2.1_元素地球化学分类
- 格式:ppt
- 大小:1.91 MB
- 文档页数:18
云南广南南瓜地土壤地球化学特征及找矿远景肖述刚;李国清;张明文;何灿【摘要】南瓜地土壤地球化学异常以As、Sb、Au、Ag为主,圈定Ⅰ类异常(Au、Sb、As)一个,Ⅱ类金异常2个.异常中心明显,浓度高,连续性好,沿闪长岩岩体及接触带分布.而线性构造与矿点叠合处即是找矿远景区.【期刊名称】《云南地质》【年(卷),期】2013(032)003【总页数】3页(P328-330)【关键词】热液型矿床;燕山期地下热水;构造交汇处;岩体边缘接触带;广南南瓜地区【作者】肖述刚;李国清;张明文;何灿【作者单位】云南省有色地质局三○八队,云南个旧661000;云南省有色地质局三○八队,云南个旧661000;云南省有色地质局三○八队,云南个旧661000;云南省有色地质局三○八队,云南个旧661000【正文语种】中文【中图分类】P596南瓜地区位于云南文山壮族苗族自治州广南县南东部,大地构造位置为华南褶皱系滇东南褶皱带文山弧形构造带北东翼,富宁NW向大断裂与广南东西向隐伏基底深断裂交汇的复合部位。
该区锑矿资源丰富,多金属矿床(点)较多。
1∶ 2.5万土壤地球化学特征研究,综合分析区域地球化学背景和成矿元素特征,以期为区域地质调查和勘查找矿提供科学依据。
区内从下至上出露中寒武统龙哈组白云岩、白云质灰岩,上寒武统歇场组灰岩、白云岩,唐家坝组灰岩、泥质粉砂岩,博菜田组白云质灰岩、泥灰岩;下泥盆统坡脚组页岩、灰岩,中泥盆系统坡折落组硅质岩,东岗岭组白云岩、灰岩;上泥盆统五指山组与榴江组页岩、细砂岩、燧石岩;第四系粘土及腐植层。
其中,歇场组是金矿主要产出层位。
南瓜地区处于小普弄弧形断裂与次一级NW向断裂、NE向断裂的闭合区,发育3条NW向主干断裂及2条NE向次级断裂,多呈缓波状。
断裂破碎带宽2m~5m 不等,沿断裂常见岩石破碎、挤压现象、岩层揉皱和角砾岩,硅化、方解石化强烈。
岩浆岩主要为闪长岩脉,走向290°~315°,倾向南西,倾角30°~60°,与小普弄断裂大致平行,围岩蚀变有硅化、褐铁矿化、绢云母化、方解石化、绿泥石化、泥化、褪色蚀变,与金矿有关。
地球地壳中的化学元素丰度
地球地壳是地球外围的一层固体岩石壳,由多种化学元素组成。
地球
地壳的平均厚度约为35千米,它所包含的化学元素丰度是研究地球构造
和地球化学的重要内容之一、以下将介绍地球地壳中常见的化学元素丰度
及其分布情况。
第一类元素是构成地壳主要的元素,包括氧、硅、铝、铁、钙、钠和钾。
其中,氧是地壳中最丰富的元素,约占地壳质量的46.6%。
硅元素紧
随其后,占地壳质量的27.7%。
铝元素占地壳质量的8.1%,铁元素占
2.6%,钙、钠和钾元素占2.2%、2.6%和2.4%。
第二类元素是地壳中存在量较小但仍然较为重要的元素,包括镁、钛、锰、镍、铅等。
镁元素的丰度约为2.1%,钛元素约为0.61%,锰元素约为0.09%,镍元素约为0.007%,铅元素约为0.0013%。
此外,还存在一些地壳中丰度较低的元素,如镧系元素、稀土元素等。
这些元素丰度较低,但在地质学和地球化学的研究中也具有重要意义。
地球地壳中元素的丰度分布呈现地域差异。
一般来说,地壳中的元素
丰度与地壳的成因有关。
例如,在火山带和地壳运动活跃的地区,地壳中铁、镁等含量较高。
而在海岸线附近,地壳中的氯、钠等含量较高。
此外,地壳中元素的丰度还受到地质作用的影响。
例如,地壳中的铜、银、金等
贵金属元素往往富集于矿床中。
总之,地球地壳中的化学元素丰度是地球科学研究的重要内容之一、
通过对地壳中化学元素丰度的分析,可以了解地球地壳的构成和演化过程,为地质学、地球化学等相关学科的发展提供重要的数据支持。
武理化学知识点总结武理化学是地球化学中的一个重要领域,它研究的是地球中物质的组成、性质和变化规律。
在这个领域中,有许多重要的知识点,包括地球化学元素、地球化学物质循环、地球化学地球历史和地球化学分析方法等。
