等效重力场法(静电场)
- 格式:pptx
- 大小:127.38 KB
- 文档页数:8
等效重力场法运用等效重力场法是一种在地球物理勘探中常用的方法,用于计算地下物质分布的重力效应。
它基于物体具有引力场的基本原理,通过对地下物质分布进行建模和计算,推断出地下结构的性质。
本文将对等效重力场法的原理、应用以及优缺点进行详细介绍。
等效重力场法的原理是利用地下物质分布对地球重力场的影响进行计算。
地球的引力场是由地球质量分布所产生的,地下物质的分布会导致地球引力场的微小变化。
等效重力场法通过观测地球引力场的变化来推断地下物质分布的特征。
在等效重力场法中,首先需要进行重力测量。
重力测量是利用重力仪器对地球引力进行测量的过程,通过测量不同地点的重力值,可以得到不同地点的地球引力场强度。
然后,将重力数据进行处理和分析,得到地下物质分布的等效重力场。
等效重力场法的应用十分广泛。
首先,它可以用于勘探矿产资源。
由于不同地质构造对地球引力场的影响不同,因此可以通过等效重力场法来判断地下是否存在矿产资源。
其次,等效重力场法还可以用于勘探地下水源。
由于地下水具有一定的质量和分布特征,因此通过等效重力场法可以推断地下水的分布情况。
此外,在地质灾害预测和地下工程勘探中,等效重力场法也能够提供有用的信息。
然而,等效重力场法也存在一些局限性。
首先,等效重力场法只能提供地下物质分布的整体特征,对于细节信息的提供较为有限。
其次,等效重力场法需要进行大量的数据处理和分析工作,且结果的解释和判断需要结合其他地球物理勘探方法来进行综合分析。
最后,等效重力场法对观测仪器的精度要求较高,误差的累积可能会影响结果的准确性。
综上所述,等效重力场法是一种重要的地球物理勘探方法,通过观测地球重力场的变化来推断地下物质分布的特征。
它在矿产勘探、地下水资源勘探以及地质灾害预测等领域具有广泛的应用。
然而,等效重力场法也存在一些局限性,需要注意其数据处理和分析的准确性,以及与其他地球物理勘探方法的综合应用。
在未来的研究中,可以进一步改进等效重力场法的理论和技术,提高其精度和可靠性,以更好地应用于实际勘探工作中。
用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。
等效重力场
等效重力场就是把一个和重力场同一方向的匀强场等效为重力场。
如一个匀强电场方向竖直向下,那物体受到的力就是电场力加上重力,相当于1+1=2,本质相同都是力,而且两个场所提供的力方向相同,所以可以等效。
在重力场中竖直平面问题绳拉物体在竖直平面内做圆周运动规律,最高点、最低点平衡位置、临界最高点:重力提供向心力,速度最小。
带电物体在匀强电场中且考虑重力时提出的一个等效概念,在匀强电场中,电场力恒定,物体重力也恒定,因此合力恒定。
2024版新课标高中物理模型与方法“等效重力场”模型目录一.“等效重力场”模型解法综述二.“等效重力场”中的直线运动模型三.“等效重力场”中的抛体类运动模型四.“等效重力场”中的单摆类模型五.“等效重力场”中的圆周运动类模型一.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二.“等效重力场”中的直线运动模型【运动模型】如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30° ①S AB=12g t2 ②由①②两式解得t=3L g“等效重力场”的直线运动的几种常见情况匀速直线运动匀加速直线运动匀减速直线运动1如图所示,相距为d的平行板A和B之间有电场强度为E、方向竖直向下的匀强电场.电场中C点距B板的距离为0.3d,D点距A板的距离为0.2d,有一个质量为m的带电微粒沿图中虚线所示的直线从C点运动至D点,若重力加速度为g,则下列说法正确的是()A.该微粒在D点时的电势能比在C点时的大B.该微粒做匀变速直线运动C.在此过程中电场力对微粒做的功为0.5mgdD.该微粒带正电,所带电荷量大小为q=mg E【答案】 C【解析】 由题知,微粒沿直线运动,可知重力和电场力二力平衡,微粒做匀速直线运动,微粒带负电,B、D 错误;微粒从C点运动至D点,电场力做正功,电势能减小,A错误;此过程中电场力对微粒做的功为W= Fx=mg(d-0.3d-0.2d)=0.5mgd,C正确.2(2023·全国·高三专题练习)AB、CD两块正对的平行金属板与水平面成30°角固定,竖直截面如图所示。
运用等效法巧解带电粒子在匀强电场中的运动一、等效法将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。
中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)概念的全面类比? 为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下: ? 等效重力场重力场、电场叠加而成的复合场 等效重力重力、电场力的合力 ? 等效重力加速度等效重力与物体质量的比值 ? 等效“最低点”物体自由时能处于稳定平衡状态的位置 ? 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 ? 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、题型归类(1)单摆类问题(振动的对称性)例1、如图2-1所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。
求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动,对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。
等效分析:对小球在B 点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将其称为等效重力可得:αcos mgg m =',小球就做只受“重力”mg ′与绳拉力运动,可等效为单摆运动。
规律应用:如图2-3所示,根据单摆对称运动规律可得,B 点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,当悬线与竖直线的夹角满足αβ2=,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。
在解答质量不可忽略的带电物体在匀强电场中运动、能量问题时,我们常采用的方法是:把物体的运动分解成沿重力和电场力方向的两个分运动,然后根据要求解答有关的问题。
用该种方法处理一些电场问题时,显的烦琐。
根据匀强电场和重力场的等效性,如果把重力场和匀强电场两场的问题转化为一个场的问题——建立“等效重力场”来处理该类有些题目,就会显得简洁,而且便于理解。
