专题1.1 年全国1卷理科第16题-刷百题不如解透一题之高考真题数学小题大做
- 格式:doc
- 大小:892.00 KB
- 文档页数:14
绝密★启用前2021 年一般高等学校招生全国一致考试( 全国卷Ⅰ)理科数学本卷须知:1.答卷前,考生务必然自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共 12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项吻合题目要求的。
1i1.设 z2i ,那么 | z|1i A.0 B .1C. 1D. 2 22.会集 A { x | x2x 2 0} ,那么 e R AA. { x | 1 x 2}B. { x | 1≤ x≤ 2}C { x | x1} U { x | x 2} D. { x | x ≤ 1} U { x | x≥ 2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地认识该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比率,获取以下饼图:那么下面结论中不正确的选项是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和高出了经济收入的一半理科数学试题第 1页〔共 17页〕4.记 S n 为等差数列 { a n } 的前 n 项和 . 假设 3S 3S 2 S 4 , a 1 = 2 ,那么 a 5 = A . 12 B . 10C .10D .125.设函数 f (x) x 3切线方程为A . y2 x6.在 △ ABC 中, AD A . 3 uuur 1 uuur 4AB AC 4 C . 3 uuur 1 uuur 4AB AC 4 (a 1)x 2 ax . 假设 f ( x) 为奇函数,那么曲线yf ( x) 在点 (0,0) 处的B . y xC . y 2 xD . y xuur 为 BC 边上的中线, E 为 AD 的中点,那么 EBB . 1 uuur 3 uuur4 AB AC4 D . 1 uuur 3 uuur4 AB AC47.某圆柱的高为2,底面周长为 16,其三视图如右图 .圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为 B ,那么在此圆柱侧面上,从M 到 N的路径中,最短路径的长度为A .2 17B . 2 5C . 3D . 28.设抛物线 C : y 2= 4x 的焦点为 F ,过点 (- 2,0)且斜率为2的直线与 C 交于 M ,Nuuur uuur3两点,那么 FM ?FNA . 5B . 6C . 7D . 89.函数 f ( x)e x , x ≤ 0, g (x)f ( x) xa . 假设 g( x) 存在 2 个零点,那么 a的ln x,x 0,取值范围是A . [ 1,0)B . [0, )C . [ 1, )D . [1, )10.以下列图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC . △ABC 的三边 所围成的地区记为Ⅰ,黑色局部记为Ⅱ,其他局部记为Ⅲ . 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ, Ⅲ的概率分别记为 p 1 , p 2 , p 3 ,那么A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2 p 3理科数学试题第 2页〔共 17页〕11.双曲线 C:x2-y2 = 1, O 为坐标原点, F 为 C 的右焦点,过F的直线与 C的3两条渐近线的交点分别为M , N. 假设△OMN为直角三角形,那么 | MN |=3B. 3C.2 3D.4 A.212.正方体的棱长为 1 ,每条棱所在直线与平面所成的角都相等,那么截此正方体所得截面面积的最大值为A.3 3B.2 3C.3 2D.3 4342二、填空题:此题共 4 小题,每题 5 分,共 20 分。
2016年普通高等学校招生全国统一考试理科数学及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A )1(B (C D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100(B )99(C )98(D )97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )(B )(C )(D )(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是 (A )17π(B )18π(C )20π(D )28π (7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为B 1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =.(14)5(2)x x+的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为。
2021年高考全国卷一理科数学(含答案)绝密★启用前2021年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)此卷只装订不密封班级 姓名 准考证号 考场号 座位号1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.4 12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
2016年高考真题理科数学(全国I卷)理科数学单选题(本大题共12小题,每小题____分,共____分。