下面我们来对这些知识点进行总结。
1. 地球化学元素地球化学元素是构成地球的基本物质,它们包括地壳元素、地幔元素和核心元素。
地壳元素主要分布在地壳中,包括氧、硅、铝、铁、钙等元素;地幔元素主要分布在地幔中,包括镁、铁、硅、铝等元素;核心元素主要分布在地球核心中,包括铁、镍等元素。
地球化学元素的分布和演化对地球的结构和性质有重要影响。
2. 地球化学物质循环地球化学物质循环是指地球中物质的流动和演化过程,它包括了岩石圈、大气圈、水圈和生物圈。
岩石圈是地球上岩石的层,它对地球和其他圈层起着重要作用;大气圈是地球上大气层,它对地球气候和环境起着重要作用;水圈是地球上水的层,它对地球生态环境和人类生活起着重要作用;生物圈是地球上生物的层,它对地球生态环境和生物多样性起着重要作用。
地球化学物质循环对地球和生物圈的演化和变化有重要影响。
3. 地球化学地球历史地球化学地球历史是指地球历史演化的地球化学过程,它包括地球演化、生命起源和生态演化等过程。
地球演化是指地球形成和演化的过程,它包括地球的起源和地球的结构演化;生命起源是指生物的起源和演化过程,它包括生命的起源和生物的演化;生态演化是指生物和环境的演化过程,它包括生态环境的变化和生物多样性的演化。
地球化学地球历史对地球演化和生态环境的演化有重要影响。
4. 地球化学分析方法地球化学分析方法是研究地球中物质组成和性质的分析方法,它包括了化学分析、物理分析和仪器分析等方法。
化学分析是通过化学反应和化学性质来分析物质的组成和性质;物理分析是通过物理性质和物理过程来分析物质的组成和性质;仪器分析是通过仪器和设备来分析物质的组成和性质。
地球化学分析方法对地球化学研究和应用有重要意义。
化探10元素-概述说明以及解释1.引言化探10元素是指在地球化学勘探中具有重要意义的十种元素,包括钍、铀、镝、钕、铈、钷、镧、镨、钕和铥。
这些元素在地球上广泛分布,具有独特的性质和应用价值。
本文将对这些元素的特性、用途以及它们在地质勘探中的重要性进行深入探讨,以期为读者展示化探10元素的重要性和潜在价值。
编写文章1.1 概述部分的内容1.2 文章结构文章结构部分应该包括对整篇文章的框架和主要内容进行概述,提供读者一个整体的导向。
在这里,可以简要介绍本文的结构安排,指出每个部分所涉及的内容和重点,让读者对接下来要讨论的话题有一个清晰的预期。
内容示例:在文章结构部分,我们将依次介绍化探10元素的概述、性质和应用以及在地质勘探中的重要性。
首先,我们会从化探10元素的基本概念和分类入手,介绍这些元素的特点和作用。
然后,我们将深入探讨这些元素在实际应用中的价值和影响,包括其在环境保护、工业生产和科学研究中的应用情况。
最后,我们将探讨化探10元素在地质勘探中的作用和重要性,以及其对资源勘探、矿物探测和地质灾害监测方面的贡献。
通过对这些内容的全面讨论,我们希望读者能够更好地了解化探10元素的真正价值和未来发展趋势。
1.3 目的本文旨在探讨化探10元素在地质勘探领域中的重要性和应用。
通过对10元素的简介、性质和应用进行深入分析,希望能够全面了解这些元素在地质勘探中的价值和作用。
同时,通过对10元素在地质勘探中的实际案例进行研究和总结,探讨其在未来的应用前景。
最终旨在为地质勘探工作者提供有益的参考和启示,促进地质勘探技术的发展和应用。
2.正文2.1 化探10元素简介化探10元素是指在矿产勘查和地质勘探中具有重要作用的10种元素,它们是铅(Pb)、锌(Zn)、铜(Cu)、镍(Ni)、锡(Sn)、铼(Re)、钨(W)、钼(Mo)、银(Ag)和金(Au)。
这些元素通常在地质构造和矿床成因中起着重要作用,它们的存在形式和分布特征对于判断矿床类型、勘探方向和储量规模具有重要的指导意义。
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。