随机信号分析期末总复习考试提纲重点知识点
- 格式:doc
- 大小:256.50 KB
- 文档页数:10
第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
1、随机实验的特点,满足什么特征?
随机试验须满足下面三个特征
(1)、可在相同条件下重复进行;
(2)、每次试验可能结果(Possible result)不唯一,并能事先确定所有可能结果;
(3)、每次试验结果不确定。
2、概率的定义?
1事件是随机的。
赋予事件出现可能性的度量(Measure),称为概率(Probability)。
“可能性的度量值”是大数试验情形下的统计比例值
P(A) ¼
试验中A出现的次数/总试验次数=nA/n n 足够大
2更一般的定义由概率的公理化定义给出:
3定义若定义在事件域F 的一个集合函数P 满足如下三条件:
(1)、非负性:对任何事件A均有P(A) 大等于0 成立。
即P(A) 大等于0;
(2)、归一性:必然事件(Certain event) 概率为1。
P() = 1;
(3)、可加性:若事件A;B 2 F互斥(Mutually exclusive),即A并B =空,则P(A[
B) = P(A) + P(B)。
则称P 为概率。
3、随机变量之间的“不相关、正交、独立”(各自定义、相关系数定义)?
相互关系:两个随机变量相互独立必定互不相关,反之不一定成立正交与不相关、独立没有明显关系
4、概率分布函数
5、概率密度函数
6、数学期望
三、正交与无关
正交(Orthogonal):EfXY g = 0
线性无关(Uncorrelated)或互不相关:EfXY g = mXmY or cov(X; Y ) = 0。
统计独立=)互不相关;但是,互不相关=)= 统计独立。
概率论基础1.概率空间、概率(条件概率、全概率公式、贝叶斯公式)2.随机变量的定义(一维、二维实随机变量)3.随机变量的描述:⑴统计特性一维、二维概率密度函数、一维二维概率分布函数、边缘分布概率分布函数、概率密度函数的关系⑵数字特征一维数字特征:期望、方差、均方值(定义、物理含义、期望和方差的性质、三者之间的关系)二维数字特征:相关值、协方差、相关系数(定义、相互关系)⑶互不相关、统计独立、正交的定义及其相互关系△雅柯比变换(随机变量函数的变换一维随机变量函数的单值和双值变换、二维随机变量函数的单值变换)5、高斯随机变量一维和二维概率密度函数表达式高斯随机变量的性质△随机变量的特征函数及基本性质、随机信号的时域分析1、随机信号的定义从三个方面来理解①随机过程X(t,ζ)是t,ζ两个变量的函数②X(t,ζ)是随时间t变化的随机变量③X(t,ζ)可看成无穷多维随机矢量在∆t→0,n→∞的推广2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机信号的统计特性分析:概率密度函数和概率分布函数(一维、二维要求掌握)4、随机信号的数字特征分析(定义、物理含义、相互关系)一维:期望函数、方差函数、均方值函数。
(相互关系)二维:自相关函数、自协方差函数、互相关函数、互协方差函数(相互关系)5、严平稳、宽平稳定义、二者关系、判断宽平稳的条件、平稳的意义、联合平稳定义及判定6、平稳随机信号自相关函数的性质:0点值,偶函数,均值,相关值,方差7、两个随机信号之间的“正交”、“不相关”、“独立”。
(定义、相互关系)8、高斯随机信号定义(掌握一维和二维)、高斯随机信号的性质9、各态历经性定义、意义、判定条件(时间平均算子、统计平均算子)、平稳性与各态历经性的关系直流分量、直流平均功率、总平均功率、交流平均功率随机信号的频域分析1、随机信号是功率信号,不存在傅里叶变换,在频域只研究其功率谱。
填空:1.概率与随机变量是随机性信号分析与处理的基础,2.设随机信号变量X的可能取值为0和1 两个值,概率分布为p(x=1)=p,p(x=0)=1-p(0<p<1)称x服从(0,1)分布。
3.设x为随机变量,x为任意实数,定义F(x)=p(x《x)为x的概率分布函数对于任意实数X1 x2(x1<x2)有:(!)p(x1<x<=x2)=F(x2)-F(x1)(2)p(x=x)=F(x)-F(x-)(3)4.常用的数字特称:均值、方差协方差均值:方差:随机信号X(t)的方差定义为方差反映了随机变量X的取值,偏离其均值的偏离程度,D(x)越高X越分散。
