选修3-5 物体的碰撞
- 格式:ppt
- 大小:4.58 MB
- 文档页数:15
第4课碰撞备课堂教学目标:(一)知识与技能1.会用动量守恒定律处理碰撞问题。
2.掌握弹性碰撞和非弹性碰撞的区别。
3.知道对心碰撞和非对心碰撞的区别。
4.知道什么是散射。
5.会用动量、能量的观点综合分析、解决一维碰撞问题.(二)过程与方法1、通过探究一维弹性碰撞的特点,体验科学探究的过程(由简单到复杂),掌握科学探究的方法(理论和实验相结合)。
2、理解从研究宏观碰撞到微观碰撞的引申思路,体验这种引申的重大意义,并进一步感受动量守恒定律的普适性。
(三)情感态度与价值观知道散射和中子的发现过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性.重点:碰撞类问题的处理思想以及一维弹性碰撞的定量分析。
用动量、能量的观点综合分析、解决一维碰撞问题。
难点:通过定性研究二维弹性碰撞,理解从研究宏观碰撞到微观碰撞的引申思路。
教学方法:讲练法、举例法、阅读法教学用具:投影仪、投影片讲法速递(一)引入新课:观看丁俊晖打斯诺克的视频,讨论回答斯诺克在碰撞中有些在一条直线上,有些不在一条直线上的原因。
板书:第4节碰撞(二)进行新课:预习检查:1.从能量角度分类(1)弹性碰撞:碰撞过程中机械能守恒.(2)非弹性碰撞:碰撞过程中机械能不守恒.(3)完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大. 2.从碰撞前后物体运动的方向是否在同一条直线上分类(1)正碰:(对心碰撞)两个球发生碰撞,如果碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动.(2)斜碰:(非对心碰撞)两个球发生碰撞,如果碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度方向都会偏离原来两球心的连线而运动.判断正误:1.发生碰撞的两个物体,动量是守恒的.(√) 2.发生碰撞的两个物体,机械能是守恒的.(×)3.碰撞后,两个物体粘在一起,动量是守恒的,但机械能损失是最大的.(√) 思考:两小球发生对心碰撞,碰撞过程中,两球的机械能守恒吗?【提示】 两球发生对心碰撞,动量是守恒的,但机械能不一定守恒,只有发生弹性碰撞时,机械能才守恒.预习检查: 1.弹性碰撞特例(1)两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.(2)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则v ′1=0,v ′2=v 1,即两者碰后交换速度. (3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.(4)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后,v ′1=v 1,v ′2=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.2.散射 (1)定义微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做散射. (2)散射方向由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子在碰撞后飞向四面八方. 判断正误:1.与静止的小球发生弹性碰撞时,入射小球碰后的速度不可能大于其入射速度.(√) 2.两球发生弹性正碰时,两者碰后交换速度.(×)3.微观粒子发生散射时,并不是微观粒子直接接触碰撞.(√)思考:1.如图所示,光滑水平面上并排静止着小球2、3、4,小球1以速度v 0射来,已知四个小球完全相同,小球间发生弹性碰撞,则碰撞后各小球的运动情况如何?【提示】 小球1与小球2碰撞后交换速度,小球2与小球3碰撞后交换速度,小球3与小球4碰撞后交换速度,最终小球1、2、3静止,小球4以速度v 0运动.2.微观粒子能否碰撞?动量守恒定律适用于微观粒子吗?【提示】 宏观物体碰撞时一般相互接触,微观粒子碰撞时不一定接触,但只要符合碰撞的特点,就可认为是发生了碰撞,可以用动量守恒的规律分析求解.弹性碰撞的规律推导:质量为m 1的物体,以速度v 1与原来静止的物体m 2发生完全弹性碰撞,设碰撞后它们的速度分别为v ′1和v ′2,碰撞前后的速度方向均在同一直线上。
