12.动量矩定理
- 格式:ppt
- 大小:922.00 KB
- 文档页数:43
动量矩定理
动量定理的微分形式定义了粒子系统中第i个粒子到固定点O的动量矩,这是L = ri×mivi(ri是第i个粒子的矢量直径,mivi是第i个粒子的动量),即外力到O点的力矩为M,内力到O点的力矩为M.取上式两边的导数为关于时间,有。
考虑所有粒子的合成效应,这是作用在粒子上的外力和点O的力矩的矢量和。
它是内力到点O的力矩的矢量和。
但是,由于内力具有大小相等,方向相反和共线的特征,
动量矩定理用微分形式表示,它表明质点系统相对于时间的动量矩到某一点O 的导数等于质点系统受到动量矩的矢量和。
外力指向。
如果将两个侧面投影到直角坐标轴上,则存在:粒子系统的动量矩对固定轴的时间导数等于该轴上的力矩由粒子上的外力的代数和。
系统。
积分形式的动量定理的矩重写公式并积分。
如果LL和L分别表示粒子系统在时间t1和t2到达某一点O的动量矩。
Gi是在时间间隔(t2-t1)中作用在质量点i到点O上的外力的脉冲力矩。
它是动量矩定理,以积分形式表示。
它表明,在某个机械过程的时间间隔内,粒子系统到某个点的动量矩的变化等于在相同时间间隔内作用于粒子系统上的所有外力在同一时间点上的动量矩向量和。
对于刚体以角速度ω(惯性矩为Iz)绕固定轴z旋转的情况,可以将其投影到z 轴上,然后:
也就是说,在一定的时间间隔内,刚体对z轴动量矩的变化(Izω)等于在相同时间上作用于刚体对z轴动量矩的所有外力的代数和。
时间间隔。
质点是质点系统的特例,因此动量矩定理也适用于质点。
动量矩定理
动量矩定理是动力学普遍定理之一,它给出质点系的动量与质点系受机械作用的冲量之间的关系。
动量定理有微分形式和积分形式两种。
1)积分形式
设质点系中任一质点的质量为mi,受外力的合力和内力的合力作用,加速度为,沿曲线轨迹运动到Q点时的速度为(见图)。
根据牛顿第二定律,有:
将式(1)向轨迹的切线方向投影,得式
因
,
代入式(2)可得:。
上式可以改写为:
式中为质点i的动能;和分别为质点i上外力和内力的元功。
对于整个质点系则应为:
式中为质点系的总动能。
对式(4)进行积分,可得:
式中T1,为质点系在过程开始时的动能;T2为质点系在过程结束时的动能。
式(5)是以积分形式表示的质点系的动能定理,它表明:质点系的总
动能在某个力学过程中的改变量,等于质点系所受的诸外力和诸内力在此过程中所做功的总和。
2)微分形式
将式(4)两边除以dt,得:
式中为外力的功率;为内力的功率。
式(6)是以微分形式表示的质点系的动能定理,它表明;质点系的总动能随时间的变化率等于质点系所受诸外力和诸内力在单位时间内所作功的总和。
质点是质点系的一个特殊情况,故动能定理也适用于质点。
但是,对于质点和刚体,诸内力所做功的总和等于零,因为前者根本不受内力作用,而后者的内力则成对出现,其大小相等,方向相反,作用在同一直线上,且刚体上任两点的距离保持不变,故其内力作功总和等于零。