下面给出方差与均值和均方值三者之间的关系。
(9.2.5)对于平稳随机信号X(t)而言,有协方差:(9.2.8)(9.2.9)当均值时,有。
自相关函数6.自然界的变化过程分为:确定过程,随即过程7.随机过程的分类:连续随机过程时间状态是连续的连续类型随机序列时间离散而状态连续离散随机过程时间连续而状态离散离散型随机序列时间与状态是离散的8.按照确定的数学公式产生的时间序列,是一个确定性的时间序列但它的变化过程表现出随机序列的特征,把它成为随机序列。
9.如果Fx(x,t)对x的一阶倒数存在,则定义Fx(x,t)=2F(x,t)/2x为随机过程X(t)的一维概率密度10.随机过程X(T)的均值是时间T的函数,也称为均值函数,统一均值是对随即过程X(t)中所有样本函数在时间t的所有取值进行概率加权平均,所以又成为“集合平均”11.如果随机过程X(t)的均值为常数,自相关函数只为2=t1-t2有关,即mx(t)=mx..Rx(T1,T2)=Rx(z),z=t1-t2称为广义平稳随机过程12.非线性系统有:检波器、变频器、限幅器、鉴频器。
13.随机信号的变换:线性变换。
非线性变换14.在实际中为了计算方值【H(w)比较复杂,常常用到一个幅频响应为矩形的理想系统代替实际系统,带宽称为噪声等效遍能带。
(完整版)随机信号重要知识点整理随机信号重要知识点整理1.能量信号和功率信号通常称2)(t x 为信号)(t x 的能量密度或瞬时功率。
信号的总能量是对2)(t x 在整个时间范围积分,即∞∞-=dt t x E x 2)( (1.6)同理,离散信号的总能量定义为∑∞-∞==n x n x E 2)( (1.7)如果信号的总能量有限,即E x <∞,则称)(t x 或()x n 为能量信号;如果信号的总能量⽆限,即E x >∞,但是其平均功率有限,即∞<=?-∞→222)(1lim T T dt t x TP T x (1.8)或(对于离散信号)∞<+=∑-=∞→NNn T x n x N P 2)(121lim (1.9)则称)(t x 或()x n 为功率信号。
然⽽,对于数字信号处理,信号处理的长度总是有限的。
⽽在有限的区间内信号的总能量是有限,因此在处理运算时,可以对功率信号与能量信号不加以区别。
仅当考虑平均功率、平均谱密度时,需要考虑系数1(21)N +。
2. 窄带信号与宽带信号时间信号可以⽤不同频率的正弦波展开(或傅⾥叶级数展开),即信号的傅⾥叶积分反变换:∞∞d e X t x t j )()(21π(1.10)其中)(ΩX 是)(t x 的傅⾥叶变换,⼜称为频谱,它等于∞∞-Ω-=Ωdt e t x X t j )()( (1.11)可见,时间信号可以看作是由简单的正弦波t j e Ω相加(线性叠加)组成,)(ΩX 是)(t x 在频域或频率空间的表⽰。
如果信号)(t x 的频谱)(ΩX 在较窄的频率区间内存在,则称其为窄带信号。
与之对应的是,如果信号)(t x 的频谱)(ΩX 在较宽的频率区间内存在,则称其为宽带信号。
3. 信号处理的理论基础数字信号处理的理论基础:1)Nyquist —Shannon 采样定理;2)傅⽴叶级数;3)z -变换。
时域分析、频域分析。
随机信号重要知识点整理1.能量信号和功率信号通常称2)(t x 为信号)(t x 的能量密度或瞬时功率。
信号的总能量是对2)(t x 在整个时间范围积分,即⎰∞∞-=dt t x E x 2)( (1.6)同理,离散信号的总能量定义为∑∞-∞==n x n x E 2)( (1.7)如果信号的总能量有限,即E x <∞,则称)(t x 或()x n 为能量信号;如果信号的总能量无限,即E x >∞,但是其平均功率有限,即∞<=⎰-∞→222)(1lim T T dt t x TP T x (1.8)或(对于离散信号)∞<+=∑-=∞→NNn T x n x N P 2)(121lim (1.9) 则称)(t x 或()x n 为功率信号。
然而,对于数字信号处理,信号处理的长度总是有限的。
而在有限的区间内信号的总能量是有限,因此在处理运算时,可以对功率信号与能量信号不加以区别。
仅当考虑平均功率、平均谱密度时,需要考虑系数1(21)N +。
