非线性振动中文
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
非线性振动非线性振动§0.1非线性振动的研究对象在自然界、工程技术、日常生活和社会生活中,普遍存在着物体的往复运动或状态的循环变化。
这类现象称为振荡。
例如大海的波涛起伏、花的日开夜闭、钟摆的摆动、心脏的跳动、经济发展的高涨和萧条等形形色色的现象都具有明显的振荡特性。
振动是一种特殊的振荡,即平衡位置四周微小或有限的振荡。
如声波和超声波、工程技术中的机器和结构物的机械振动、无线电和光学中的电磁振荡等。
从最小的初等粒子到巨大的天体,从简单的摆到复杂的生物体,无处不存在振动现象。
有时人们力图防止或减小振动,有时又力图制造和利用振动。
尽管振动现象的形式多种多样,但有着共同的客观规律和同一的数学表达形式。
因此有可能建立同一的理论来进行研究,即振动力学。
振动力学是力学、声学、无线电电子学、自动控制理论等学科,以及机械、航空、土木、水利等工程学科的理论基础之一。
它应用数学分析、实验量测和数值计算等方法,探讨振动现象的机理和基本规律,为解决与振动有关的实际题目提供理论依据。
根据描述振动的数学模型的不同,振动理论区分为线性振动理论和非线性振动理论。
线性振动理论适用于线性系统,即质量不变、弹性力和阻尼力与运动参数成线性关系的系统,其数学描述为线性常系数常微分方程。
不能简化为线性系统的系统为非线性系统,研究非线性系统的振动理论就是非线性振动理论。
线性振动理论是对振动现象的近似描述,在振幅足够小的大多数情况下,线性振动理论可以足够正确地反映振动的客观规律。
频率、振幅、相位、激励、响应、模态等都是在线性理论中建立起来的基本概念。
实际机械系统中广泛存在着各种非线性因素,如电场力、磁场力、万有引力等作用力非线性,法向加速度、哥氏加速度等运动学非线性,非线性本构关系等材料非线性,弹性大变形等几何非线性等。
因此工程实际中的振动系统尽大多数都是非线性系统。
由于非线性微分方程尚无普遍有效的精确求解方法,而线性常微分方程的数学理论已十分完善,因此将非线性系统以线性系统代替是工程中常用的有效方法,但仅限于一定的范围。
6.1 非线性系统的举例●在粘性阻尼条件下,系统的运动微分方程为线性二阶常微分方程⏹线性振动理论能表征很多实际问题⏹对于不能用常系数线性微分方程来描述的物理系统,需要讨论非线性微分方程●忽略质量变化,单自由度系统的运动方程的一般形式可以写为⏹带有非线性特征的系统称为非线性系统,其运动称为非线性振动或者非线性响应⏹叠加原理不适用于非线性系统⏹通常,非线性振动不是简谐的,其频率随振幅改变非线性现象的一个重要类型是弹性恢复力与变形不成比例硬化弹簧软化弹簧32014/11/14质量附在长度为的拉直的弦AB 的中部,弦的初始张力用表示。
令质量在弦的横向上离开平衡位置的距离为,弦中产生的弹性恢复力如图(b )所示该系统自由振动方程:对称硬化弹簧的例子2014/11/144由几何关系代入运动方程显然这是一个非线性方程如果认为是小振动,有,因此52014/11/14●单摆,重,长度。
单摆离开竖直位置的夹角为, 单摆关于轴的回复力矩为,绕轴的转动方程为●代入质量的惯性矩, 有●小振幅情况为简谐振动,●振幅较大,对称软化弹簧的例子2014/11/14 6对比两种情况的非线性方程72014/11/14硬化情形分段线性化恢复力2014/11/148软化情形92014/11/14●如果动力荷载使结构或机器部件变形时超出了材料弹性范围,造成的运动称为非弹性响应●一建筑的二维矩形钢框架,受横向力作用于屋顶。
如果柱的弯曲刚度小于梁的弯曲刚度,随着荷载无限增加,在柱的两端会形成所谓的塑性铰。
