机械手模型的PLC控制系统设计
- 格式:doc
- 大小:6.08 MB
- 文档页数:48
一、要求机械手的PLC控制1.设备基本动作:机械手的动作过程分为顺序的8个工步:既从原位开始经下降、夹紧、上升、右移、下降、放松、上升、左移8个动作后完成一个循环(周期)回到原位。
并且只有当右工作台上无工件时,机械手才能从右上位下降,否则,在右上位等待。
2.控制程序可实现手动、自动两种操作方式;自动又分为单工步、单周期、连续三种工作方式。
3.设计既有自动方式也有手动方式满足上述要求的梯形图和相应的语句表。
4. 在实验室实验台上运行该程序。
二参考1. “PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”2. “机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。
3.“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。
其中工作方式时手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。
注解:“PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”例中只有手动和自动(连续)两种操作模式,使用顺序控制法编程。
PLC 机型选用CPM2A-40型,其内部继电器区和指令与CPM1A系列的CPM有所不同。
“机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。
本例中的程序是用三菱公司的F1系列的PLC指令编制。
有手动、自动(单工步、单周期、连续)操作方式。
手动方式与自动方式分开编程。
参考其编程思想。
“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。
其中工作方式有手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。
用CPM1A编程。
这里“误操作禁止”是指当自动(单工步、单周期、连续)工作方式时,按一次操作按钮自动运行方式开始,此后再按操作按钮属于错误操作,程序对错误操作不予响应。
PLC控制机械手控制系统设计PLC(可编程逻辑控制器)是一种用于控制机械设备的电子设备,广泛应用于工业自动化领域。
在机械手控制系统设计中,PLC可以起到关键的作用,实现机械手的精确控制和高效运行。
下面将介绍PLC控制机械手控制系统的设计要点。
首先,PLC控制机械手控制系统设计需要明确系统的功能和需求。
根据机械手的应用场景和任务要求,确定系统需要具备的功能和性能指标,例如机械手的动作速度、精度、负载能力等。
其次,PLC控制机械手控制系统设计需要选择合适的PLC型号和配套设备。
根据系统需求和实际情况,选择适合的PLC型号和配套设备,例如输入输出模块、通信模块、运动控制模块等。
同时,还需要考虑PLC的编程环境和开发工具,确保可以方便地进行PLC程序的编写和调试。
然后,PLC控制机械手控制系统设计需要进行系统的硬件设计。
根据机械手的结构和控制需求,设计硬件电路和连接方式,包括传感器的选择和布置、执行器的选型和控制方式等。
同时,还需要考虑系统的电源供应和电气安全措施,确保系统的稳定性和安全性。
接下来,PLC控制机械手控制系统设计需要进行PLC程序的编写和调试。
根据系统功能和需求,编写PLC程序,包括输入输出的配置、数据处理的逻辑、控制算法的实现等。
在编写过程中,需要进行充分的测试和调试,确保程序的正确性和可靠性。
最后,PLC控制机械手控制系统设计需要进行系统的集成和调试。
将PLC控制系统与机械手的其他部分进行集成,包括传感器、执行器、机械结构等。
进行系统的调试和优化,确保机械手的正常运行和稳定性。
总之,PLC控制机械手控制系统设计需要从系统的功能和需求出发,选择合适的PLC型号和配套设备,进行系统的硬件设计,编写PLC程序并进行调试,最后进行系统的集成和调试。
通过科学合理的设计和调试,可以实现机械手的精确控制和高效运行。
小型搬运机械手的PLC控制系统设计
小型搬运机械手的PLC控制系统设计包括以下几个方面:
1. 确定系统需求:首先需要明确机械手的工作任务和工作环境,包
括搬运物品的重量、尺寸和形状,以及工作空间的限制。
2. 选择适当的PLC:根据系统需求选择合适的PLC,考虑其输入输
出点数、通信接口、处理能力和可靠性等因素。
3. 确定传感器和执行器:根据机械手的工作任务选择合适的传感器
和执行器,例如光电传感器、接近开关、压力传感器、伺服电机等。
4. 确定控制策略:根据机械手的工作任务确定控制策略,包括运动
控制、路径规划、物体识别等。
5. 编写PLC程序:根据控制策略编写PLC程序,使用相应的编程语
言(如 ladder diagram、structured text 等),实现机械手的自
动化控制。
6. 连接传感器和执行器:根据PLC的输入输出点数,将传感器和执
行器与PLC连接起来,确保数据的准确传输和控制信号的可靠输出。
7. 调试和测试:完成PLC程序编写后,进行调试和测试,验证系统
的功能和性能是否满足需求,对程序进行优化和修正。
8. 系统集成和实施:将PLC控制系统与机械手进行集成,确保系统
的稳定运行和安全性。
9. 运维和维护:定期对PLC控制系统进行维护和保养,包括检查传
感器和执行器的工作状态,更新PLC程序,修复故障等。
需要注意的是,小型搬运机械手的PLC控制系统设计需要根据具体
的应用场景和要求进行定制,以上仅为一般性的设计步骤和考虑因素,具体设计还需根据实际情况进行调整和优化。
