_模态分析理论基础
- 格式:ppt
- 大小:2.45 MB
- 文档页数:59
模态分析原理模态分析是指通过对物体或系统的振动特性进行分析,来确定其固有频率、振型和振动模态等相关参数的一种分析方法。
在工程领域中,模态分析被广泛应用于结构设计、振动控制、故障诊断等方面,具有重要的理论和实际意义。
本文将对模态分析的原理进行介绍,希望能够帮助读者更好地理解和应用模态分析技术。
模态分析的基本原理是通过对系统的动力学方程进行求解,得到系统的固有频率和振型。
在进行模态分析时,需要考虑系统的质量、刚度和阻尼等因素,这些因素将直接影响系统的振动特性。
在实际工程中,通常会采用有限元方法或者试验测量的方式来获取系统的动力学参数,然后利用模态分析的理论进行计算和分析。
在进行模态分析时,首先需要建立系统的动力学模型,这包括系统的质量矩阵、刚度矩阵和阻尼矩阵等参数。
然后利用模态分析的理论,可以求解系统的特征方程,从而得到系统的固有频率和振型。
通过对系统的固有频率和振型进行分析,可以了解系统的振动特性,包括主要振动模态、振动形式和振动幅值等信息。
在实际工程中,模态分析通常用于结构设计和振动控制方面。
通过对结构的模态进行分析,可以确定结构的主要振动模态和固有频率,从而指导结构设计和优化。
同时,还可以通过模态分析来评估结构的振动响应,为振动控制和减震设计提供依据。
除了在结构设计和振动控制方面的应用外,模态分析还被广泛应用于故障诊断和结构健康监测等领域。
通过对系统的模态进行分析,可以发现系统的异常振动模态和频率,从而判断系统的工作状态和健康状况。
这对于提前发现系统的故障和隐患,具有重要的意义。
总之,模态分析作为一种重要的振动分析方法,具有广泛的应用前景和理论价值。
通过对系统的振动特性进行分析,可以深入理解系统的动力学行为,为工程设计和故障诊断提供重要的依据。
希望本文的介绍能够帮助读者更好地理解和应用模态分析技术,推动其在工程领域的进一步发展和应用。
实验模态分析第三章:实验模态分析的基本理论振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。
建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。
—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。
另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。
试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。
1 多自由度系统振动基础回顾&&&++=M x C x K x f t []{}[]{}[]{}{()} 2实模态理论一个n 自由度线性定常振动系统,其运动方程可以如下表示:现对两端作付氏变换得:[]{}[]{}[]{}{()}M x C xK x f t ++=&&&2([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞=∫()()j t F f t e dtωω+∞−−∞=∫(){()}{()}Z X F ωωω=111212122212()()()()()()()()()()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1()[()]{()}{()}{()}X Z F H F ωωωωω−==2[][][]K M j C ωω=−+阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;也不可能仅使某个坐标运动,在其余坐标上测量力。
点,有图可知节点并不唯一,而且修改前后节点的位置未变。
对应尽可能避开结构振动的节点,以免给测量带来误差。
4.4试验模态分析试验模态分析的目的是为了验证理论模态分析的正确性的基础上进行深入研究奠定基础。
4.4.1试验模态分析的理论基础阻1所以在进行模态实验为在理论模态分析在物理坐标下,描述N自由度离散振动系统的运动微分方程为阻】耕+【c】扛}+医】M=沙}(4.2)式中:【M]——质量矩阵(对称且正定),M∈R~,【C】——阻尼矩阵,C∈R“”,晖】——刚度矩阵(对称且正定或半正定),K∈R“”,{x),{卦,{封——N维位移、速度和加速度响应向量,{厂(r))——_N维激振力向量。
设系统的初始状态为零,对式(4.2)两边进行拉普拉斯变换可得([Mls2“C]s+【K]){X0))=【Z(s)]{工0))={F0))式中的矩阵【Z(s)]-([M]s2+[c]s+[K】)反映了系统的动态特性,称为系统动态矩阵或广义阻抗矩阵,其逆阵[日(5)】=[Z(s)】~=(【M]s2+【C]s+[K])。
1称为广义导纳矩阵,也就是传递函数矩阵。
由式(2.2)可知{x(J))_【日0)】(F(J)}在上式中.令S=joJ,即可得到系统在频域内输出和输入的关系式{并(国)}=【日(脚)】(F(国))(4.3)(4.4)(4.5)(4.6)(4.7)式中[H(co)】为频率响应函数矩阵。
[H(∞)】矩阵中第f行_,列的元素%(叻2篇(48)表示仅在』坐标激振(其余坐标激振力为零)时,i坐标的响应与激振力之比。
在式(4.4)中令S=_,∞,可得阻抗矩阵[z(∞)】=([K]一曲2【吖])+jco[C](4.9)它和导纳矩阵有类似式(4.5)的关系[日(珊)]=[z(国)】~={(【置卜。
2[^卅)+jco[C】}1(4.10)对于一般机械、结构,假设矩阵[c]也对称,这样矩阵【z(∞)】对称,频率响应函数矩阵[日@)]也对称,故有q(脚)=HⅣ(03)(4.11)上式反映了机械、结构频率响应有互易性,可作为频率响应测试精度的一项重要检验手段。
从北航马艳红老师的PPT中摘录下来。
模态分析技术从20世纪60年代后期发展至今已趋成熟,它和有限元分析技术一起成为结构动力学的两大支柱。
模态分析作为一种“逆问题”分析方法,是建立在实验基础上的,采用实验与理论相结合的方法来处理工程中的振动问题。
模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。
什么是实模态和复模态?按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼(或称为非经典阻尼)振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
什么是主模态、主空间、主坐标?无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
什么是模态截断?理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。
这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。
这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。
这种物理特征不以物体是否处于振动状态而转移。
当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。
1.3 振型简介振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。
理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。
因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。
它和有限元分析技术一起,已成为结构动力学中的两大支柱。
到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。
我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。
模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。