102014/11/14●对应的载荷-位移曲线●实验表明,最大的正力和最大的负力在数值上是相等的●滞后回线关于原点对称2014/11/1411线性软化弹性卸载反向加载弹性卸载●曲线部分常常用直线代替,用以模拟真实的材料行为●双线性非弹性恢复力2014/11/1412双线性●理想弹塑性恢复力●滞后回线表示的能量耗散在这里被假定通过塑性铰损失掉,结构的其余部分依然保持能量守恒●这种能量耗散机制称为滞后阻尼2014/11/1413刚塑形带有摩擦抗力的单自由度系统及其滞后回线142014/11/14●下图两个问题在数学上是相同的⏹前者是属于刚塑形恢复力的情况,弹性变形与塑形范围相比很小⏹后者是没有弹簧的质量在摩擦力的阻滞下运动⏹除粘性阻尼外,其它类型的耗散机制均导致非线性⏹通常,假定质量、阻尼和刚度特征不随位移、速度和加速度而改变。
非线性振动百科名片恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。
尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。
一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。
目录编辑本段简介非线性振动恢复力与位移不成线性比例或阻尼力与速度不成线性比例的系统的振动。
尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。
一般说,线性振动只适用于小运动范围,超过此范围,就变成非线性振动。
非线性系统的运动微分方程是非线性的,不能用叠加原理求解。
方程中不显含时间的非线性系统称为非线性自治系统;显含时间的称为非线性非自治系统。
保守非线性自治系统的自由振动仍是周期性的,但其周期依赖于振幅。
对于渐硬弹簧,振幅越大,周期越短;对于渐软弹簧,振幅越大,周期越长。
非保守非线性自治系统具有非线性阻尼,阻尼系数随运动而变化,因而有可能在某个中间振幅下等效阻尼为零,从而能把外界非振动性能量转变为振动激励而建立起稳定的自激振动(简称自振)。
弦乐器和钟表是常见的自振系统。
周期地改变系统的某个参量而激起系统的大幅振动称参变激发。
当系统的固有频率⑴等于或接近参量变化频率的一半时,参变激发现象最易产生。
具有非线性恢复力的系统受到谐激励时,其定常受迫振动存在跳跃现象,即激励频率3缓慢变化时,响应振幅一般也平稳变化,但通过某些特定3值时,振幅会发生跳跃突变。
具有非线性恢复力且固有频率为 3 n 的系统,在受到频率为3的谐激励时,有可能产生频率为 3 /n (心3 n)的定常受迫振动(n为正整数),称为亚谐共振或分频共振。
它的出现不仅与系统和激励的参数有关,而且依赖于初始条件。
亚谐共振可以解释为,由于非线性系统的响应不是谐和的,频率3/n的响应中存在频率为 3 的高次谐波,激励对高次谐波作功而维持了振动。
非线性振动期末作业任课老师:姓名:学号:专业:课程:非线性振动非线性振动的理论研究方法非线性振动是指恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。
尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。
一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。
通过理论分析对非线性振动进行研究是目前最有效最基本最直接的方式。
理论研究分析最主要的任务是通过理论的研究分析来揭示各类非线性系统振动的基本理论和主要特点。
非线性振动理论研究分析的最重要的数学工具就是微分方程。
学者们在微分方程发展过程中发现用初等函数表达方程解的可能性极为有限之后,出现了三个比较重要的方向。
其一是引入新的函数作为解的表达,并研究这些函数的性质和数值解。
非线性振动中有个别的问题就可以用这种方法来求解方程,例如摆的大幅振动解用椭圆函数表达。
然而这方面的例子是极为有限的。
这就说明只有极少数非线性微分方程能够求出方程的解,所以通常必须用近似的求解方法求出非线性微分方程的近似解,这就需要用到求解非线性微分方程的两个最基本的方法,这就是定性方法和定量方法。
定性理论不通过解的表达式来研究分析解的性质,比如利用几何法作出微分方程所定义的积分曲线,运用稳定性理论引入另外的函数中,通过它们去研究解的性质。