学 习 目 标知 识 脉 络1.了解历史上对碰撞问题的研究过程;知道生活中各式各样的碰撞形式.2.知道碰撞的主要特点.(重点)3.知道弹性碰撞和非弹性碰撞.会用能量的观点分析弹性碰撞和非弹性碰撞.(重点、难点)历史上对碰撞问题的研究及生活中的碰撞现象[先填空]1.历史上对碰撞问题的研究(1)最早发表有关碰撞问题研究成果的是布拉格大学校长马尔西教授.(2)碰撞在物理研究中的贡献①通过总结碰撞的规律,为动量守恒定律奠定了基础.②通过高能粒子的碰撞,发现了许多新粒子,丰富了人们对微观粒子世界的认识,形成了新的基本粒子物理研究领域.2.生活中的各种碰撞现象(1)正碰:两个小球碰撞,作用前后沿同一直线运动.(2)斜碰:两个小球碰撞,作用前后不沿同一直线运动.[再判断]1.通过高能粒子的碰撞,实验物理学家相继发现的新粒子,多数都是理论上预言的.(×)2.生活中的各种碰撞现象都是有害的.(×)3.在宏观和微观领域中都有碰撞现象发生.(√)[后思考]日常生活中哪些是正碰,哪些是斜碰?【提示】火车车厢在对接时属正碰,台球中母球和子球间的碰撞多为斜碰.弹性碰撞和非弹性碰撞[先填空]1.碰撞的主要特点相互作用时间短,作用力变化快和作用力峰值大等,因而其他外力可以忽略不计.2.弹性碰撞若两个小球碰撞后形变能完全恢复,则没有能量损失,碰撞前后两个小球构成的系统的动能相等,称为弹性碰撞.3.非弹性碰撞若两个球碰撞后它们的形变不能完全恢复原状,这时将有一部分动能最终会转变为其他形式的能,碰撞前后系统的动能不再相等,我们称之为非弹性碰撞.[再判断]1.非弹性碰撞前后的动能不相等.(√)2.碰撞发生后,两物体一定在同一直线上运动.(×)3.两辆车迎面相撞属于弹性碰撞.(×)[后思考]你能说出弹性碰撞与非弹性碰撞的本质区别吗?现实生活中,哪些碰撞可近似看作弹性碰撞?(请举例说明)【提示】两种碰撞的本质区别是碰撞前后系统动能是否守恒.现实生活中的碰撞,多数是非弹性碰撞.乒乓球拍击打乒乓球、网球拍击打网球、台球间的碰撞可近似看作弹性碰撞.1.碰撞的特征(1)碰撞作用时间极短,相互作用力变化很快,平均作用力很大,远远大于其他外力,可以将其他外力忽略.(2)碰撞过程时间极短,可以忽略物体的位移,认为物体碰撞前后仍在同一位置.2.弹性碰撞与非弹性碰撞的区别弹性碰撞非弹性碰撞碰后形变情况完全恢复不能完全恢复能量损失情况没有能量损失,碰撞前后系统的动能相等一部分动能转变为其他形式的能,碰撞前后系统的动能不再相等1.(多选)碰撞现象的主要特点有( )【导学号:552720xx】A.物体相互作用时间短B.物体相互作用后速度很大C.物体间相互作用力远大于外力D.相互作用过程中物体的位移可忽略【解析】碰撞过程发生的作用时间很短作用力很大,远大于物体受到的外力,与物体作用前后的速度大小无关,物体的位移可忽略.故A、C、D正确.【答案】ACD2.(多选)如图111所示,两等大小球在同一轨道槽内发生了碰撞,两小球都是弹性小球,则它们的碰撞属于( )图111A.正碰B.斜碰C.弹性碰撞D.非弹性碰撞【解析】两小球在同一槽内,两球运动的方向在两球的连心线上,是正碰,则选项A正确;两小球都是弹性小球,属于弹性碰撞,故选项C正确.【答案】AC3.钢球A以一定的速度沿光滑水平面向静止于前面的另一相同大小的钢球B运动,下列对两球相互作用过程说法正确的是( )【导学号:552720xx】A.两球相互作用的过程始终没有动能的损失B.钢球A减速运动时,系统动能不变C.两球速度相等的瞬间,系统动能最大D.两球速度相等的瞬间,系统势能最大【解析】两球相互作用过程中由于存在相互作用的弹力,两球均发生形变,有弹性势能,系统动能有损失,两球速度相等瞬间,系统动能损失最大,弹性势能最大,故选项D正确.【答案】D4.下列关于碰撞的理解正确的是 ( )A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B.在碰撞现象中,尽管内力都远大于外力,但外力仍不可以忽略不计C.如果碰撞过程中机械能守恒,这样的碰撞叫做非弹性碰撞D.微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞【解析】碰撞是十分普遍的现象,它是相对运动的物体相遇时发生的一种现象.一般内力都远大于外力.如果碰撞中机械能守恒,就叫做弹性碰撞.微观粒子的相互作用同样具有极短时间内运动状态发生显著变化的特点,所以仍然是碰撞,选项A正确.【答案】A1.弹性碰撞是一种理想化碰撞,现实中的多数碰撞实际上都属于非弹性碰撞.2.当两物体碰撞后不再分开,此时系统动能损失最大,称为完全非弹性碰撞.。
高三物理选修3-5第十六章动量守恒定律第四节碰撞弹性碰撞模型及应用专题专项训练习题集【典题强化】1.光滑水平地面上有两个静止的小物块a和b,a的质量为m,b的质量M可以取不同的数据。