)1.设集合 ,,则A.B.C.D.2.设,其中,实数,则A. 1B.C.D. 23.已知等差数列前9项的和为27,,则A. 100B. 99C. 98D. 974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A.B.C.D.5.已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是A.B.C.D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是A.B.C.D.7.函数在的图像大致为A.B.C.D.8.若,则A.B.C.D.9.执行右面的程序框图,如果输入的,则输出x,y的值满足A.B.C.D.10.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为A. 2B. 4C. 6D. 811.平面过正方体ABCD-A 1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m、n所成角的正弦值为A.B.C.D.12.已知函数为的零点,为图像的对称轴,且在单调,则的最大值为A. 11B. 9C. 7D. 5填空题(本大题共4小题,每小题____分,共____分。
)13.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=____.14.的展开式中,x3的系数是____.(用数字填写答案)15.设等比数列满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为____.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为____元.简答题(综合题)(本大题共6小题,每小题____分,共____分。
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。
(6)2(4) 已知双曲线的离心率为2,焦点是(-4, 0), (4, 0),则双曲线方程为 (A)兰丄14 12(C)兰丄110 6X 2_r =1 12 4 1 x 2_r =1(5) 设G R ,集合(L« + Z?(D) 6 10 「“ 1 -{a )(C) (D) -2下面给出的四个点中,到直线x-y+l 二0的距离为二 且位于< (1) 1(B) -1x + y -1 Y 0,表示的平而区域内的x — y +1 A 0点是(A) (b 1)(B) (-1, 1)(C) (-1, -1) (D) (1, -1)普通高等学校招生全国统一考试(必修+选修II)理科数学本试卷分第【卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至4页。
考 试结朿后,将本试卷和答题卡一并交回。
第【卷 注意事项:1 •答题前,考生在答题卡上务必用直径0.5亳米黑色墨水签字笔将自己的姓名、准考证号填写淸楚, 并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2•每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后. 再选涂英他答案标号,在试题卷上作答无效。
3•本卷共12小题,每小题5分,共60分。
在每小题给岀的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么P(A + B) = P(A) + P(B)如果事件A 、B 相互独立,那么P(A B) = P(A> P(B)如果事件A 在一次试验中发生的概率是P ,那么”次独立重复试验中事件A 恰好发生k 次的概率P 伙)=c\ p k (1- p)^k 伙=0丄2 …,n)球的表而积公式S=4欣2 其中/?表示球的半径 球的体积公式 V=l/r/?33其中/?表示球的半径 一、选择题⑴“是第四象限角,(an —善则si 心(A) 1(B) 1(C)丄 (D) 5 55 1313(2)设"是实数, 且"+1 + ;是实数,则“=1 + / 2(A) 1 (B)3 1 (C)- (D) 222(3)已知向量么=(5 6), h= (6, 5),则“与方 (A)垂直 (B)不垂直也不平行(B)(C)平行且同向(D)平行且反向(6)2(7)如图,正四棱柱ABCD一AQC\卩中,必严2A3 ,则异面直线A&与4® 所成角的叙弦值为1 2 3 4(A) —(B) - (C) - (D)-5 5 5 5(8)设QA1,函数/(x) = Iog,x在区间肚2"]上的最大值与最小值之差为丄,2则a =(A) >j2(B) 2 (C) 2V2 (D) 4(9) f(x).g(x)是定义在R上的函数,hM = f(x) + g(x).则“ f(x\g(x)均为偶函数”是“加力为偶函数”的(A)充要条件(B)充分而不必要的条件(C)必要而不充分的条件(D)既不充分也不必要的条件(10) (x2--)2的展开式中,常数项为6 则n=x(A) 3 (B) 4 (C) 5 (D) 6(11)抛物线y2 = 4x的焦点为F,准线为1,经过F且斜率为巧的直线与抛物线在x轴上方的部分相交于点A,AK丄/,垂足为K,且△AKF的而积是(A)4 (B)3“(C)4A/3(D)8(12)函数f(x) = cos2 x-2cos21的一个单调增区间是(A) ) (B) (C) (0,- ) (D))2 3 6 2 3 6 62007年普通高等学校招生全国统一考试数学(理科)第II卷(非选择题共95分)注意事项:1・答题前,考生先在答题卡上用直径0.5亳米黑色墨水签字笔将自己的姓劣、准考证号填写淸楚.然后贴好条形码。
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效. 4。
考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。
(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A)1 (B 2 (C 3)2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。
考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。
(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B)99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
一、典例分析,融合贯通典例1已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 .【解法1】直接法()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数, 则20,25a a +==-。
