大学物理平面简谐波波动方程
- 格式:doc
- 大小:419.00 KB
- 文档页数:6
§4-2平面简谐波的波动方程振动与波动最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。
任何复杂的波都可看成是若干个简谐波的叠加。
对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。
需要定量地描述出每个质点的振动状态。
波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。
一、平面简谐波的波动方程设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点参考点原点的振动方程为()00cos y A t ωϕ=+任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢?沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x ππλλ=P 点的振动方程为区别联系振动研究一个质点的运动。
波动研究大量有联系的质点振动的集体表现。
振动是波动的根源。
波动是振动的传播。
x02c o s P y A t x πωϕλ⎛⎫=+- ⎪⎝⎭ 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉02c o s y A t x πωϕλ⎛⎫=+- ⎪⎝⎭就是沿 x 轴正向传播的平面简谐波的波动方程。
如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x πλ沿 x 轴负向传播的波动方程为02c o s y A t x πωϕλ⎛⎫=++⎪⎝⎭利用 2ωπν=, u λν=沿 x 轴正向传播的平面简谐波的波动方程又可写为02c o s y A t x πωϕλ⎛⎫=-+⎪⎝⎭02c o s A t x u πνωϕ⎛⎫=-+⎪⎝⎭0c o s x A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦即 0c o s x y A t u ωϕ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦原点的振动状态传到 P 点所需要的时间 xt u∆=P 点在 t 时刻重复原点在 x t u ⎛⎫- ⎪⎝⎭时刻的振动状态波动方程也常写为x02c o s y A t x πωϕλ⎛⎫=-+⎪⎝⎭()0c o s A t k x ωϕ=-+ 其中 2k πλ=波数,物理意义为 2π 长度内所具有完整波的数目。
习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
第十四章 波动#14-1 如本题图所示,一平面简谐波沿ox 轴正向传播,波速大小为u ,若P 处质点振动方程为)cos(ϕ+ω=t A y P ,求:(1)O 处质点的振动方程;(2)该波的波动方程;(3)与P 处质点振动状态相同质点的位置。
解:(1)O 处质点振动方程:y 0 = A cos [ ω(t + L / u )+φ] (2)波动方程y 0 = A cos { ω[t - (x - L )/ u +φ} (3)质点位置x = L ± k 2πu / ω (k = 0 , 1, 2, 3……)14-2 一简谐波,振动周期T =1/2s ,波长λ=10m ,振幅A =0.1m ,当t =0时刻,波源振动的位移恰好为正方向的最大值,若坐标原点和波源重合,且波沿ox 轴正方向传播,求:(1)此波的表达式;(2)t 1=T/4时刻,x 1=λ/4处质点的位移;(3)t 2 =T/2时刻,x 1=λ/4处质点的振动速度。
解:(1) y = 0.1 cos ( 4πt - 2πx / 10 )= 0.1 cos 4π(t - x / 20 ) (SI) (2) 当 t 1 = T / 4 = 1 / 8 ( s ) , x 1 = λ/ 4 = 10 / 4 m 处质点的位移y 1 = 0.1cos 4π(T / 4 - λ/ 80 )= 0.1 cos 4π(1 / 8 - 1 / 8 ) = 0.1 m (3) 振速 )20/(4sin 4.0x t tyv --=∂∂=ππ t 2 = T / 2 = 1 / 4 (S) ,在x 1 = λ/ 4 = 10 / 4( m ) 处质点的振速v 2 = -0.4πsin (π-π/ 2 ) = - 1.26 m / s14-3 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设4Tt =时刻的波形如本题图所示,求该波的表达式。
解:由图可看出,在t=0时,原点处质点位移y 0=-A ,说明原点处质点的振动初相πϕ=0,因而波动方程为])(cos[πω++=uxt A y14-4 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求: (1) 坐标原点处介质质点的振动方程;(2) 该波的波方程。
第五章机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ= 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π, 频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x= -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即= 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2]= 0.03cos(4πt - π/2).5.3已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:, 位相差为 Δφ = 5π/4(rad).5.4有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求: (1)P 点的振动表达式;2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(2)波动方程; (3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差φa – φb = -3π/2.0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.55.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为 y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8[解答]设波动方程为:, 那么A 和B 两点的振动方程分别为:, . 两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1). 5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), cos[2()]t xy A T πϕλ=-+cos[2()]AA x ty A T πϕλ=-+cos[2()]BB x ty A Tπϕλ=-+2(2)6BAx x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =2212w A ρω=图5.10平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--`11331142133165B u u u νν==⨯--反射声音的波长为=0.1872(m).或者= 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17设入射波的表达式为,`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-1cos 2()t xy A T πλ=+S 1 S 2S 12在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
§4-2平面简谐波的波动方程
振动与波动
最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。
任何复杂的波都可看成是若干个简谐波的叠加。
对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。
需要定量地描述出每个质点的振动状态。
波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。
一、平面简谐波的波动方程
设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点
参考点原点的振动方程为
任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢?
沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π
现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相
位比 O 点落后 22x x π
πλλ
=
P 点的振动方程为
由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉
就是沿 x 轴正向传播的平面简谐波的波动方程。
如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π
λ
沿 x 轴负向传播的波动方程为 利用 2ωπν=, u λν=
沿 x 轴正向传播的平面简谐波的波动方程又可写为
即 0cos x y A t u ωϕ⎡⎤
⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦
原点的振动状态传到 P 点所需要的时间 x
t u
∆=
P 点在 t 时刻重复原点在 x t u ⎛⎫
- ⎪⎝⎭
时刻的振动状态
波动方程也常写为 其中 2k π
λ
=
波数,物理意义为 2π 长度内所具有完整波的数目。
☆ 波动方程的三个要素:参考点,参考点振动方程,传播方向
二、波动方程的物理意义
1、固定x ,如令0x x =
()002cos y t A t x πωϕλ⎛
⎫=+-
⎪⎝⎭ 振动方程 0x 处质点的振动方程
0x 处的振动曲线 该质点在 1t 和 2t 两时刻的相位差 2、固定t ,如令0t t =
()002cos y x A t x πωϕλ⎛
⎫
=+-
⎪⎝
⎭
波形方程 0t 时刻各质点离开各自平衡位置的位移分布情况,即 0t 时刻的波形方程。
波形曲线 3、x 和 t 都在变化
各个不同质点在不同时刻的位移,各个质点的振动情况,不同时刻的波形,反映了波形不断向前推进的波动传播的全过程 ⇒ 行波
t 时刻,x 处的某个振动状态经过 t ∆ 的时间,传播了 x u t ∆=∆ 的距离,传到了 x x +∆ 处,显然
()(),,y t t x x y t x +∆+∆= 行波必须满足此方程
其中 x u t ∆=∆ 波是振动状态的传播! 习题类型
(1) 由某质元的振动方程(或振动曲线) ⇒ 求波动方程 (2) 由某时刻的波形曲线 ⇒ 求波动方程
例4.2:一平面波在介质中以速度 20u =m/s 沿直线传播,已知在传播路径上某点A 的振动方程为 ()3cos 4A y t π=,如图4.8所示。
(1)若以A 点为坐标原点,写出波动方程,并求出C ,D 两点的振动方程; (2)若以B 点为坐标原点,写出波动方程,并求出C ,D 两点的振动方程。
解:(1)振幅 3A =m ,圆频率4ωπ=rad/s ,频率 22ω
νπ
=
=Hz , 波长 10u
λν
=
=m
波动方程为
23cos 43cos 45y t x t x ππππλ⎛
⎫⎛
⎫=-
=-
⎪ ⎪⎝
⎭⎝
⎭
m C 点坐标为 13C x =-m ,振动方程为
A
B
8m
u
C
D
5m
9m
t 时刻
t t +∆ 时刻
133cos 43cos 455C C y t x t ππππ⎛⎫⎛
⎫
=-=+
⎪ ⎪⎝⎭⎝⎭
m D 点坐标为 9D x =m ,振动方程为
93cos 43cos 455D D y t x t ππππ⎛⎫⎛
⎫
=-=-
⎪ ⎪⎝⎭⎝⎭
m (2)A 点坐标为 5A x =m ,波动方程为
