模态分析的理论基础2013.2.5
- 格式:pptx
- 大小:10.12 MB
- 文档页数:47
模态分析理论Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。
首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数。
特征根问题以图3所示的三自由度无阻尼系统为例,设123m =m =m =m ,123k =k =k =k ,图三自由度系统其齐次运动方程为:mz̈+kz =0(8)其中m ,k 分别为系统的质量矩阵和刚度矩阵,123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则运动方程展开式为:¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。
主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。
主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中z i 为第i 阶频率下,各自有度的位移矢量,z mi 为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为初始相位。
对于三自由度系统,在第i 阶频率下,等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(11)mki z 表示第k 个自由度在第i 阶模态下的模态矩阵。
模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。
在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。
模态分析的基础理论包括概率论、统计学和模态分析技术等。
概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。
在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。
通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。
统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。
模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。
在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。
聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。
主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。
这可以帮助我们更好地理解系统模态之间的关系和重要性。
模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。
通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。
模态分析的基础理论对于理解和优化系统具有重要意义。
通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。
同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。
因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。
模态分析基础知识模态分析技术从20世纪60年代后期发展至今已趋成熟,它和有限元分析技术一起成为结构动力学的两大支柱。
模态分析作为一种“逆问题”分析方法,是建立在实验基础上的,采用实验与理论相结合的方法来处理工程中的振动问题。
模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。
什么是实模态和复模态?按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼(或称为非经典阻尼)振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
什么是主模态、主空间、主坐标?无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
什么是模态截断?理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
模态叠加法一.思想要点是在积分运动方程以前,利用系统自由振动的固有振型将方程组转换为n 个相互不耦合的方程,对这种方程可以解析或数值地进行积分。
对于每个方程可以采用各自不同的时间步长,即对于低阶振型可采用较大的时间步长。
当实际分析的时间历程较长,同时又只需要少数较低阶振型的结果时,采用振型叠加法将是十分有利的。
求解步骤:1.求解系统的固有频率和振型2.求解系统的动力响应二.求解固有频率与振型(求解不考虑阻尼影响的振动方程) ..()(){0}M a t Ka t += 解可假设为:0sin ()a t t φω=-φ是n 阶向量,ω是向量φ的振动频率,t 是时间变量,0t 是由初始条件确定的时间常数。
代入振动方程,得到一个广义特征值问题:20K M φωφ-=求解可得n 个特征解221122(,),(,),ωφωφ···2,(,)n n ωφ120ωω≤<<···n ω< 特征向量12,,φφ···,n φ代表系统的n 个固有振型,幅度可按以下要求规定T i i M φφ=1(i=1,2,···,n ),这样规定的固有振型又称正则振型。
将22(,)(,)i i j j ωφωφ代回特征方程,得:2i i i K M φωφ= 2j j j K M φωφ=前式两边前乘以j φT,后式两边前乘以i φT ,得:2j i i j i K M φφωφφTT = 2i j i i jK M φφωφφT T = 由()TTj i j i i j K K K φφφφφφT T==得:22i j i j i j M K ωφφωφφT T =,推出22()0i j j i M ωωφφT-=当i j ωω≠时,有0j i M φφT =这表明固有振型对于矩阵M 是正交的,可表示为:1 ()0 ()i j i j M i j φφT=⎧=⎨≠⎩得:2 ()0 ()i i j i j K i j ωφφT ⎧==⎨≠⎩如果定义123n [ ]φφφφΦ=K21222 0 0 n ωωω⎡⎤⎢⎥⎢⎥Ω=⎢⎥⎢⎥⎢⎥⎣⎦O则特征解的性质可表示成:M K T T ΦΦ=I ΦΦ=Ω原特征值问题可表示为:K M Φ=ΦΩ三.求解动力响应1.位移基向量的变换引入变换()()1ni i i a t x t x φ==Φ=∑其中()[]12 n x t x x x =L代入运动方程,并两边前乘以T Φ,可得:()()()()()...x t C x t x t Q t R t T T +ΦΦ+Ω=Φ= 初始条件相应地转换成:..0000 x x Ma M a T T =Φ=Φ 阻尼为振型阻尼,则:()()2 i=j 0 i j i i ij C ωξφφT ⎧⎪=⎨≠⎪⎩ 或11222 0 2 0 2n n C ωξωξωξT ⎡⎤⎢⎥⎢⎥ΦΦ=⎢⎥⎢⎥⎣⎦O 其中i ξ(i=1,2,···,n )是第i 阶振型阻尼比,可得n 个相互不耦合的二阶常微分方程()()()()...22i i i i i i i x t x t x t r t ωξω++= (i=1,2,···,n )若C 是Rayleigh 阻尼,即C M K αβ=+根据试验或相近似结构的资料已知两个振型的阻尼比i ξ和j ξ,可得22222()()2()()i j j i i j j i j j i i j i ξωξωαωωωωξωξωβωω-=--=-2.求解单自由度系统振动方程在振动分析中常常采用杜哈美(Duhamel )积分,又称叠加积分,其基本思想是将任意激振力()i r t 分解为一系列微冲量的连续作用,分别求出系统对每个微冲量的响应,然后根据线性系统的叠加原理,将它们叠加起来,得到系统对任意激振的响应。