【点睛之笔】直接法,按部就班,不费脑! 【解法2】方程法设2a i k R i-=∈+,则()22a i k i k ki -=+=+,则2,1a k k ==-,因此2a =-。
【点睛之笔】方程思想,由思不必想!【点睛之笔】共轭法,阴阳合一,天下无敌! 【解后反思】解法一:直接化简,根据定义确定取值; 解法二:建立方程,寻找平衡点; 解法三:利用共轭 ,寻找共同点。
典例2已知复数z 的模为2 ,求i z -的最大值. 【解法1】代数法 设)(R y x yi x z ∈+=、,yy x i z y x 25)1(.42222-=-+=-+=则,32,2max =--=∴≤i z y y 时,当.【点睛之笔】用数据说话,直接明了! 【解法2】三角代换法设),sin (cos 2θθi z +=则.sin 45)1sin 2cos 422θθθ-=-=-+(i z.31sin max =--=∴i z 时,当θ【点睛之笔】三角代换,化繁为简! 【解法3】几何法2,z =∴点z 圆224x y +=上的点,z i -表示z 与i 所对应的之间的距离,图所示,可知当i z 2-=时,3max =-i z .【点睛之笔】以形助数,直指核心! 【解法4】三角不等式法312=+=-+≤-i z i z而当i z 2-=时,.3.3max =-∴=-i z i z【点睛之笔】三角不等式,直截了当,绝不啰嗦!【点睛之笔】共轭复数法,一体两面,各有千秋! 【解后反思】yxO .i . -2iZ解法一:直接利用代数运算,较少思维量!解法二:三角代换,化繁为易,降低计算量!、解法三:利用几何法,化虚为实!解法四:利用三角不等式,直捣黄龙!解法五:共轭复数,有难共担,一对好“兄弟”!典例3.若1zz-为纯虚数,求z在复平面内对应的点的轨迹【点睛之笔】直接化简,不走弯路!【解法2】利用共轭的运算性质化简1zz-为纯虚数,∴-+-⎛⎝⎫⎭⎪=≠≠zzzzz z11001,(且)整理得:∴-+-=+---=zzzzz z zzz z11211()()∴+==z z zz20设(,)x yi z x y R+=∈,则有2222()00x x y y-+=≠(),即2211()(0)24x y y-+=≠它表示以1(,0)2为圆心,以12为半径的圆去掉两点0010(,),(,)【点睛之笔】共轭复数法,就属它不一样!【解后反思】解法一:直接化简,利用定义建立方程!解法二:利用共轭复数的性质,运算简单,思维灵活!二、精选试题,能力升级1.【2018河南洛阳尖子生联考】已知复数z 满足z(1−i)2=1+i (i 为虚数单位),则|z|为( )A. 12 B 。
2016年普通高等学校招生全国统一考试(新课标1》理科数学第I 卷5分,在每小题给出的四个选项中,只有一项是符合题目【答案】D【解析】试题分析;因为M = X -4x + 3 <<x<3}^={x|x> |}:3f^iV考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题•解决此类问题一般 要把参与运算的集合化为最简形式再进行运算 ,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算• (2)设(1 i)x1 yi,其中x ,y 实数,则|x yi =(A )1(B) 2(C ) 3( D )2【答案】 B【解析】试题分析 :因为 x(1 i)=1 + yi ,所以 x xi=1+yi ,x=1,y x 1,|x yi | =|1 + i |2,故选 B考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题•高考中复数考查 频率较高的内容有:复数相等 ,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问2题一般难度不大,但容易出现运算错误,特别是i 1中的负号易忽略,所以做复数题要注意运算的准确性(1)设集合x x 2 4x 3 0,x 2x 3 0(A ) 3,(B)3,32(C ) 1,32 (D )3,3 2.选择题:本大题共 12小题,每小题 要求的•(3)已知等差数列a n前9项的和为27, a io 8,则a ioo(A) 100 ( B) 99 ( C) 98 ( D) 97【答案】C【解析】9耳36d 27试题分析:由已知,,所以a11,d 1月00 a1 99d 1 99 98,故选a1 9d 8C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组) ,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是/A、1 1 2 3(A) 3 (B) 2 ( C)3 ( D)4【答案】B【解祈】试题分析:如图所示「画岀P寸间袖:7:30 7:40 7:50 8:00 8:10 8:20 8:30' ' A C ' D B小明到这的时间会随机的苇立至叱嫩肋中:而当他的到辻时间落在线段M我础吋:才能保证I■也等车的时间不超过1。
高考理数2016年高考新全国1卷理数试题解析(解析版)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,,则(A)(B)(C)(D)【答案】D 【考点】集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题的形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式,再进行运算,如果是不等式的解集、函数的定义域及值域等有关数集之间的运算,常借助数轴求解. (2)设,其中x,y是实数,则(A)1 (B)(C)(D)2 【答案】B 【解析】试题分析:因为所以故选B. 【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是中的负号易忽略, 所以做复数题时要注意运算的准确性. (3)已知等差数列前9项的和为27,,则(A)100 (B)99 (C)98 (D)97 【答案】C 【解析】试题分析:由已知,所以故选C. 