一.“等效重力场”建立方法1.当一个质量为m 、带电量为q 的物体同时处在重力场和场强为E 的匀强电场中,可将两场叠加为一个等效的重力场。
等效重力场的“重力加速度”可表示为mEq g g,g 的方向与重力g m 和电场力E q 合力的方向一致;若合力的方向与重力g m方向夹角为,则g 也可表示为cos g g。
2.概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下: ○1 等效重力场重力场、电场叠加而成的复合场 ○2 等效重力重力、电场力的合力○3 等效重力加速度等效重力与物体质量的比值○4 等效“最低点”物体自由时能处于稳定平衡状态的位置○5 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 ○6 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二.解题应用 1.解直线运动例1 如图1所示,在离坡顶为l 的山坡上的C 点树直固定一根直杆,杆高也是L 。
杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q 、质量为m 的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角 30 。
若物体从A 点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间。
(2/10s m g ,60.037sin ,80.037cos )解析 因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存 在,即带电小球受到的重力和电场力的合力方向沿绳的方向。
等效重力场法专题训练课前知识回顾1、长为R 的细绳一端固定,另一端栓一质量为m 的小球,小球将在 (位置)静止。
2、圆周运动中的绳模型:用长为R 的细线栓一质量为m 小球,刚好能在竖直平面内做圆周运动,小球运动过程中在 有最小速度,在 (位置)绳有最大拉力,求小球运动过程中的最小速度和绳的最大拉力(重力加速度为g )。
一、知识拓展例1.如果在场强为E 方向竖直向下的匀强电场中,用长为R 的细线栓一质量为m 小球,而且小球带正电,电量大小为q速度和绳的最大拉力。
变式练习1、 如果上题中小球带负电,电量大小仍为q ,且有mg>Eq ,则小球运动过程中的最小速度和绳的最大拉力?讨论:(1)若mg<Eq 呢?(2)若mg=Eq 呢?2、 如果将例1中电场方向改为水平向右,则小球运动过程中的最小速度和绳的最大拉力?等效重力场方法总结:概念的全面类比:(1)等效重力场 :重力场、匀强电场叠加而成的复合场(2)等效重力G , :重力、电场力的(3)等效重力加速度g ,:等效重力与物体质量的(4)等效“最低点”: 物体自由时能处于稳定 状态的位置(5)等效“最高点”: 物体圆周运动时与等效“最低点”关于圆心对称的位置二、知识迁移:例2.(单摆类)如图所示,一条长为L 的细线,上端固定,下端栓一质量为m 的带电小球,将它置于一匀强电场中,电场强度大小为E ,方向水平小向右。
已知当细线离开竖直位置的偏角为α时,小球处于平衡。
求:(1)小球带何种电荷? 小球的电量?(2)如果使细线与竖直方向的偏角由α增大到θ,然后将小球由静止释放,则θ为多大时,可使小球到达竖直位置时速度刚好为零?变式练习:若将例2中电场E 突然反向,求细线偏离竖直方向的最大偏角?(α小于三、知识再迁移例3、(直线类)如图所示,在离坡底为L 的山坡上的C 点竖直固定一根直杆,杆高也是L 。
杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q、质量为m 的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角为θ=30o .若物体从A 点由例4、(抛体类)如图1所示,倾角α=37°的光滑绝缘斜面处于水平向右的匀强电场中,电场强度E= 10 3 N/C ,有一个质量为m =3×10-3 kg 的带电小球,以速度v =1 m/s 沿斜面匀速下滑,求:(1)小球带何种电荷?电荷量为多少?(2)若在小球匀速下滑的某一时刻突然撤去斜面,此后经 t = 0.2 s 小球的位移是多大?(g 取 10 m/s 2 )四、巩固练习1、光滑绝缘的圆形轨道竖直放置,半径为R,在其最低点A处放一质量为m的带电小球,整个空间存在匀强电场,小球受到的的电场力大小为√3mg/3,方向水平向右,现给小球一个水平向右的初速度v 0 ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求v 0大小.2、如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度为l=0.20m的绝缘轻线把质量为m=0.10kg、带有正电荷的金属小球悬挂在O点,小球静止在B点时轻线与竖直方向的夹角为θ=37°。
运用等效法巧解带电粒子在匀强电场中的运动一、等效法将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。
中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下: 等效重力场重力场、电场叠加而成的复合场 等效重力重力、电场力的合力 等效重力加速度等效重力与物体质量的比值 等效“最低点”物体自由时能处于稳定平衡状态的位置 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、题型归类(1)单摆类问题(振动的对称性)例1、如图2-1所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。
求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动,对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。
等效分析:对小球在B 点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将 其称为等效重力可得:αcos mgg m =',小球就做只受“重力”mg ′与绳拉力运动,可等效为单摆运动。
规律应用:如图2-3所示,根据单摆对称运动规律可得,B 点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,当悬线与竖直线的夹角满足αβ2=,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。