()23cos 43cos 45A y t x x t x πππππλ⎡⎤⎛⎫
=--=-+ ⎪⎢⎥⎣⎦⎝⎭
m C 点坐标为 8C x =-m ,振动方程为
133cos 43cos 455C C y t x t πππππ⎛⎫⎛
⎫
=-+=+
⎪ ⎪⎝⎭⎝⎭
m D 点坐标为 14D x =m ,振动方程为
93cos 43cos 455D D y t x t πππππ⎛⎫⎛
⎫
=-+=-
⎪ ⎪⎝⎭⎝
⎭
m 例4.3:一平面简谐横波以 400u =m/s 的波速在均匀介质中沿x +方向传播。
位于坐标原点的质点的振动周期为0.01秒,振幅为0.1m ,取原点处质点经过平衡位置且向正方向运动时作为计时起点。
(1)写出波动方程;
(2)写出距原点2m 处的质点P 的振动方程; (3)画出0.005t =秒和0.007秒时的波形图;
(4)若以距原点2m 处为坐标原点,写出波动方程。
解:(1)由题意 0.1A =m ,0.01T =秒,400u =m/s
可得圆频率 2200T
π
ωπ== rad/s , 波长 4uT λ==m
由旋转矢量图知,原点处质点的初相位 故原点处质点的运动方程为
030.1cos 2002y t ππ⎛
⎫=+
⎪⎝
⎭
m 波动方程为
30.1cos 20022y t x πππ⎛
⎫=+- ⎪⎝
⎭ m (2)2P x = m 处质点的振动方程为
30.1cos 2000.1cos 200222P P y t x t πππππ⎛⎫⎛
⎫=+
-=+ ⎪ ⎪⎝⎭⎝
⎭ m (3)10.005t =秒时,波形方程为
因为 2110.00254t t T -==,故由1t 时刻的波形向+x 方向平移4
λ
即可得2t 时刻
的波形。
如图所示
(4)
20.1cos 2000.1cos 200222y t x t x ππππππλ⎛⎫⎛
⎫''=+-
=+- ⎪ ⎪⎝⎭⎝
⎭ Ex. 4:已知 2t
= 秒的波形曲线如图所示,波速0.5u =/m s ,沿x -方向传播
求:(1)O 点的振动方程;(2)波动方程
解:(1)由2t =s 时的波形图可知
0.5A =m ,2λ=m ,∴4T u λ
=
=s , 22
T ππ
ω=
=
利用旋转矢量图法得出 2t =秒时 O 点振动相位
2t =, 2
π
ω=
O 点的初相位 02
πϕ=
O 点的振动方程为
(2)波动方程 0.5cos 22t x ππξπ⎛⎫
=++ ⎪⎝⎭
Ex :一列机械波沿x 轴正向传播,t =0 时的
波形如图所示,已知波速为10 m ·s -1,波
长为2m ,求: (1) 波动方程;
(2) P 点的振动方程及振动曲线; (3) P 点的坐标;
(4) P 点回到平衡位置所需的最短时间.
解: (1)由题5-13图可知1.0=A m ,0=t 时,
原点处质点振动的初始条件为0,200<=v A y ,∴03
π
ϕ=
由题知2=λm , 10=u 1s m -⋅,则 10
52
u νλ===Hz ,
圆频率 ππυω102==
原点 O 的振动方程为 波动方程为
(2)由图知,0=t 时,0,2
<-=P P v A
y ,
∴3
4π
φ-=P (P 点的相位应落后于0点,故取负值)
∴P 点振动方程为)3
4
10cos(1.0ππ-=t y p
(3)由 πππ34
|3)10(100-=+-=t x t
解得 67.13
5
==x m
(4)根据(2)的结果可作出旋转矢量图如题5-13图(a), 则由P 点回到平衡位置应经历的相位角 ∴所需最短时间为。