工业机械手plc控制系统毕业设计工业机械手在现代化的生产线中扮演着重要的角色,它可以高效地完成各种物品转移操作,但是机械手的运作离不开PLC控制系统的支持。
因此,本文将围绕“工业机械手PLC控制系统毕业设计”展开阐述。
第一步,进行需求分析。
在进行PLC控制系统设计之前,首先需要了解客户的具体需求,包括机械手的移动速度、精度、各种动作状态、传感器的数量等等因素。
针对这些要求进行详细分析,方便后续控制程序的编写。
第二步,进行PLC选型。
在根据客户需求推算出所需要的控制模块后,可以进行PLC选型。
考虑到冗余备份和可靠性要求,一般会采用双控制模块和双电源供电模块的设计方案,以确保系统的高可靠性和稳定性。
第三步,进行程序设计。
PLC程序设计分为由编辑、编译、下载到PLC并运行、调试等步骤,需要详尽地分析程序逻辑、动作流程和异常处理等内容。
同时,还应该编写人机界面(HMI),方便人员进行系统的监控、操作和故障排除等工作。
第四步,进行现场测试。
在PLC控制程序编写之后,需要进行现场测试以确保程序的稳定性和可靠性。
此时要进行疯狂测试,跑黑盒白盒、配置自检等多个测试方式,确保程序能够符合客户的需求。
第五步,进行评估和优化。
在测试过程中,需要对系统运行数据进行评估和分析,并对程序进行优化。
调整参数和算法,优化运行效率和准确率,最终确保系统能够达到高效稳定的运行状态。
综上所述,关于“工业机械手PLC控制系统毕业设计”,需要进行需求分析、PLC选型、程序设计、现场测试和评估优化等步骤。
这种设计方案需要掌握扎实的基础理论知识和丰富的实践经验,而且需要具备敏锐的技术洞察力以及灵活应变的能力。
只有这样才能够完成高质量的PLC控制系统毕业设计。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。
传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。
因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。
该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。
二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。
其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。
机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。
传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。
2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。
本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。
程序包括主程序和控制程序两部分。
主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。
3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。
同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。
三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。
首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。
同时,还需要对硬件设备进行调试和测试,确保其正常工作。
2. 程序设计程序设计是整个系统的核心部分。
根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。
课程设计任务书课题九机械手PLC控制系统设计机设0501 *** ***1.机械手结构、动作与控制要求机械手在专用机床及自动生产路上应用十分广泛,主要用于搬动成装卸零件的重复动作,以实现生产自动化。
本设计中的机械手采用关节式结构.各动作由液压驱动,并由电磁阀控制。
动作顺序及各动作时间的间隔采用按时间原则控制的电气控制系统。
机械手的结构如图7—13所示,主要由手指、手腕、小臂和大臂等几部分组成.料架6为旋转式,由料盘和棘轮机构组成.每次转动一定角度(由工件数决定)以保证待加工零件4对准机械手。
机械手各动作与相应电磁阀动作关系如表7—4所示。
以镗孔专用机床加工零件的上科、下科为例,机械手的动作顺序是:由原始位置将已加工好的工件卸下,放回料架,等料架转过一定角后,再将来加工零件拿起,送到加工位置,等待镗孔加工结束,再将加工完毕工件放回料架,如此重复循环.具体动作历序是:原始位置(装好工件等待加工位置,其状态是大手臂竖立,小手臂伸出并处于水平位置,手腕横移向右,手指松开)→手指夹紧(抓住卡盘上的工件)。
→松卡盘→手腕左移(从卡盘上卸下已加工好的工件)→小手臂上摆→大手臂下摆→手指松开(工件放回料架)→小手臂收缩→料架转位→小手臂伸出→手指夹紧(抓住末加工零件)→大手臂上摆(取送零件)→小手臂下摆→手指右移(将工件装到机床的主轴卡盘中)→卡盘收紧→手指松开,等待加工。
根据表7—4及各动作中机械的状态,列出各动作中对YV1—YV11线圈的通电要求。
2.设计要求1)加工中上科、下料各动作采用自动循环。
2)各动作之间应有一定的延时(由时间继电器调定)3)机械手各部分应能单独动作,以使于调整及维修。
4)油泵电机(Y100L2-4.3KW)及各电磁阀运行状态应有指示。
5)应有必要的电气保护与联锁环节.3.设计任务1)设计并绘制电气原理图(继电器设计),选择电器元件,编制元件目录表。