把常微分方程定性理论与非线性振动联系起来主要应归功于前苏联的Andronov等建立起来的学派。
这些学者们把定性理论用来解决电学和力学中出现的大量非线性振动问题。
定性理论在发展的过程中,一方面在理论上形成了许多讨论奇点、周期解、极限环的定理、判据等,一方面形成了一些实用的作图方法,例如等倾线法、Lienard法、点映射等。
求解非线性微分方程近似解的方法中定量分析的方法包括数值解法以及解析法。
224第十一章 非线性振动11.1 引言振动系统的许多运动状态可以按线性系统来分析,解释,但这只能限于一定的范围之内,因为系统中某些元件的特性只在某一定范围之内才是线性的。
例如,一个弹簧被拉伸或压缩,其中将分别产生拉压恢复力,在一定范围之内,力与变形之间的关系是线性的,超过这一范围,恢复力增长的速率将大于变形增长的速率(硬弹簧)或小于变形增长的速率(软弹簧)。
因此,一个简单的弹簧—质量振子,如果工作于弹簧的线性范围之内,就可以看为一个线性系统;如果工作于这线性范围之外,就是一个非线性系统。
同理,一个单摆,如果振幅θ充分小以至可以假设sin θ就等于θ,则可看为线性系统。
但对于大幅振动,这种假设就不再正确。
本质上是非线性的系统如果简单当作线性系统来处理,则不仅所得结果在数量上的误差过大,更重要的是按照线性理论将无法预料或解释实际系统可能出现的某些重要的非线性现象。
对于线性系统,因果关系是线性的。
即载荷加倍,响应也就加倍;若同时作用有不同的载荷,总响应就是各个单独载荷的响应之和,因此可以应用叠加原理,对于非线性系统因果关系不再是线性的,叠加原理也就不再适用。
非线性系统至今没有一般的解法,只能采用一些特殊的研究方法来尽可能地揭示系统的某些重要的运动性态。
这些方法沿着定性的与定量的两个方向发展,二者相辅相成,法国物理学家邦加来(Poincare )在这两个方面都作出了奠基性的工作。
本章通过的一些典型的1自由度非线性系统介绍方法与定量方法的一些初步认识;揭示非线性系统所特有的某些重要的运动性态。
11.2相平面1自由度振动系统的运动微分方程一般形式为...,,0f x t xx ⎛⎫+= ⎪⎝⎭(11.2-1)其中.,,f x t x ⎛⎫ ⎪⎝⎭可以是x 与.x 的非线性函数。
如.,,f x t x ⎛⎫⎪⎝⎭不显含时间t ,则有...,0f x xx ⎛⎫+= ⎪⎝⎭(11.2-2)方程(11.2-1)所表示的系统称为非自治系统,而方程(11.2-2)可改写为两个联立的一阶方程如下..(,)x yy f x y ==- (11.2-3)如果把x 与y 都看为笛卡儿坐标,则x-y 平面成为相平面。
《非线性振动》教学大纲
课程编号:1322013
英文名称:Nonlinear Oscillations
课程类别:选修课学时:36 学分:2
适用专业:土木工程
预修课程:结构动力学
课程内容:
内容:主要讲述非线性振动经典和现代的理论和方法,在经典部分方面,着重从定性和定量两个方面研究保守系统、散逸系统、自激振动系统、受迫振动系统和参量激励系统的形态和特征。
在现代部分方面,着重讨论点映射、胞映射、突变、分岔及混沌现象。
预期目标:使学生能从定量和定性两方面处理非线性振动现象。
重点和难点:熟练掌握常用的摄动方法,尤其是多尺度法、谐波增量平衡法和平均化方法;Duffing方程和Mathieu方程的解的特性;点(胞)映射的原理及实现;混沌振动的判别准则和Lyapunov指数求解的算法;非线性动力学中分形的概念。
教材:
A.H.Nayfeh, D.T.Mook. Nonlinear Oscillations. New York: John Wiley & Sons. 1979
参考书目:
1. 陈予恕.非线性振动.北京:高等教育出版社,2002
2. 陈树辉.强非线性振动系统的定量分析方法.北京:科学出版社,2007
3. F.C. Moon. Chaotic Vibrations. New York: John Wiley & Sons.
4. 李骊.强非线性振动系统的定性理论和定量理论.北京:科学出版社,1997考试方式与要求:
课程论文。