11 动量矩定理题解
- 格式:pdf
- 大小:443.55 KB
- 文档页数:14
第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)8. 如图11.23所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+2213ml mr =+,式中m 为AB 杆的质量。
(×) 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×) 10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图11.23二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。
理论力学11章作业题解11-3 已知均质圆盘的质量为m ,半径为R ,在图示位置时对O 1点的动量矩分别为多大?图中O 1C=l 。
解 (a) 21l m l mv L c O w == ,逆时针转动。
(b) w w 2210||1mR J L v m r L c c c O =+=+´=rr ,逆时针转动。
(c ) )2(2221222121l R m ml mR ml J J c O +=+=+=w w )2(222111l R m J L O O +==,逆时针转动。
(d)ww mR R l mv R l R v mR l mv J l mv L v m r L c c c c c c c O )5.0()5.0(/||2211-=-=-=-=+´= r r,顺时针转动解毕。
v cv cv c11-5 均质杆AB 长l 、重为G 1,B 端刚连一重G 2的小球,弹簧系数为k ,使杆在水平位置保持平衡。
设给小球B 一微小初位移0d 后无初速度释放,试求AB 杆的运动规律。
解 以平衡位置(水平)为0=j ,顺时针转为正。
平衡时弹簧受力为:)5.0(312G G F s +=弹簧初始变形量:k G G k F s st /)5.0(3/12+==d在j 角时弹簧的拉力为(小位移):3/)5.0(3)3/(12l k G G l k F st s j j d ++=+=¢系统对A 点的动量矩:j j j&&&221233l gG G l l g G J L A A +=×+= 对点的动量矩定理)(/å=Ei A A F M dt dL r :j j 93/5.033221221kl l F lG lG l g G G s -=¢-+=+&& 0)3(321=++j jG G gk &&,令)3(3212G G gkp +=则有02=+j jp &&,其解为: )cos()sin(pt B pt A +=j由初始条件0| ,/|000====t t l jd j &得l B A / ,00d ==。
第十一章动量矩定理§11-1 引言建立质点或质点系的动量对于某固定点(或固定轴)的矩的变化与作用在该质点或质点系上的力系对同一点(或轴)的主矩之间的关系。
Pr ωε§11-2 动量矩一、质点动量矩Vm r V m M L o o r r r r r ×==)(的动量矩为则质点对固定点的速度为时作空间曲线运动,在瞬的作用下在力的质点设质量为O V t F M m ,r r 方向:右手螺旋法则大小:OAB o S d mV L ∆==2)(1、动量对点之矩V m r L o r r r ×=2、动量对轴之矩)(V m M L z z r =正负:右手规则是标量z L 质点对O 点的动量矩矢在通过O 点的任意轴上的投影,等于质点对该轴的动量矩。
zz O L L =)(r OabS ∆±=2d v m ′′±=)(二、质点系动量矩各质点动量对某点O 的矩的矢量和(即质点系动量对O 点的主矩)称为该质点系对点的动量矩。
n n n o V m r V m r V m r L r r L r r r r r ×++×+×=222111各质点动量对某轴的矩的代数和称为该质点系对该轴的动量矩。
)()()(2211n n z z z z V m M V m M V m M L r L r r +++=∑=)(i i O V m M r r ∑×=i i i V m r r r ∑=)(i i z V m M rV m r L o r r r ×=由§11-3 质点的动量矩定理V m dt r d dt V m d r dt V m r d r r r r r r ×+×=×)()(得:V dt r d r r =∴dt V m r d )(r r ×∴O 点为固定点V m dt r d r r ×∴一、矢量形式0=V m V r r ×=F r r r ×=dt V m d r )(r r ×=oM F)()(F M dt L d F r dt V m r d o o r r r r r r r =×=×或质点的动量对任一固定点的矩对时间的导数等于作用于该质点的力对同一点的矩。