2)PLC设计,PC选择及I/O的分配,根据控制要求设计必要的硬件系统,绘制梯形图、编写程序。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。
工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。
本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。
二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。
其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。
三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。
2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。
3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。
4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。
四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。
2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。
3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。
监控软件应具备友好的界面、实时的数据显示和报警功能。
4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。
五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。
通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。
PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。
plc机械手控制设计方案PLC机械手控制设计方案一、方案背景随着工业自动化的不断发展,机械手的应用越来越广泛。
机械手通常由电动机、控制系统、机械结构等组成,其中控制系统的设计对机械手的性能和稳定性至关重要。
本方案旨在设计一种基于PLC的机械手控制系统,通过PLC的硬件和软件结合实现机械手的运动控制和位置定位。
二、方案设计1. 系统硬件设计选择适当的PLC型号作为控制系统的核心,确保其具备足够的输入/输出接口和高性能的运算能力。
根据机械手的运动形式,确定所需的电机数量和种类,并选择适当的驱动器和传感器。
设计相应的电路板和连接线路,确保电机和传感器可以正确连接到PLC的输入/输出接口。
2. 系统软件设计编写PLC的控制程序,包括机械手的运动轨迹规划和控制算法等。
根据机械手的要求,将其各个部分和功能模块拆分,确定适当的控制策略和步骤。
使用PLC的编程软件进行程序的编写和调试,确保控制系统的可靠性和实时性。
3. 用户界面设计设计人机界面,使操作者可以通过触摸屏或按键进行机械手的控制和监测。
界面可以包括机械手的各个状态、位置信息、运动速度等显示,以及机械手的运动模式选择和参数调整等功能。
为便于日常维护和故障排除,还可以在界面上添加诊断和故障检测功能。
4. 系统集成和调试将硬件组装好,并根据设计的连接线路进行接线。
将编写好的控制程序下载到PLC中,并进行调试和测试。
调试时,可通过人机界面监测机械手的位置和状态,检查控制算法的准确性和系统的稳定性。
调试过程中发现问题,进行相应的排除和修改,直到系统正常运行。
三、预期效果1. 机械手的运动控制和位置定位可靠准确,满足工作要求。
2. 机械手的控制系统稳定性好,能够长时间稳定运行。
3. 人机界面友好,操作和监测方便快捷。
4. 系统的调试过程顺利,可以快速投入使用。
四、风险和应对措施1. 硬件选型不当,导致系统性能不佳。
解决办法是在选型前充分了解硬件规格和性能,选择品牌可靠的产品。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第1章前言 (1)1.1 设计的优点 (1)1.2 设计的一般步骤 (1)第2章机械手设计简介 (2)2.1 设备的控制要求 (2)2.2 装置简介 (3)第3章 PLC选型及资源配 (4)3.1 PLC原理及应用 (5)3.1.1 可编程控制器 (5)3.1.2 PLC的发展趋势 (5)3.1.3与单片机相比较PLC的特点 (6)3.1.4 PLC的基本组成及工作原理 (6)3.1.5 PLC各组成部分的作用 (10)3.2 控制系统构成图 (12)3.2.1 控制系统如图 (12)3.2.2 输入/输出分析 (12)3.2.3用户程序容量估计 (13)3.3 PLC选型 (13)3.3.1 PLC机型选择 (13)3.3.2 FX2N系统的基本单元 (13)3.3.3 FX系列的部分特殊功能模块 (13)3.4 FX系列PLC的编程器及其它外部设备 (16)3.4.1 FX系列编程器 (16)3.4.2 其它外部设备 (17)3.5 FX系列PLC各单元模块连接 (17)3.6 FX系列PLC的性能指标 (17)3.6.1 FX系列PLC性能比较 (17)3.6.2 FX系列PLC 的环境指标 (18)3.6.3 FX系列PLC的输入技术指标 (18)3.6.4 FX系列PLC的输出技术指标 (19)3.7 FX系列PLC的编程器元件 (20)3.7.1 输入继电器(X) (22)3.7.2 输出继电器(Y) (23)3.7.3 辅助继电器(M) (23)3.7.4 状态器(S) (24)3.7.5 定时器(T) (24)3.7.6 常数(K、H) (25)3.8 FX系列PLC的基本指令 (25)3.8.1 FX2N系列PLC的基本逻辑指令 (25)3.8.2 FX系列PLC功能指令介绍 (28)3.9 PLC系统资源分配 (30)第4章控制系统程序设计和调试 (30)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.1 可编程序控制器的控制设计方法 (30)4.1.1 梯形图的编程规则 (31)4.1.2 程序的顺序控制设计法 (32)4.1.3 程序的逻辑设计方法 (33)4.2 PLC程序及调试说明 (33)4.2.1 复杂程序的设计方法 (33)4.2.2 PLC程序内容和质量 (34)4.2.3 PLC程序的调试 (34)第5章机械手PLC程序 (35)5.1 I/O和所用内部单元地址分配 (35)5.2 机械手软件系统结构 (36)5.3 机械手自动操作系统流程图 (38)5.4 总程序结构框图 (39)5.5 源程序 (40)5.5.1 机械手手动程序 (40)5.5.2 机械手自动程序 (41)5.6 程序清 (42)总结与展望 (43)致谢 (44)参考文献 (45)附录一 (46)附录二 (47)附录表A FX系列PLC部分功能指令一览表 (48)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第1章前言机械手是工业生产中常用的机械设备, 是现代企业和建筑工地不可缺少的运输工具, 它的动作由相应的控制系统控制,如采用传统的继电接触控制,由于机械触点多, 接线复杂, 因而控制装置体积很大,并且故障率高, 可靠性差, 动作精确度低。
目录第一章绪论 (3)1.1前言 (3)1.2机械手的前景与展望 (3)1.3设计任务书 (6)第二章各部分功能 (9)2.1机械手系统构成 (9)2.2执行系统 (9)2.3控制系统 (10)2.4驱动系统 (10)2.5可行性分析 (10)第三章机械手硬件设计 (13)3.1 可编程控制器PLC及个部分的选择 (13)1、PLC选型 (13)2、电源模块 (13)3、步进电动机 (14)4、步进电机驱动模块 (14)5、传感器 (15)6.FX2N-40MR模块 (16)7.直流电动机 (17)8.旋转码盘 (17)3.2步进电动机的原理 (17)3.3步进电机的PLC控制 (21)3.4 I/O接口功能 (23)第四章机械手软件设计 (26)4.1 PLC程序设计说明 (26)4.2回原位程序 (28)4.3手动单步运行程序 (29)4.4连续自动运行程序 (33)第一章绪论1.1前言用于再现人手的功能的技术装置称为机械手。
机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为工业机械手。
工业机械手是近几十年发展起来的一种高科技自动生产设备。
工业机械手也是工业机器人的一个重要分支。
他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。
机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。
机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。
机械手的结构形式开始比较简单,专用性较强。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
1.2机械手的前景与展望机械手的前景:(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。
(2)机械结构向模块化、可重构化发展。
例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。
(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。
(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制多传感器融合配置技术在产品化系统中已有成熟应用。
(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。
(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。
美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。
(7)机器人化机械开始兴起。
从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。
我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。
但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品:机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。
以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。
因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。