实验模态分析第三章:实验模态分析的基本理论振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。
建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。
—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。
另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。
试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。
1 多自由度系统振动基础回顾&&&++=M x C x K x f t []{}[]{}[]{}{()} 2实模态理论一个n 自由度线性定常振动系统,其运动方程可以如下表示:现对两端作付氏变换得:[]{}[]{}[]{}{()}M x C xK x f t ++=&&&2([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞=∫()()j t F f t e dtωω+∞−−∞=∫(){()}{()}Z X F ωωω=111212122212()()()()()()()()()()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1()[()]{()}{()}{()}X Z F H F ωωωωω−==2[][][]K M j C ωω=−+阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;也不可能仅使某个坐标运动,在其余坐标上测量力。
点,有图可知节点并不唯一,而且修改前后节点的位置未变。
对应尽可能避开结构振动的节点,以免给测量带来误差。
4.4试验模态分析试验模态分析的目的是为了验证理论模态分析的正确性的基础上进行深入研究奠定基础。
4.4.1试验模态分析的理论基础阻1所以在进行模态实验为在理论模态分析在物理坐标下,描述N自由度离散振动系统的运动微分方程为阻】耕+【c】扛}+医】M=沙}(4.2)式中:【M]——质量矩阵(对称且正定),M∈R~,【C】——阻尼矩阵,C∈R“”,晖】——刚度矩阵(对称且正定或半正定),K∈R“”,{x),{卦,{封——N维位移、速度和加速度响应向量,{厂(r))——_N维激振力向量。
设系统的初始状态为零,对式(4.2)两边进行拉普拉斯变换可得([Mls2“C]s+【K]){X0))=【Z(s)]{工0))={F0))式中的矩阵【Z(s)]-([M]s2+[c]s+[K】)反映了系统的动态特性,称为系统动态矩阵或广义阻抗矩阵,其逆阵[日(5)】=[Z(s)】~=(【M]s2+【C]s+[K])。
1称为广义导纳矩阵,也就是传递函数矩阵。
由式(2.2)可知{x(J))_【日0)】(F(J)}在上式中.令S=joJ,即可得到系统在频域内输出和输入的关系式{并(国)}=【日(脚)】(F(国))(4.3)(4.4)(4.5)(4.6)(4.7)式中[H(co)】为频率响应函数矩阵。
[H(∞)】矩阵中第f行_,列的元素%(叻2篇(48)表示仅在』坐标激振(其余坐标激振力为零)时,i坐标的响应与激振力之比。
在式(4.4)中令S=_,∞,可得阻抗矩阵[z(∞)】=([K]一曲2【吖])+jco[C](4.9)它和导纳矩阵有类似式(4.5)的关系[日(珊)]=[z(国)】~={(【置卜。
2[^卅)+jco[C】}1(4.10)对于一般机械、结构,假设矩阵[c]也对称,这样矩阵【z(∞)】对称,频率响应函数矩阵[日@)]也对称,故有q(脚)=HⅣ(03)(4.11)上式反映了机械、结构频率响应有互易性,可作为频率响应测试精度的一项重要检验手段。
从北航马艳红老师的PPT中摘录下来。
模态分析技术从20世纪60年代后期发展至今已趋成熟,它和有限元分析技术一起成为结构动力学的两大支柱。
模态分析作为一种“逆问题”分析方法,是建立在实验基础上的,采用实验与理论相结合的方法来处理工程中的振动问题。
模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。
什么是实模态和复模态?按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼(或称为非经典阻尼)振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
什么是主模态、主空间、主坐标?无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
什么是模态截断?理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。
这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。
这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。
这种物理特征不以物体是否处于振动状态而转移。
当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。
1.3 振型简介振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。
理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。
因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。
它和有限元分析技术一起,已成为结构动力学中的两大支柱。
到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。
我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。
模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。
精心整理模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。
首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态22¨330m 0z k 2k k z 000m 0k k z 0z +--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。
主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。
主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为(去除项化简得以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(15)有非零解,则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(16)即()234222ω-m ω+4km ω-3k m =0(17)阶固有频率,每一个特征根对应一个特征矢量,表示对应模态下该由式3i i 21=z k 如果设定了1z 值,则就可以求出三个特征根值下,2z 和3z 相对于1z 的位移。
假设m=k=1, 一阶模态,1ω=0:21z =1z ,31z =1z ,即;二阶模态,223kω=m :21z=0z,31z=-1z,即;三阶模态,23kω=m :21z=-2z,31z=1z,即。
运动方程的解耦图错误!未指定顺序。
运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化。