【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法. (4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)【答案】B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. (5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,) (C)(0,3) (D)(0,) 【答案】A 【解析】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.【考点】双曲线的性质【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c而不是c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是(A)17π (B)18π (C)20π (D)28π 【答案】A 【解析】由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A.【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键. (7)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)【答案】D 【考点】函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. (8)若,则(A)(B)(C)(D)【答案】C 【解析】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项C正确,,选项D错误,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. (9)执行下面的程序框图,如果输入的,则输出x,y的值满足(A)(B)(C)(D)【答案】C 【解析】试题分析:当时,,不满足;,不满足;,满足;输出,则输出的的值满足,故选 C. 【考点】程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题的形式出现,难度不大,求解此类问题只需按照程序逐步列出运行结果. (10)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8 【答案】B 【解析】试题分析:如图,设抛物线方程为,圆的半径为r,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B. 【考点】抛物线的性质【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因. (11)平面过正方体ABCDA1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面ABB1 A1=n,则m,n所成角的正弦值为(A)(B)(C)(D)【答案】A 【考点】平面的截面问题,面面平行的性质定理,异面直线所成的角【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补. (12)已知函数为的零点,为图像的对称轴,且在单调,则的最大值为(A)11 (B)9 (C)7 (D)5 【答案】B 【解析】试题分析:因为为的零点,为图像的对称轴,所以,即,所以,又因为在单调,所以,即,则的最大值为9.故选B. 【考点】三角函数的性质【名师点睛】本题将三角函数的单调性与对称性结合在一起进行考查,题目新颖,是一道考查能力的好题.注意本题求解中用到的两个结论:①的单调区间长度是最小正周期的一半;②若的图像关于直线对称,则或. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分. (13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= . 【答案】【解析】试题分析:由,得,所以,解得. 【考点】向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题的形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若,则. (14)的展开式中,x3的系数是.(用数字填写答案)【答案】考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项,再确定r的值,从而确定指定项系数. (15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2an 的最大值为. 【答案】【解析】试题分析:设等比数列的公比为,由得,解得.所以,于是当或时,取得最大值. 【考点】等比数列及其应用【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做. (16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元. 【答案】【解析】试题分析:设生产产品A、产品B分别为、件,利润之和为元,那么由题意得约束条件目标函数. 约束条件等价于①作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示. 将变形,得,作直线:并平移,当直线经过点时,取得最大值. 解方程组,得的坐标为. 所以当,时,. 故生产产品A、产品B的利润之和的最大值为元. 【考点】线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题的形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误. 三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)的内角A,B,C的对边分别为a,b,c,已知(I)求C;(II)若的面积为,求的周长.【答案】(I);(II). 【解析】试题分析:(I)利用正弦定理进行边角代换,化简即可求角C;(II)根据.及可得.再利用余弦定理可得,从而可得的周长为.试题解析:(I)由已知及正弦定理得,由已知及余弦定理得,.故,从而.所以的周长为.