yx第十一章 动量矩定理 习题解[习题11-1] 刚体作平面运动。
已知运动方程为:23t x C =,24t y C =,321t =ϕ,其中长度以m 计,角度以rad 计,时间以s 计。
设刚体质量为kg 10,对于通过质心C 且垂直于图平面的惯性半径m 5.0=ρ,求s t 2=时刚体对坐标原点的动量矩。
解:)(1223|22m x t C =⨯== )(1624|22m y t C =⨯== t t dtddt dx v C Cx6)3(2=== )/(1226|2s m v t Cx =⨯== t t dtddt dy v C Cy8)4(2=== )/(1628|2s m v t Cy =⨯==2323)21(t t dt d dt d ===ϕω )/(6223|22s rad t =⨯==ω→→→+=k v m M J L C Z Cz O )]([ω→→-+=k y mv x mv m L C Cx C Cy O ][2ωρ→=→⨯-⨯+⨯⨯=k L t O ]1612121665.0[10|22→=→=k L t O 15|2 )/(2s m kg ⋅,→k 是z 轴正向的单位向量。
[习题11-2] 半径为R ,重为W 的均质圆盘固结在长l ,重为P 的均质水平直杆AB 的B 端,绕铅垂轴Oz 以角速度ω旋转,求系统对转轴的动量矩。
解:gPl l g P J ABz 33122,=⋅⋅=平动)(a O 转动绕定轴C )(b 转动绕定轴1 )(Oc O 在圆弧上作纯滚动)(d gl R W l g W g J l z 4)4(R W 412222,+=⋅+⋅⋅=圆盘ωω⋅+⋅=圆盘,,z AB z z J J Lω]4)4(3[222g l R W g Pl L z ++=ω)4443(222gWRg Wl g Pl L z ++= ω)4333(222gWR g Wl g Pl L z ++=ω)433(22R gW l g W P L z ++= [习题11-3] 已知均质圆盘质量为m ,半径为R ,当它作图示四种运动时,对固定点1O 的动量矩分别为多大?图中l C O =1。
动量矩定理 习 题例1:单摆将质量为m 的小球用长为l 的线悬挂于水平轴上,使其在重力作用下绕悬挂轴O 在铅直平面内摆动。
线自重不计且不可伸长,摆线由偏角0ϕ时从静止开始释放,求单摆的运动规律。
解:将小球视为质点。
其速度为ϕ&l v =且垂直于摆线。
摆对轴的动量矩为()ϕϕ&&2ml l ml mv m o =⋅= 又 ()o T m o =,则外力对轴O 之矩为()ϕsin mgl F m o -=注意:在计算动量矩与力矩时,符号规定应一致(在本题中规定逆时针转向为正)。
根据动量矩定理,有()ϕϕsin 2mgl ml tx-=&d d即 0sin =+ϕϕl g&& (a)当单摆做微幅摆动时,ϕϕ≈sin ,并令lgn =2ω 则式(a )成为 02=+ϕωϕn && (b )解此微分方程,并将运动初始条件带入,即当t=0时,0ϕϕ=,00=ϕ&,得单摆微幅摆动时的运动方程为tn ωϕϕcos 0=©由此可知,单摆的运动是做简谐振动。
其振动周期为gl T nπωπ22==C例2:双轴传动系统中,传动轴Ⅰ与Ⅱ对各自转轴的转动惯量为1J 与2J ,两齿轮的节圆半径分别为1R 与2R ,齿数分别为1z 与2z ,在轴Ⅰ上作用有主动力矩1M ,在轴Ⅱ上作用有阻力矩2M ,如图所示。
求轴Ⅰ的角加速度。
解:轴Ⅰ与轴Ⅱ的定轴转动微分方程分别为 1111R P M J τε-= (a ) 2222R P M J τε+-= (b)又122112z zR R i ===εε(c )以上三式联立求解,得 221211i J J iM M +-=ε例3:质量为m 半径为R 的均质圆轮置放在倾角为α的斜面上,在重力的作用下由静止开始运动,设轮与斜面间的静、动滑动摩擦系数分别为f 、f ',不计滚动摩阻。
试分析轮的运动。
解:取轮为研究对象,根据平面运动微分方程有F mg ma c -=αsin (a ) N mg +-=αcos 0 (b) FR J c =ε (c) 由式(b )得 αcos mg N = (d) 情况一: 设接触处绝对光滑。