其中最为突出的是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种:在机器人视觉、力觉、触觉、声觉等基础技术的开发应用上开展了不少工作,有了一定的发展基础。
但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。
1.3设计任务书一、设计题目机械手模型的PLC控制系统设计二、设计目的a) 通过设计掌握PLC的基本原理及应用,使学生受到PLC系统设计的综合训练,掌握一般方法和步骤,提高利用PLC 进行应用系统开发的能力。
b) 掌握典型机械手的工作原理和设计思路c) 培养学生查阅技术资料的能力,和综合运用所学知识,结合实际独立完成课题的工作能力。
d) 提高学生对工作认真负责、一丝不苟,对事物能潜心观察、勇于创新、勇于实践的基本素质。
三、设备概述及技术数据1、机械手工作过程概述机械手的工作流程是:开始运行后,如果机械手不在初始位置上,步进电动机开始运转(横轴向手抓方向移动,竖轴向上移动)。
归位后首先横轴步进电动机工作,横轴前伸;前伸到位后,手爪电动机得电后带动手爪旋转;当传感器检测到限位磁头时,电动机停止,PLC控制电磁阀动作,手张开;延时一段时间,竖轴步进电动机工作,竖轴下降;下降到位后,电磁阀复位,手爪夹紧;延时过后,竖轴上升,同时横轴缩回、底盘电动机带动底盘旋转;当横轴、竖轴、底盘都到位后,横轴前伸;到位后,手爪旋转,然后竖轴下降,电磁阀动作,手爪张开;延时后竖轴上升复位,然后开始下一周期动作。
2、技术要求(1)输入电压:AC220~240V或DC24V(2)消耗功率:<250W(3)气源大于0.2Mpa且小于0.85Mpa(4)外型尺寸:60cm×45cm×55cm3、主要参数(1)负荷参数:额定负荷为1kg,最大负荷为3kg(2)臂的运动参数:横轴方向移动范围是450mm,速度是100m/s;竖轴方向移动范围是450mm,速度是100m/s (3)手爪运动参数:旋转角度为180度(4)机械手运动参数:旋转角度为270度四、设计要求1、控制要求(1)手臂上下直线运动、左右直线运动(2)手腕旋转运动(3)手爪夹紧动作(4)机械手整体旋转运动手臂采用电气驱动,由PLC 发出控制脉冲控制步进电动机运转,实现手臂的进给和定位,手爪采用气压驱动。
2、设计内容(1)设计电气控制原理图(2)进行PLC选型及I/O分配(3)PLC控制程序设计(4)按要求撰写设计说明书(5)绘制设计图样五、参考资料1、可编程控制器及应用2、机械手第二章各部分功能2.1机械手系统构成工业机械手由执行机构、驱动机构和控制机构三部分组成。
2.2执行系统(1)手部既直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。
手部多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。
传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、斜槭杠杆式、齿轮齿条式、丝杠螺母式、弹簧式和重力式。
(2)腕部是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。
手腕有独立的自由度。
有回转运动、上下摆动、左右摆动。
一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。
目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它的结构紧凑,灵巧但回转角度小(一般小于 2700),并且要求严格密封,否则就难保证稳定的输出扭距。
因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。
(3)臂部手臂部件是机械手的重要握持部件。
它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。
臂部运动的目的:把手部送到空间运动范围内任意一点。
如果改变手部的姿态(方位),则用腕部的自由度加以实现。
因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。
手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。
因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。
(4)行走机构有的工业机械手带有行走机构,我国的正处于仿真阶段。
2.3控制系统在机械手的控制上,有点动控制和连续控制两种方式。
大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。
主要控制的是坐标位置,并注意其加速度特性。
2.4驱动系统驱动机构是工业机械手的重要组成部分。
根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。
采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便。
2.5可行性分析该设计的核心是PLC控制步进电机技术,下面,仅对该技术进行分析:1步进电机、脉冲与方向信号步进电机作为一种常用的电气执行元件,广泛应用于自动化控制领域。
步进电机的运转需要配备一个专门的驱动电源,驱动电源的输出受外部的脉冲信号和方向信号控制。
每一个脉冲信号可使步进电机旋转一个固定的角度,这个角度称为步距角。
脉冲的数量决定了旋转的总角度,脉冲的频率决定了旋转的速度。
方向信号决定了旋转的方向。
就一个传动速比确定的具体设备而言,无需距离、速度信号反馈环,只需控制脉冲的数量和频率即可控制设备移动部件的移动距离和速度;而方向信号可控制移动的方向。