现使a以某一速度向b运动,此后a与b发生弹性碰撞()A.当M=m时,碰撞后b的速度最大B.当M=m时,碰撞后b的动能最大C.当M>m时,若M越小,碰撞后b的速度越小D.当M<m时,若M越小,碰撞后b的速度越大2.如图所示,质量为m2的小球B静止在光滑的水平面上,质量为m1的小球A以速度为v0靠近B,并与B发生弹性碰撞。
当m1和v0一定时,若m2越大。
则()A.碰撞过程中B受到的冲量越小B.碰撞过程中A受到的冲量越大C.碰撞后A的速度越小D.碰撞后A的速度越大3.如图所示,小球A的质量为m A=5kg,动量大小为p A=4kgm/s,小球A水平向右运动与静止的小球B 发生弹性碰撞,碰后A的动量大小为p A′=1kgm/s,方向水平向右,则()=3kgm/sA.碰后小球B的动量大小为pB.碰后小球B的动量大小为p B=5kgm/sC.小球B的质量为15kgD.小球B的质量为3kg4.在光滑水平面上有三个完全相同的小球排成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图所示。
设碰撞过程中不损耗机械能,则碰撞后三个小球的速度是()A.v1=v2=v3=v0/3 B.v1=0,v2=v3=v0/2C.v1=0,v2=v3=v0/3 D.v1=v2=0,v3=v05.如图所示,B、C、D、E、F,5个小球并排放置在光滑的水平面上,B、C、D、E,4个小球质量相等,而F球质量小于B球质量,A球的质量等于F球质量。
A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.5个小球静止,1个小球运动B.4个小球静止,2个小球运动C.3个小球静止,3个小球运动D.6个小球都运动6.如图所示,A、B两球放在光滑的水平面上,水平面的右侧与竖直平面内一光滑曲面相切,现给A一向右的速度,让A与B发生对心弹性碰撞,小球沿曲面上升到最高点后又能再沿曲面滑回到水平面。
1.1物体的碰撞1.如图所示,A 、B 是两个用等长细线悬挂起来的大小可忽略不计的小球,。
B 球静止,拉起A 球,使细线与竖直方向偏角为30°,由静止释放,在最低点A 与B 发生弹性碰撞。
不计空气阻力,则关于碰后两小球的运动,下列说法正确的是A .A 静止,B 向右,且偏角小于30°B .A 向左,B 向右,且偏角等于30°C .A 向左,B 向右,A 偏角大于B 偏角,且都小于30°D .A 向左,B 向右,A 偏角等于B 偏角,且都小于30°2.滑雪运动是人们酷爱的户外体育活动,现有质量为m 的人站立于雪橇上,如图所示.人与雪橇的总质量为M ,人与雪橇以速度v 1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v 2竖直跳起时,雪橇向南的速度大小为( )A .12Mv Mv M m-- B .1Mv M m- C .12Mv Mv M m +- D .v 13.如图所示,有两个质量相同的小球A 和B (大小不计),A 球用细绳吊起,细绳长度等于悬点距地面的高度,B 球静止放于悬点正下方的地面上.现将A 球拉到距地面高度为h 处由静止释放,摆动到最低点与B 球碰撞后粘在一起共同上摆,则它们升起的最大高度为( )A.0.5h B.h C.0.25h D.2h4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( )A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/sB.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/sC.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/sD.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s5.如图所示,在光滑绝缘的水平面上放置两带电的小物块甲和乙,所带电荷量分别为+q1和-q2,质量分别为m1和m2。
人教版高中物理选修3—5知识点总结第十六章动量守恒定律动16.1实验探究碰撞中的不变量碰撞的特点:1、相互作用时间极短。
2.相互作用力极大,即内力远大于外力。
3、速度都发生变化。
一、实验的基本思路1、一维碰撞:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。
2、猜想与假设:一个物体的质量与它的速度的乘积是不是不变量?3、碰撞可能有很多情形。
例如两个物体可能碰后分开,也可能粘在一起不再分开。
二、需要考虑的问题①如何保证碰撞是一维的?即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。
在固定的轨道上做实验——气垫导轨。
②怎样测量物体的质?用天平测量。
