带最大值项的二阶非线性差分方程的振动性定理
- 格式:pdf
- 大小:198.10 KB
- 文档页数:4
曲阜师范大学硕士学位论文二阶差分方程解的振动性与渐近性及一类n阶非线性差分方程解的渐近状态姓名:***申请学位级别:硕士专业:应用数学指导教师:***2001.3.25二阶差分方程解的振动性与渐近性及一类n阶非线性差分方程解的渐近状态厶(鲰妒f△粕)】+,(n,。
):o,n∈Ⅳ(,10】,r△(陬IP(△‰))十,(竹,¥(ha(n】),-一,。
f^mm)】)=0,m≥l,竹EN[no)(1,2);解的塞麴性与塑垫些每中Ⅳ(瑚)={伽,n。
+1,…),n。
∈,TO,l,2,…).当知≠o时·。
量。
I妒一1(砉)I=∞螺研究了—类n阶非线性差分方程矗“9+,O,虮…,△“一10=0’t∈Ⅳ(伽)解的渐近状态.其中Ⅳ(伽)={伽,瑚+l,…),竹o∈{竹,n+1,…)√.关■调。
拟线性差分方g振动,非振动。
渐近性。
拟线性时精蓥分方程:/差分算子,阶乘幂.专锯镑1引言差分方程理论。
随着科学技术的迅猛发晨,不仅在工程技术,自动控制以及航天卫星等尖端领域中有重要的应用,而且在计算机科学,人口动态学和经济金融辱领域也已成为不可缺少的数学工具.同时由于差分方程表达的离傲系统常常与相应的连续系统具有完全不同的特性,因而使许多研究者对它产生丁更多的关注.作为徽分方程离散化的差分方程的擐动性和渐近性问题也成为近年来的研兜课题.特别是对于二阶差分方程的撅动性及淅近性问题。
得瓢了一系列瀑亮的结果,可参看文献【H】,[t2-26].但是关于二阶拟线性差分方程△‰轳(血n))十,(住,卫n)昌o,n∈Ⅳ‰),fI.I)以及二阶拟线性时滞差分方程△‰妒(△‰)】+,kz(h1(n)),…,z(k(n))】=o,m≥l,n∈Ⅳffl0),(1.2)△~+,(t,t『,…,△4—10=0’tEⅣ(,t0)(1.3)解的振动性与渐近性的文章,目前还不多见.本文主要研究方程(1.1),(L2】和(1.3)解的振动性与渐近性,(I.i)与(1.2】中的Ⅳn10)={no,no+1,…),(1.3)中的Ⅳ(伽)={,10,nD+l,…】.△为前向差分算子,即△‰=函l+l一翱,△”靠=△《△“。