【考点】正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式, ,这是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边”. (18)(本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角DAFE与二面角CBEF都是.(I)证明:平面ABEF平面EFDC;(II)求二面角EBCA的余弦值.【答案】(I)见解析;(II)【解析】试题分析:(I)证明平面,结合平面,可得平面平面.(II)建立空间坐标系,利用向量求解. 试题解析:(I)由已知可得,,所以平面.又平面,故平面平面.(II)过作,垂足为,由(I)知平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(I)知为二面角的平面角,故,则,,可得,,,.由已知,,所以平面.又平面平面,故,.由,可得平面,所以为二面角的平面角,.从而可得.所以,,,.设是平面的法向量,则【考点】垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,注意防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量法解决. (19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数. (I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?【答案】(I)见解析;(II)19;(III). 【解析】试题分析:(I)先确定X的所有可能取值,然后求相应的概率,可得X的分布列;(II)通过概率大小进行比较;(III)分别求出n=19,n=20的期望,比较即可. 试题解析:(I)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而;;;;;;. 所以的分布列为16 17 18 19 20 21 22 (II)由(I)知,,故的最小值为19. 可知当时所需费用的期望值小于时所需费用的期望值,故应选. 【考点】概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定的综合性,但难度不是太大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题. (20)(本小题满分12分)设圆的圆心为A,直线l 过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A 交于P,Q两点,求四边形MPNQ面积的取值范围. 【答案】(I)();(II)【解析】试题分析:(I)利用椭圆定义求方程;(II)把面积表示为关于斜率k的函数,再求最值。
一、典例分析,融合贯通典例【2018年全国1卷理科第16题】已知函数f(x)=2sinx+sin2x ,则f(x)的最小值是______. 解法一:引导:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.点评:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 解法二:()=2sin +sin2=2sin (1+cos )f x x x x x22222()=4sin (1+cos )4(1-cos )(1+cos )f x x x x x ∴=4(3-3cos )(1+cos )(1+cos )(1+cos )3x x x x = 443-3cos +1+cos +1+cos +1+cos )34x x x x ⎛⎫≤ ⎪⎝⎭44327324⎛⎫=⨯= ⎪⎝⎭ ()f x 易知是奇函数1cos = 332(),23sin =2x f x x ⎧⎪⎪∴≥-⎨⎪-⎪⎩当时可以取等号,33().2f x ∴-的最小值是 点评:另辟蹊径,联系均值不等式求最值(和定积最小)。
解法三:解法3:公式搭桥,函数领路,导数建功。
解法四:()=2sin +sin2f x x x ,tan 2xt R =∈令则22234182sin(1cos)(1)1112t ty x xt t t tt-=+=+=++++,31t2,t ttϕ=++令()4222221321t32,0t tt tt tϕμ+-'=+-==≥()令,原式得;(1)(31),μμμ+-=显然13μ=时,取tϕ()到极值经检验当3t=-时,tϕ()有最大值,则y有最小值得:min833.1()3yϕ==--解法4:替换消元,导数建功。
解法五:解法5:联系奇偶性,运用单位圆,借助均值不等式求最值。
解法六:由()f x为奇函数,我们可以等效的求出最大值,使x限定在02xπ<≤时即可。
于是33()2sin sin2sin sin sin23sin32f x x x x x xπ=+=++≤=由琴生不等式,当3xπ=时取等号。
若不知道琴生不等式,可特殊化,相当于三个内角,,2x x x π-的3个正弦值之和。
经验提醒我们,可以令三个角相等,即为等边三角形,和最大。
综上()2sin sin 2,f x x x =+ 所以()f x 的最小值为2- 解法6:直觉引路,一剑秒杀。
二.方法总结,胸有成竹高考中的三角函数的最值问题主要考查三角函数的基础知识,化归转化的方法以及分析解决问题的能力。
主要解法有:利用单调性解题、利用三角变换化为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++型的三角函数最值问题、化为关于sin x 或cos x 的二次函数问题、换元法、利用均值不等式等。
基本方法: 1、配方法求最值主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数2sin sin 1y x x =++的最值,可转化为求函数[]21,1,1y t t t =++∈-上的最值问题。
2、化为一个角的三角函数(利用辅助角公式),再利用有界性求最值:sin )a x bcox x ϕ+=+,其中tan ϕ=ab.3、sin sin a x b y c x d+=+(或cos cos a x by c x d +=+)型,解出sin x (或cos x )利用|sin |1x ≤(或|cos |1x ≤)去解;或用分离常数的方法去解决. 4、 数形结合 形如:sin cos a x b y c x d +=+(或cos sin a x b y c x d+=+)型,可化归为sin()()x g y ϕ+=去处理;或用万能公式换元后用判别式法去处理;当a c =时,还可以利用数形结合的方法去处理.常用到直线斜率的几何意义,例如求函数sin 2x y cox =+的最大值和最小值。
