第6章 分子结构和共价键理论
- 格式:ppt
- 大小:1.18 MB
- 文档页数:305
第六章分子结构及性质思考题解析1.根据元素在周期表中的位置,试推测哪些元素原子之间易形成离子键。
哪些元素原子之间易形成共价键?解:周期表中的ⅠA、ⅡA族与ⅥA、ⅦA族元素原子之间由于电负性相差巨大,易形成离子键,而处于周期表中间的主族元素原子之间由于电负性相差不大,易形成共价键。
2.下列说法中哪些是不正确的,并说明理由。
(1)键能越大,键越牢固,分子也越稳定。
(2)共价键的键长等于成键原子共价半径之和。
(3)sp2杂化轨道是有某个原子的1s轨道和2p轨道混合形成的。
(4)中心原子中的几个原子轨道杂化时,必形成数目相同的杂化轨道。
(5)在CCl4、CHCl3和CH2Cl2分子中,碳原子都采用sp3杂化,因此这些分子都是正四面体形。
(6)原子在基态时没有未成对电子,就一定不能形成共价键。
(7)杂化轨道的几何构型决定了分子的几何构型。
解:(1)不正确。
这只能对双原子分子而言。
(2)不正确。
这只能对双原子分子而言。
(3)错。
sp2杂化轨道是由某个原子的n s轨道和两个n p轨道混合形成的。
(4)正确。
(5)错。
CCl4分子呈正四面体,而CHCl3和CH2Cl2分子呈变形四面体。
(6)错。
原子在基态时的成对电子,受激发后有可能拆开参与形成共价键。
(7)错。
如某些分子在成键时发生不等性杂化,则杂化轨道的几何构型与分子的几何构型就不一致。
3.试指出下列分子中哪些含有极性键?Br2CO2H2O H2S CH4解:CO2、H2O、H2S、CH4分子中含有极性键。
4.BF3分子具有平面三角形构型,而NF3分子却是三角锥构型,试用杂化轨道理论进行解释。
解:BF3分子在成键时发生sp2等性杂化,所以呈平面三角形,而NF3分子在成键时发生sp3不等性杂化,所以呈三角锥形。
5.CH4、H2O、NH3分子中键角最大的是哪个分子?键角最小的是哪个分子?为什么?解:CH4分子的键角最大,H2O分子的键角最小。
CH4分子呈正四面体形,键角为109°28′。
第六讲 共价键理论一、经典共价键理论− Lewis Structure (八电子规则)1916年,美国化学家路易斯(G.N.Lewis )提出:分子中每个原子应具有稳定的稀有气体原子的电子层结构。
这种稳定结构通过原子间共用一对或若干对电子来实现。
这种分子中原子间通过共用电子对结合而成的化学键称为共价键。
1.基本思想:当n s 、n p 原子轨道充满电子,成为八电子构型,该电子构型稳定,所以在共价分子中,每个原子都希望成为八电子构型(H 原子为2电子构型)。
2.共价分子中成键数和孤电子对数的计算:计算步骤:a .令n o − 共价分子中,所有原子形成八电子构型(H 为2电子构型)所需要的电子总数b .令n v − 共价分子中,所有原子的价电子数总和阴离子的价电子总数:各原子的价电子数之和加负电荷数 阳离子的价电子总数:各原子的价电子数之和减正电荷数 c .令n s − 共价分子中,所有原子之间共用电子总数n s = n o - n v ,n s /2 = (n o - n v ) / 2 = 成键电子对数(成键数) d .令n l − 共价分子中,存在的孤电子数。
(或称未成键电子数) n l = n v - n s ,n l /2 = (n v - n s )/2 = 孤对电子对数例如:P 4S 3、HN 3、N +5、H 2CN 2(重氮甲烷)、NO -33.Lewis 结构式的书写 例如:P 4S 3HN 3HN N N H N N HNNNN 5+,,,NN N NN N N N N N N N NNN N N NCH 2N 2(重氮甲烷) ,HCHNN HCH NN(有时,孤对电子省略不写。
)练习:下列各Lewis 结构式中,能正确表示出NO 3-离子的Lewis 结构式是A. N O OOB. NO OOC. NO O OD. NO OO当Lewis 结构式不只一种形式时,如何来判断这些Lewis 结构式的稳定性呢?4.Lewis 结构式稳定性的判据 −− 形式电荷Q F (1) Q F 的由来: 以CO 为例n o = 2 ⨯ 8 = 16 n v = 4 + 6 =10 n s / 2 = (16 - 10) / 2 = 3 n l / 2 = (10 - 6) / 2 = 2为了形成三对平等的共价键,可以看作O 原子上的一个价电子转移给C 原子,即:,所以氧原子的Q F 为+1,碳原子的Q F 为-1。
高中杂化轨道理论(图解)一、原子轨道角度分布图二、共价键理论和分子结构价键法(VB法)价键理论一:1、要点:⑴、共价键的形成条件:①、先决条件:原子具有未成对电子;②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对,服从保里不相容原理。
⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通过共用自旋相反的电子使能量降低而成键。
⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。
②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值方向重叠,即共价键具有一定的方向性。
⑷、共价键的类型:单键、双键和叁键。
①、σ键和π键。
ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。
σ键形成的方式:ⅱ、π键:两个p 轨道彼此平行地重叠起来,轨道的对称面是通过键轴的平面,这个对称面就叫节面,这样的轨道称为π轨道,生成的键称为π键(π相当于英文的p ,是平行parallel[`p ?r ?lel]的第一个字母)。
