=p 0+14 cmHg +Δh 升温结束后V 3=l 1S ,p 3=p 0+14 cmHg +Δh +ΔL由理想气体状态方程得p 2V 2T 0=p 3V 3TT 0=300 K解得T =390 K则升温后的温度为t =117 ℃.11.如图6所示,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量m 1=2.50 kg ,横截面积S 1=80.0 cm 2;小活塞的质量m 2=1.50 kg ,横截面积S 2=40.0 cm 2;两活塞用刚性轻杆连接,间距保持为l =40.0 cm ,汽缸外大气的压强p =1.00×105 Pa ,温度T =303 K .初始时大活塞与大圆筒底部相距l 2,两活塞间封闭气体的温度为T 1=495 K .现汽缸内气体温度缓慢下降,活塞缓慢下移,忽略两活塞与汽缸之间的摩擦,重力加速度大小g 取10 m/s 2.求:图6(1)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度;(2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.答案 (1)330 K (2)1.01×105 Pa解析 (1)大、小活塞缓慢下降过程中,活塞受力情况不变,汽缸内压强不变,汽缸内气体为等压变化,由盖—吕萨克定律得V 1T 1=V 2T 2. 初始状态:V 1=l 2(S 1+S 2), 末状态:V 2=lS 2,代入可得T 2=23T 1=330 K. (2)大活塞与大圆筒底部接触前瞬间,对大小活塞受力分析则有m 1g +m 2g +pS 1+p 2S 2=pS 2+p 2S 1可得p 2=1.1×105 Pa.大活塞与大圆筒底部接触前瞬间到缸内封闭的气体与缸外大气达到热平衡时,气体体积不变,为等容变化,有p 2T 2=p 3T 3,可得p 3=1.01×105 Pa. 12.一定质量的理想气体由状态A 变为状态D ,其有关数据如图7甲所示,若气体在状态D 的压强是2×104 Pa.图7(1)求状态A 的压强;(2)请在乙图中画出该状态变化过程的p -T 图象,并分别标出A 、B 、C 、D 各个状态. 答案 (1)4×104 Pa (2)见解析解析 (1)根据理想气体状态方程:p A V A T A =p D V D T D则p A =p D V D T A V A T D =2×104×4×2×1021×4×102 Pa =4×104 Pa. (2)A →B 是等容变化由查理定律p A T A =p B T B得 p B =T B T A p A =8×1022×102×4×104 Pa =1.6×105 Pa B →C 是等温变化由玻意耳定律p B V B =p C V C 得p C =p B V B V C =1.6×105×14Pa =4×104 Pa C →D 是等容变化p D =2×104 Pa T D =4×102 Kp -T 图象及A 、B 、C 、D 各个状态如图所示.。
抽气和打气抽气和打气的问题是属于气体变质量问题的常见题型.若抽气和打气过程中的温度不变,则一般用玻意耳定律求解.[例一] 用最大容积为ΔV的活塞打气机向容积为V的容器中打气.设容器中原来空气压强与外界大气压强PO相等,打气过程中,设气体的温度保持不变.求:连续打n次后,容器中气体的压强为多大?[解答]如图所示是活塞充气机示意图.由于每打一次气,总是把ΔV体积,相等质量(设Δm)压强为PO 的空气压到容积为V的容器中,所以打n次后,共打入压强为P的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为PO 、体积为V+nΔV;打气后容器中气体的状态为末状态:压强为Pn、体积为V.由于整个过程中气体质量不变、温度不变,由玻意耳定律得:PO(V+nΔV)=PnV∴P n= P O(V0+nΔV)/ V0[例二]用容积为ΔV的活塞式抽气机对容积为VO的容器中的气体抽气、设容器中原来气体压强为P,抽气过程中气体温度不变.求抽气机的活塞抽动n次后,容器中剩余气体的压强Pn为多大?[解答]如图是活塞抽气机示意图,当活塞上提抽第一次气,容器中气体压强为P1,根据玻意耳定律得:P 1(V+nΔV)=PVP 1=PV/(V+nΔV)当活塞下压,阀门a关闭,b打开,抽气机气缸中ΔV体积的气体排出.活塞第二次上提(即抽第二次气),容器中气体压强降为P2.根据玻意耳定律得:P 2(V+nΔV)=P1VP 2=P1V/(V+nΔV)= P[V/(V+nΔV)]2抽第n次气后,容器中气体压强降为:P n=P0[V0/(V0+nΔV)]n打气和抽气不是互为逆过程,气体的分装与打气有时可视为互为逆过程.