③怎样测量两个物体在磁撞前后的速度?速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。
④数据处理:列表。
参考案例一气垫导轨和光电门研究碰撞。
参考案例二利用单摆研究碰撞参考案例三利用打点计时器研究碰撞参考案例四利用平抛运动研究碰撞研究能量损失较小的碰撞时,可以选用参考案例二;研究碰撞后两个物体结合在一起的情况时,可以选用参考案例三。
参考案例四测出小球落点的水平距离可根据平抛运动的规律计算出小球的水平初速度。
实验设计思想巧妙之处在于用长度测量代替速度测量。
16.2动量定理一、动量1、定义:把物体的质量m和速度ʋ的乘积叫做物体的动量p,用公式表示为p = mʋ2、单位:在国际单位制中,动量的单位是千克米每秒,符号是kg•m/s3、动量是矢量:方向由速度方向决定,动量的方向与该时刻速度的方向相同。
4、注意:物体的动量,总是指物体在某一时刻的动量,即具有瞬时性,故在计算时相应的速度应取这一时刻的瞬时速度。
5、动量的变∆p①某段运动过程(或时间间隔)末状态的动量p',跟初状态的动量p的矢量差,称为动量的变化(或动量的增量),即p = p' - p。
4碰撞[目标定位] 1.理解弹性碰撞、非弹性碰撞和完全非弹性碰撞,正碰(对心碰撞)和斜碰(非对心碰撞).2.会应用动量、能量的观点综合分析、解决一维碰撞问题.3.知道散射和中子的发觉过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性.一、弹性碰撞和非弹性碰撞1.弹性碰撞:碰撞过程中机械能守恒.2.非弹性碰撞:碰撞过程中机械能不守恒.3.完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大.二、对心碰撞和非对心碰撞1.正碰:(对心碰撞)两个球发生碰撞,假如碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动.2.斜碰:(非对心碰撞)两个球发生碰撞,假如碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度都会偏离原来两球心的连线而运动.想一想质量相等的两个物体发生正碰时,肯定交换速度吗?答案不肯定.只有质量相等的两个物体发生弹性正碰时,同时满足动量守恒和机械能守恒的状况下,两物体才会交换速度.三、散射1.定义:微观粒子碰撞时,微观粒子相互接近时并不像宏观物体那样“接触”而发生的碰撞.2.散射方向:由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子碰撞后飞向四周八方.一、对碰撞问题的理解1.碰撞(1)碰撞时间格外短,可以忽视不计.(2)碰撞过程中内力往往远大于外力,系统所受外力可以忽视不计,所以系统的动量守恒.2.三种碰撞类型(1)弹性碰撞动量守恒:m1v1+m2v2=m1v1′+m2v2′机械能守恒:12m1v21+12m2v22=12m1v1′2+12m2v2′2当v2=0时,有v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1即v1′=0,v2′=v1推论:质量相等,大小、材料完全相同的弹性小球发生弹性碰撞,碰后交换速度.即v1′=v2,v2′=v1 (2)非弹性碰撞动量守恒:m1v1+m2v2=m1v1′+m2v2′机械能削减,损失的机械能转化为内能|ΔE k|=E k初-E k末=Q(3)完全非弹性碰撞动量守恒:m1v1+m2v2=(m1+m2)v共碰撞中机械能损失最多|ΔE k|=12m1v21+12m2v22-12(m1+m2)v2共例1质量分别为300 g和200 g的两个物体在无摩擦的水平面上相向运动,速度分别为50 cm/s和100 cm/s.(1)假如两物体碰撞并粘合在一起,求它们共同的速度大小;(2)求碰撞后损失的动能;(3)假如碰撞是弹性碰撞,求两物体碰撞后的速度大小.答案(1)0.1 m/s(2)0.135 J(3)0.7 m/s0.8 m/s解析(1)令v1=50 cm/s=0.5 m/s,v2=-100 cm/s=-1 m/s,设两物体碰撞后粘合在一起的共同速度为v,由动量守恒定律得m1v1+m2v2=(m1+m2)v,代入数据解得v=-0.1 m/s,负号表示方向与v1的方向相反.(2)碰撞后两物体损失的动能为ΔE k =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2=[12×0.3×0.52+12×0.2×(-1)2-12×(0.3+0.2)×(-0.1)2] J =0.135 J. (3)假如碰撞是弹性碰撞,设碰后两物体的速度分别为v 1′、v 2′,由动量守恒定律得m 1v 1+m 2v 2=m 1v 1′+m 2v 2′, 由机械能守恒定律得12m 1v 21+12m 2v 22=12m 1v 1′2+ 12m 2v 2′2,代入数据得v 1′=-0.7 m/s ,v 2′=0.8 m/s. 