新人教版八年级数学下册28.1 第4课时 用计算器求锐角三角函数值及锐角(导学案)
- 格式:doc
- 大小:983.57 KB
- 文档页数:2
28.1锐角三角函数第4课时用计算器求锐角三角函数值及锐角【教学目标】1.初步掌握用计算器求三角函数值的方法;(重点)2.熟练运用计算器求三角函数值解决实际问题.(难点)【教学过程】一、情境导入教师讲解:通过上面几节课的学习我们知道,当锐角∠A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角∠A 不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.二、合作探究探究点一:用计算器求锐角三角函数值及锐角【类型一】已知角度,用计算器求函数值用计算器求下列各式的值(精确到0.0001):(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)sin18°+cos55°-tan59°.解析:熟练使用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解:根据题意用计算器求出:(1)sin47°≈0.7314;(2)sin12°30′≈0.2164;(3)cos25°18′≈0.9041;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题的关键是熟练使用计算器,使用计算器时要注意按键顺序.【类型二】已知三角函数值,用计算器求锐角的度数已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1)sin A=0.7,sin B=0.01;(2)cos A=0.15,cos B=0.8;(3)tan A=2.4,tan B=0.5.解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.解:(1)sin A=0.7,得∠A≈44.4°;sin B=0.01得∠B≈0.6°;(2)cos A=0.15,得∠A≈81.4°;cos B=0.8,得∠B≈36.9°;(3)由tan A=2.4,得∠A≈67.4°;由tan B=0.5,得∠B≈26.6°.方法总结:解决此类问题的关键是熟练使用计算器,在使用计算器时要注意按键顺序.【类型三】利用计算器验证结论(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:已知0°<α<45°,则sin2α________2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证结论.解析:(1)利用计算器分别计算①至⑤各式中左边与右边,比较大小;(2)通过计算△ABC的面积来验证.解:(1)通过计算可知:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°;sin2α=2sinαcosα.(2)∵S△ABC=12AB·sin2α·AC=12sin2α,S△ABC=12×2AB sinα·AC cosα=sinα·cosα,∴sin2α=2sinαcosα.方法总结:本题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.【类型四】用计算器比较三角函数值的大小用计算器比较大小:20sin87°________tan87°.解析:20sin87°≈20×0.9986=19.974,tan87°≈19.081,∵19.974>19.081,∴20sin87°>tan87°.方法总结:利用计算器求值时,要注意计算器的按键顺序.探究点二:用计算器求三角函数值解决实际问题如图,从A地到B地的公路需经过C地,图中AC=20km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?解析:(1)作CH⊥AB于H.在Rt△ACH中根据CH=AC·sin∠CAB求出CH的长,由AH=AC·cos∠CAB求出AH的长,同理可求出BH的长,根据AB=AH+BH可求得AB的长;(2)在Rt△BCH中,由BC=CHsin∠CBA可求出BC的长,由AC+BC-AB即可得出结论.解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈20×0.42=8.4km,AH=AC·cos∠CAB=AC·cos25°≈20×0.91=18.2km.在Rt△BCH中,BH=CHtan∠CBA≈8.4tan37°=11.1km,∴AB=AH+BH=18.2+11.1=29.3km.故改直的公路AB的长为29.3km;(2)在Rt△BCH中,BC=CHsin∠CBA=CHsin37°≈8.40.6=14km,则AC+BC-AB=20+14-29.3=4.7km.答:公路改直后比原来缩短了4.7km.方法总结:根据题意作出辅助线,构造出直角三角形是解答此类问题的关键.三、板书设计1.已知角度,用计算器求函数值;2.已知三角函数值,用计算器求锐角的度数;3.用计算器求三角函数值解决实际问题.【教学反思】备课时尽可能站在学生的角度思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.28.1锐角三角函数第4课时用计算器求锐角三角函数值及锐角【学习目标】让学生熟识计算器一些功能键的使用【学习重点】运用计算器处理三角函数中的值或角的问题【学习难点】知道值求角的处理【导学过程】求下列各式的值.(1)sin30°·cos45°+cos60°; (2)2sin60°-2cos30°·sin45°(3); (4)-sin60°(1-sin30°). (5)tan45°·sin60°-4sin30°·cos45°·tan30°(6)+cos45°·cos30°合作交流:学生去完成课本68页 练习1、2题学生展示:用计算器求锐角的正弦、余弦、正切值学生去完成课本69页的第4、5题 .自我反思:本节课我的收获: 。
28.1锐角三角函数
第4课时用计算器求锐角三角函数值及锐角
【学习目标】
让学生熟识计算器一些功能键的使用
【学习重点】
运用计算器处理三角函数中的值或角的问题
【学习难点】
知道值求角的处理
【导学过程】
求下列各式的值.
(1)sin30°·cos45°+cos60°; (2)2sin60°-2cos30°·sin45°
(3)
2cos60
2sin302
︒
︒-
; (4)
sin45cos30
32cos60
︒+︒
-︒
-sin60°(1-sin30°).
(5)tan45°·sin60°-4sin30°·cos45°tan30°
(6)
sin45
tan30tan60
︒
︒-︒
+cos45°·cos30°
合作交流:
学生去完成课本68页练习1、2题
学生展示:
用计算器求锐角的正弦、余弦、正切值
学生去完成课本69页的第4、5题 .
自我反思:
本节课我的收获: 。
(赠品,不喜欢可以删除)
数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
它要是给你讲起道理来,那可满满的都是人生啊。
1.人生的痛苦在于追求错误的东西。
所谓追求错误的东西,就是你在无限趋近于它的时候,便无限远离了原点,却永远无法和它产生交点。
2.人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在无理的隔阂。
3.人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。
但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4.零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
5.有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。
至于那些在你能力范围之外的事情,就随他去吧。
6.幸福是可积的,有限的间断点并不影响它的积累。
所以,乐观地面对人生吧!。