气体的分装有两种情况,一种是将大容器中的高压气体同时分装到各个小容器中,分装后各个小容器内气体的状态完全相同,这种情况实质上是打气的逆过程,每个小容器内的气体相当于打气筒内每次打进的气体,大容器中剩下的气体相当于打气前容器中的原有气体.另一种是逐个分装,每个小容器中所装气体的压强依次减小,事实上,逐个分装的方法与从大容器中抽气的过程很相似,其解答过程可参照抽气的原理.[例三]钢筒容积20升,贮有10个大气压的氧气,今用5升真空小瓶取用,直到钢筒中氧气压强降为2个大气压为止,设取用过程中温度不变,小瓶可耐10个大气压.(l)若用多个5升真空小瓶同时分装,可装多少瓶?(2)若用5升真空小瓶依次取用,可装多少瓶?[解答](l)用多个5升真空小瓶同时分装,相当于打气的逆过程,则由玻意耳定律可解为:P1V1=P2(V1+nΔV)代入数据,得n=16(瓶)即用5升真空小瓶同时分装可装16瓶。
第16点 气体变质量问题的处理方法分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为定质量的气体问题,用理想气体状态方程求解.1.打气问题向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题.2.抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看作是膨胀的过程.3.灌气问题将一个大容器中的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,可以把大容器中的气体和多个小容器中的气体看作是一个整体来作为研究对象,可将变质量问题转化为定质量问题.4.漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解.如果选容器内剩余气体与漏出的气体为研究对象,便可使问题变成定质量的气体状态变化的问题,可用理想气体状态方程求解.对点例题 贮气筒内压缩气体的温度为27℃,压强是20atm ,从筒内放出一半质量的气体后,并使筒内剩余气体的温度降低为12℃,求剩余气体的压强为多大?解题指导 以筒内剩余气体为研究对象,它原来占有整个筒容积的一半,后来充满整个筒,设筒的容积为V ,则初态:p 1=20 atm ,V 1=12V ,T 1=(273+27) K =300 K 末态:p 2=?,V 2=V ,T 2=(273+12) K =285 K根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2得:p 2=p 1V 1T 2V 2T 1=20×V 2×285300Vatm =9.5 atm.答案 9.5atm技巧点拨 选择剩余气体为研究对象,把变质量问题转化为定质量问题.1.一只轮胎容积为V =10L ,已装有p 1=1atm 的空气.现用打气筒给它打气,已知打气筒的容积为V 0=1L ,要使胎内气体压强达到p 2=2.5atm ,应至少打气(设打气过程中轮胎容积及气体温度保持不变,大气压强p 0=1atm)( )A .8次B .10次C .12次D .15次答案 D解析 本题中,胎内气体质量发生变化,选打入的和原来的气体组成的整体为研究对象.设打气次数为n ,则V 1=nV 0+V ,由玻意耳定律得,p 1V 1=p 2V ,解得n =15次,故选D.2.一只两用活塞气筒的原理如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V 0,现将它与另一只容积为V 的容器相连接,容器内的空气压强为p 0,当分别作为打气筒和抽气筒时,活塞工作n 次后,在上述两种情况下,容器内的气体压强分别为(大气压强为p 0)( )图1A .np 0,1np 0 B.nV 0V p 0,V 0nVp 0 C .(1+V 0V )n p 0,(1+V 0V)n p 0 D .(1+nV 0V )p 0,(V V +V 0)n p 0答案 D解析 打气时,活塞每推动一次,把体积为V 0,压强为p 0的气体推入容器内,若活塞工作n 次,就是把压强为p 0,体积为nV 0的气体压入容器内,容器内原来有压强为p 0,体积为V 的气体,根据玻意耳定律得:p 0(V +nV 0)=p ′V .所以p ′=V +nV 0V p 0=(1+n V 0V)p 0. 抽气时,活塞每拉动一次,把容器中的气体的体积从V 膨 胀为V +V 0,而容器的气体压强就要减小,活塞推动时,将抽气筒中的V 0气体排出,而再次拉动活塞时,将容器中剩余的气体从V 又膨胀到V +V 0,容器内的压强继续减小,根据玻意耳定律得:第一次抽气p 0V =p 1(V +V 0),p 1=V V +V 0p 0. 活塞工作n 次,则有:p n =(V V +V 0)n p 0.故正确答案为D.。