二、弹性正碰模型及拓展应用1.两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.(1)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则碰后v 1′=0,v 2′=v 1,即二者碰后交换速度. (2)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后, v 1′=v 1,v 2′=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.(3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.2.假如两个相互作用的物体,满足动量守恒的条件,且相互作用过程初、末状态的总机械能不变,广义上也可以看成是弹性碰撞.例2 如图16-4-1所示,ABC 为一固定在竖直平面内的光滑轨道,BC 段水平,AB 段与BC 段平滑连接,质量为m 1的小球从高为h 处由静止开头沿轨道下滑,与静止在轨道BC 段上质量为m 2的小球发生碰撞,碰撞后两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失.求碰撞后小球m 2的速度大小v 2.图16-4-1 答案2m 12ghm 1+m 2解析 设m 1碰撞前的速度为v 10,依据机械能守恒定律有m 1gh =12m 1v 210 解得v 10=2gh ①设碰撞后m 1与m 2的速度分别为v 1和v 2,依据动量守恒定律有m 1v 10=m 1v 1+m 2v 2②由于碰撞过程中无机械能损失 12m 1v 210=12m 1v 21+12m 2v 22③ 联立②③式解得v 2=2m 1v 10m 1+m 2④将①代入④得v 2=2m 12ghm 1+m 2借题发挥 对于物理过程较简单的问题,应留意将简单过程分解为若干简洁的过程(或阶段),推断在哪个过程中系统动量守恒,哪一个过程机械能守恒或不守恒,但能量守恒定律却对每一过程都适用. 例3图16-4-2如图16-4-2所示,在光滑水平面上停放质量为m 装有弧形槽的小车.现有一质量也为m 的小球以v 0的水平速度沿切线水平的槽口向小车滑去(不计摩擦),到达某一高度后,小球又返回小车右端,则( )A .小球在小车上到达最高点时的速度大小为v 02B .小球离车后,对地将向右做平抛运动C .小球离车后,对地将做自由落体运动D .此过程中小球对车做的功为12m v 2答案 ACD解析 小球到达最高点时,小车和小球相对静止,且水平方向总动量守恒,小球离开车时类似完全弹性碰撞,两者速度完成互换,故选项A 、C 、D 都是正确的. 三、碰撞需满足的三个条件1.动量守恒,即p 1+p 2=p 1′+p 2′.2.动能不增加,即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2.3.速度要符合情景:碰撞后,原来在前面的物体的速度肯定增大,且原来在前面的物体的速度大于或等于原来在后面的物体的速度,即v 前′≥v 后′,否则碰撞不会结束.。
高中物理选修3-5动量守恒定律碰撞的速度合理性公式如此题:两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1= 4kg ,m 2= 2kg ,A 的速度v 1=3m /s (设为正),B 的速度v 2= -3m/s ,则它们发生正碰后,其速度可能分别是A. 均为+1 m /sB. +4 m /s 和-5m /sC. +2m /s 和- 1m /sD. -1m/s 和+5m /s 答案:AD一般解法:设碰撞后两物体速度分别是v A 和v B ,由动量守恒定律可以得到:m 1v 1+m 2v 2=m 1v A +m 2v B ①分别将v A =1m /s ,v B =1m /s ;v A =4m /s ,v B =-5m /s ;v A =2m /s ,v B =-1m /s ;v A =-1m /s ,v B =5m /s 代入①中;可验证4个选项都满足动量守恒定律,再看动能变化情况: 设碰撞前得动能为E k ,碰撞后的动能为E k ′E k = 12m 1v 12+ 12m 2v 22=27J E k ′=12m 1v A 2+ 12m 2v B 2 由于碰撞过程动能不可能增加,所以应有E k ≥E k ‘,据此可排除选项B ;选项C 虽满足E k ≥E k ‘,但A 、B 沿同一直线相向运动,发生碰撞后各自仍保持原来速度的方向(v A >0,v B <0),这显然是不符合实际的,因此选项C 错误;验证选项A 、D 均满足E k >E k ‘.故正确的选项为A (完全非弹性碰撞)和D (弹性碰撞)。