函数sin 2xy cox =+的几何意义为两点(2,0),(cos ,sin )P Q x x -连线的斜率。
5、 换元法求最值对于表达式中同时含有sin cos x x +,与sin cos x x 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围。
6、利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件, 否则会陷入误区。
三、精选试题,能力升级1. 【2016高考新课标2文数】函数π()cos 26cos()2f x x x =+-的最大值为( ) (A )4 (B )5 (C )6(D )7【答案】B【名师点睛】求解本题易出现的错误是认为当3sin 2x =时,函数23112(sin )22y x =--+取得最大值. 2.【2018内蒙古呼和浩特市高三质检】设ABC 的内角,,A B C 所对的边分别为,,a b c ,且3cos cos 5a Bb Ac -=,则()tan A B -的最大值为( )A.32 B. 34 C. 323【答案】B 【解析】3cos cos 5a B b A c -=,∴由正弦定理,得35sinAcosB sinBcosA sinC -=,C A B sinC sin A B π=-+⇒=+()(), ∴35sinAcosB sinBcosA sinAcosB cosAsinB -=+(),整理,得4sinAcosB sinBcosA =,同除以cosAcosB , 得4tanA tanB = , 由此可得23311144tanA tanB tanB tan A B tanAtanB tan BtanB tanB--===+++(),A B 、 是三角形内角,且tan A 与tanB 同号,A B ∴、 都是锐角,即00tanA tanB >,>,11444tanB tanB tanB tanB+≥⋅=33144tan A BtanB tanB -=≤+(),当且仅当14tanB tanB =, 即12tanB = 时, tan A B -()的最大值为34.故选B . 3.【2018黑龙江省大庆实验中学高三模拟】已知ABC 中, sin A , sin B , sin C 成等比数列, 则sin22sin cos B B B++的取值范围是( )A. 322,⎛⎤ ⎥ ⎝⎦B. 20,⎛⎤ ⎥ ⎝⎦C. ()2,+∞D. [)2,+∞ 【答案】A【名师点睛】(1)对于sin αcos α,sin αcos α,sin αcos α+-这三个式子,已知其中一个式子的值,其余二式的值可求.转化的公式为2(sin αcos α)12sin αcos α±=±,通过这个等式可以精进行换元用; (2)ABC 中, sin A , sin B , sin C 或a , b , c 三边成等比,意味着角π0,3B ⎛⎤⎥⎝⎦,熟记此结论可以提高解小题的时间.4. 【2014年浙江卷10】如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成的角),若m AB 15=,m AC 25=,30=∠BCM ,则θtan 的最大值是( )A.530 B. 1030 C.934 D. 935 【答案】D【名师点睛】本题主要考查了解直角三角形的有关问题,根据所给条件构造直角三角形,运用勾股定理求解直角边长,然后运用导数有关性质解决所求角正切的最值问题.5. 【2014课标2文14】 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________. 【答案】1【解析】由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.【名师点睛】本题考查了三角恒等变形公式,三角函数sin()y A x B ωφ=++的性质,属于基础题目,根据三角恒等变形公式将已知函数的解析式化为sin()y A x B ωφ=++的形式即可.6. 【2015高考浙江11】函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 . 【答案】32,2π- 【解析】()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+ 23sin(2)242x π=-+,所以22T ππ==;min 32()22f x =-. 【名师点睛】本题主要考查三角函数的图象与性质以及三角恒等变换.主要考查学生利用恒等变换化简三角函数,利用整体代换判断周期与最值的能力.本题属于容易题,主要考查学生的基本运算能力以及整体代换的运用.7. 【2016高考上海文科】若函数()4sin cos f x x a x =+的最大值为5,则常数a =______. 【答案】3±8.【2017课标II 理14】函数()23sin 34f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。
【答案】1【解析】化简得:()2223131cos 3cos 3cos 1442f x x x x x x ⎛=-+-=-++=--+ ⎝⎭, 由自变量的范围:0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos x =时,函数()f x 取得最大值1。
【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法。
一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析。
9.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小 值是 . 【答案】8.【解析】sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan A B C A B C A B C A B C =++=+≥tan tan tan 8A B C ⇒≥,即最小值为8.【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意。