π键的形成过程:,σ键和π键的比较 σ键(共价键中都存在σ键) π键 (只存在不饱和共价键中)重叠方式 (成建方向)沿两电子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠程度重叠程度较大 重叠程度较小 电子云形状共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部分)呈镜像对称 牢固程度强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活泼性不活泼,比π键稳定 活泼,易发生化学反应健 型项 目类型s-s、s-p、、p-p、s-SP杂化轨道、s-SP2杂化轨道、s-SP3杂化轨道、杂化轨道间p-pπ键,、p-p大π键是否能旋转可绕键轴旋转不可旋转,存在的规律共价单键是σ键,共价双键有一个σ键,有一个π键;共价叁键有一个σ键,有两个π键。
第六章分子的结构与性质思考题1.根据元素在周期表中的位置,试推测哪些元素之间易形成离子键,哪些元素之间易形成共价键。
答:ⅠA、ⅡA族与ⅥA、ⅦA元素之间由于电负性相差较大,易形成离子键,而处于周期表中部的主族元素原子之间由于电负性相差不大,易形成共价键。
2.下列说法中哪些是不正确的,并说明理由。
(1)键能越大,键越牢固,分子也越稳定。
不一定,对双原子分子是正确的。
(2)共价键的键长等于成键原子共价半径之和。
不一定,对双原子分子是正确的。
(3)sp2杂化轨道是由某个原子的1s轨道和2p轨道混合形成的。
×由一个ns轨道和两个np轨道杂化而成。
(4)中心原子中的几个原子轨道杂化时,必形成数目相同的杂化轨道。
√(5)在CCl4、CHCl3和CH2Cl2分子中,碳原子都采用sp2杂化,因此这些分子都呈四面体形。
×sp3,CCl4呈正四面体形;CHCl2和CH2Cl2呈变形四面体形。
(6)原子在基态时没有未成对电子,就一定不能形成共价键。
×成对的电子可以被激发成单电子而参与成键。
(7)杂化轨道的几何构型决定了分子的几何构型。
×不等性的杂化轨道的几何构型与分子的几何构型不一致。
3.试指出下列分子中那些含有极性键?Br2CO2H2O H2S CH44.BF3分子具有平面三角形构型,而NF3分子却是三角锥构型,试用杂化轨道理论加以解释。
BF3中的B原子采取SP2杂化,NF3分子的N原子采取不等性的SP3杂化。
5.CH4,H2O,NH3分子中键角最大的是哪个分子? 键角最小的是哪个分子? 为什么?CH4键角最大(109028,),C采取等性的SP3杂化,NH3(107018,), H2O分子中的N、O采用不等性的SP3杂化,H2O分子中的O原子具有2对孤电子对,其键角最小(104045,)。
6.解释下列各组物质分子中键角的变化(括号内为键角数值)。
(1) PF3(97.8°),PCl3(100.3°),PBr3(101.5°)中心原子相同,配体原子F、Cl、Br的电负性逐渐减小,键电子对的斥力逐渐增加,所以键角逐渐增加(2) H2O(104°45'),H2S(92°16'),H2Se(91°)配位原子相同,中心原子的电负性逐渐减小,键电子对的斥力逐渐减小,所以键角逐渐减小7.试用分子轨道法写出下列分子或粒子的分子轨道表示式,并指出其中有哪几种键?是顺磁性、还是反磁性的物质?O 2 O 22- N 2 N 22-O 2和N 2见教材,O 22-和N 22-的分子轨道分别为: O 22-()()()()()()()()()222222222112222222x y z y z s s s s p p p p p σσσσσππππ****⎡⎤⎢⎥⎣⎦具有1个双电子的σ键,是反磁性物质。
分子结构和共价键理论分子结构是指分子中原子之间的几何排列和相对位置。
分子结构的确定对于理解分子的性质和反应机制至关重要。
根据分子结构的不同,分子可以分为线性、平面三角形、正四面体、平面四边形、平面五边形、八面体等各种类型。
而共价键是指通过共用电子对来连接原子的一种化学键。
共价键的形成是原子间电子的重叠和共享,通过共享电子形成的共价键的强度与原子间的距离和电子云的重叠程度有关。
根据电子对的数量和形式,共价键又可分为单键、双键、三键等不同类型。
共价键理论是用来解释共价键形成和分子结构的理论体系。
共价键理论最初由路易斯在1916年提出,由于其简单和直观的描述方式,被广泛接受和应用。
根据共价键理论,原子通过共享电子对来完成对外层电子的填充,以达到稳定的电子结构。
共价键的形成遵循八个原则,即凯库勒原则,也被称为共价键的“八个原则”。
凯库勒原则的具体内容有:1.原子通过共享电子对来完成稳定的电子结构。
2.原子中的电子仅能拥有共价键所需的电子对数。
3.每个电子对对应一个共价键。
4.共价键通常与共价键的长度成正比,共价键越长,键能越小。
5.共价键的长度与原子半径和离子半径有关。
6.共价键的强度与键能成正比,共价键越紧密,键能越大。
7.共价键的强度与电子云的重叠程度有关,重叠程度越大,共价键越强。
8.共价键的强度与原子质量有关。
根据共价键理论,可以解释分子的稳定性、电荷分布、偶极矩和分子极性等性质。
分子的稳定性与共价键的强度和长度有关,共价键越紧密、越短,分子越稳定。
分子的电荷分布与原子间电子的共享程度有关,共价键的形成使得电子密度在分子中产生偏移,形成电荷云的分布。
分子的偶极矩和分子极性与分子中原子的电负性差有关,原子对电子的吸引能力差异越大,分子的偶极矩越大。
除了凯库勒原则,还有一些额外的因素可以影响共价键的形成和分子结构的稳定性,如共振、键角张力和立体位阻等。
共振是指分子中的双键或三键的位置可以在不同原子之间变化,形成多个共振结构,增加了分子的稳定性。