总结归纳后我们可以发现,被撞物体的速度(记为v 2)总在一个范围,假设被撞物体的起始速度为0,碰撞的物体起始速度为v 0,按照动量守恒定律和动能定理,我们可以求解被撞物体的速度(v 2)⎥⎦⎤⎢⎣⎡++∈0211021122,v m m m v m m m v 前者是分配速度,后者是教材例题的结论。
第1课实验:探究碰撞中的不变量备课堂教学目标:(一)知识与技能1、明确探究碰撞中的不变量的基本思路;2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法;3、掌握实验数据处理的方法。
(二)过程与方法知道实验探究过程。
(三)情感态度与价值观渗透物理学方法的教育,体会科学探究的要素。
重点:探究碰撞中的不变量的基本思路难点:碰撞前后的速度的测量方法教学方法:多媒体展示、实验演示、推理计算教学用具:细线2条、小钢球若干、打点计时器、电源、导线若干、小车2个、橡皮泥、撞针讲法速递(一)引入新课:碰撞是常见的现象,以宏观、微观现象为例,从生产、生活中的现象(包括实验现象)中提出研究的问题----碰撞前后是否有什么物理量保持不变?引导学生从现象出发去发现隐藏在现象背后的自然规律。
板书:第1节实验:探究碰撞中的不变量(二)进行新课: 演示:A 、B 是两个悬挂起来的钢球,质量相等。
使B 球静止,拉起A 球,放开后A 与B 碰撞,观察碰撞前后两球运动的变化。
换为质量相差较多的两个小球,重做以上实验通过演示实验的结果看出,两物体碰后质量虽然没有改变,但运动状态改变的程度与物体质量的大小有关。
让学生通过观察现象猜想碰撞前后可能的“不变量”描述思路:两个物体各自的质量与自己的速度的乘积之和是不是不变量? m 1 v 1 + m 2v 2 = m 1 v 1’ + m 2 v 2’ ?或者,各自的质量与自己的速度的二次方的乘积之和是不变量? m 1 v 12+ m 2v 22= m 1 v 1’2+ m2 v 2’2?也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?22112211m v m v m v m v '+'=+ ?……指明了探究的方向和实验的目的制定计划与设计实验:P4~P5参考案例:给学生一定的设计空间 P3需要考虑的问题: 讨论操作和数据处理中的技术性问题(1)获得一维碰撞的方案①利用气垫导轨实现两滑块发生一维碰撞;②利用等长悬线悬挂等大小球实现两球发生一维碰撞;③利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。
碰撞__________________________________________________________________________________ __________________________________________________________________________________1.理解常见的碰撞模型。
2.学会用动量守恒能量守恒解决相关问题。
1.碰撞(1)碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. (2)在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒; (3)根据碰撞过程中系统总动能的变化情况,可将碰撞分为几类:①弹性碰撞:总动能没有损失或总动能损失很小,可以忽略不计,此碰撞称为弹性碰撞.可使用动量守恒定律和机械能守恒定律帮助计算. 如: 若一个运动的球1m 与一个静止的球2m 碰撞,则 根据动量守恒定律:________________________ 根据机械能守恒定律:______________________ 得到:121112m m v v m m -'=+,121122m v v m m '=+②一般碰撞:碰撞结束后,动能有部分损失.③完全非弹性碰撞:两物体碰后粘合在一起,这种碰撞损失动能最多. (4)判断碰撞过程是否存在的依据 ①动量守恒②机械能不增加(动能不增加):k1k2k1k2E E E E ''++≥或2222121212122222p p p p m m m m ++≥ ③速度要合理:碰前两物体同向,则v v 后前>,并且碰撞后,原来在前的物体速度一定增大,并有v v ''后前≥;两物体相向运动,碰后两物体的运动方向不可能都不改变.(v 后为在后方的物体速度,v 前为在前方的物体速度) (5)常见模型①“速度交换”模型:质量相同的两球发生弹性正碰.若10v v =,20v =,则有1200,v v v ''==. ②“完全非弹性碰撞”模型:两球正碰后粘在一起运动.若10v v =,20v =,则有1012m v v m m =+共,动能损失最大,22k 101211()22E m v m m v ∆=-+共. ③“弹性碰撞”模型:若102,0v v v ==,则有121012m m v v m m -'=+,120122m v v m m '=+.2.反冲(1)指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象. (2)在反冲现象中系统的动量是守恒的.①质量为M 的物体以对地速度v 抛出其本身的一部分,若该部分质量为m ,则剩余部分对地反冲速度为:mv v M m'=-. ②反冲运动中的已知条件常常是物体的相对速度,在应用动量守恒定律时,应将相对速度转换为绝对速度(一般为对地速度). (3)反冲现象中往往伴随有能量的变化.3.爆炸(1)爆炸过程中,内力远远大于外力,动量守恒. (2)在爆炸过程中,有其它形式的能转化为机械能.4. 人船模型(1)移动距离问题分析①若一个原来静止的系统的一部分发生运动,则根据动量守恒定律可知,另一部分将向相反方向运动.11220m v m v -=,则2121m v v m =经过时间的积累,运动的两部分经过了一段距离,同样的,有2121m x x m =. ②当符合动量守恒定律的条件,而仅涉及位移而不涉及速度时,通常可用平均动量求解.解此类题通常要画出反映位移关系的草图.(2)人船模型中,人的位移与船的位移分别为 M l L M m =+船人人船,m l L M m =+人船人船,其中L 是人和船的相对位移.类型一:碰撞后的动量例1.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5 kg ·m/s ,B 球的动量是7 kg ·m/s ,当A 球追上B 球发生碰撞, 则碰撞后A 、B 两球动量的可能值为: ( ) A. p A ′=6 kg ·m/s p B ′=6 kg ·m/s B. p A ′=3 kg ·m/s p B ′=9kg ·m/s C .p A ′=-2 kg ·m/s p B ′=14 kg ·m/s D .p A ′=-5 kg ·m/s p B ′=17kg ·m解析:由于A追上B发生碰撞,所以可知v A >v B 且碰后 v B ′>v B v B ′≥v A,即p B ′>p B ,故可排除选项A。
普通高中课程标准实验教科书—物理(选修3-5)[人教版]第十六章动量守恒定律新课标要求1.内容标准(1)探究物体弹性碰撞的一些特点。
知道弹性碰撞和非弹性碰撞。
(2)通过实验,理解动量和动量守恒定律。
能用动量守恒定律定量分析一维碰撞问题。
知道动量守恒定律的普遍意义。
(3)通过物理学中的守恒定律,体会自然界的和谐与统一。
16.1 实验:探究碰撞中的不变量★新课标要求(一)知识与技能1、明确探究碰撞中的不变量的基本思路.2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法.3、掌握实验数据处理的方法.(二)过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法。
2、学习根据实验数据进行猜测、探究、发现规律的探究方法。
(三)情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。
2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。
3、在对实验数据的猜测过程中,提高学生合作探究能力。
4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。
★教学重点及难点本节教学重点是实验方案的设计与筛选;难点是通过实验数据的分析得出物体碰撞前后的不变量.★教学方法教师启发、引导,学生自主实验,讨论、交流学习成果。
★教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等★课时安排1 课时★教学过程(一)引入新课师:之前,我们分别从动力学的角度、能量的角度研究了物体的运动规律,从今天开始我们将从另一个角度来学习研究物体运动规律的方法,也就是动量。
这节课我们就来学习第十六章第一节实验:探究碰撞中的不变量。
师:提到碰撞现象,不但生活中到处可见,大到宏观天体之间、小到微观粒子之间也同样存在着碰撞。