2. 窄带信号与宽带信号时间信号可以用不同频率的正弦波展开(或傅里叶级数展开),即信号的傅里叶积分反变换:⎰∞∞-ΩΩΩ=d e X t x t j )()(21π(1.10)其中)(ΩX 是)(t x 的傅里叶变换,又称为频谱,它等于⎰∞∞-Ω-=Ωdt e t x X t j )()( (1.11)可见,时间信号可以看作是由简单的正弦波t j e Ω相加(线性叠加)组成,)(ΩX 是)(t x 在频域或频率空间的表示。
如果信号)(t x 的频谱)(ΩX 在较窄的频率区间内存在,则称其为窄带信号。
与之对应的是,如果信号)(t x 的频谱)(ΩX 在较宽的频率区间内存在,则称其为宽带信号。
3. 信号处理的理论基础数字信号处理的理论基础:1)Nyquist —Shannon 采样定理;2)傅立叶级数;3)z -变换。
时域分析、频域分析。
FFT 算法,滤波器设计。
信号与系统期末复习一、基础知识点:1.信号的频带宽度(带宽)与信号的脉冲宽度成反比,信号的脉冲宽度越宽,频带越窄;反之,信号脉冲宽度越窄,其频带越宽。
2. 系统对信号进行无失真传输时应满足的条件:①系统的幅频特性在整个频率范围(∞<<∞-ω)内应为常量。
②系统的相频特性在整个频率范围内应与ω成正比,比例系数为-0t3.矩形脉冲信号的周期与频谱线的间隔存在着倒数的关系。
4.零输入响应(ZIR )从观察的初始时刻(例如t=0)起不再施加输入信号(即零输入),仅由该时刻系统本身具有的初始状态引起的响应称为零输入响应,或称为储能响应。
5.零状态响应(ZSR )在初始状态为零的条件下,系统由外加输入(激励)信号引起的响应称为零状态响应,或称为受迫响应。
6.系统的完全响应也可分为:完全响应=零输入响应+零状态响应7.阶跃序列可以用不同位移的单位阶跃序列之和来表示。
8.离散信号)(n f 指的是:信号的取值仅在一些离散的时间点上才有定义。
9.信号的三大分析方法:①时域分析法 ②频域分析法 ③复频域分析法10.信号三大解题方法⑴傅里叶:①研究的领域:频域②分析的方法:频域分析法 ⑵拉普拉斯:①研究的领域:复频域②分析的方法:复频域分析法⑶Z 变换:主要针对离散系统,可以将差分方程变为代数方程,使得离散系统的分析简化。
11.采样定理(又称为奈奎斯特采样频率)如果)(t f 为带宽有限的连续信号,其频谱)(ωF 的最高频率为m f ,则以采样间隔ms f T 21≤对信号)(t f 进行等间隔采样所得的采样信号)(t f s 将包含原信号)(t f 的全部信息,因而可()()()zi zs y t y t y t =+利用)(t f s 完全恢复出原信号。
12.设脉冲宽度为1ms ,频带宽度为KHz ms111=,如果时间压缩一半,频带扩大2倍。
13.在Z 变换中,收敛域的概念:对于给定的任意有界序列)(n f ,使上式收敛的所有z 值的集合称为z 变化的收敛域。
《随机信号基础》知识点1、确定函数、随机变量、随机过程三者之间的关系例题:理解最简单随机过程()()Θ+⋅=t a t X ωcos ,其中ω,a 是常数,t 表示时间,Θ表示随机相位。
(1)当t ,Θ均为变量时,()t X 是一族时间t 的函数,即为随机过程; (2)当Θ给定,t 为变量时,()t X 是一个确定的时间t 的函数,即样本函数; (3)当t 给定,Θ为变量时,()t X 表示一个随机变量,即t 时刻的状态; (4)当Θ,t 均给定时,()t X 是一个常量。
总结:随机过程=时间+随机变量,注意扩展,简述题考查多。
2、随机变量的分布函数与概率密度函数 分布函数:()()x X P x F ≤= 概率密度函数:()()dxx dF x f =例题:设某信号源,每T 秒产生一个幅度为A 的方波脉冲,其脉冲宽度X 为均匀分布于[]T ,0中的随机变量。
这样构成一个随机过程()∞<≤t t Y 0,。
设不同间隔中的脉冲是统计独立的,求()t Y 的概率密度()y f Y 。
解:某个时刻()t Y 可以看做随机变量,取范围()nT t T n <≤-1;()t Y 取值只有两种:(){}()[]{}()T Tn t T n t X P t Y P 110--=--≤== (){}()[]{}TtnT T n t X P A t Y P -=-->==1()()()()A y T tnT y T T n t y f Y --+--=δδ1注意:对于离散随机变量的分布函数可表示为:()()∑-=ii i x x U p x F ;概率密度函数可表示为:()()∑-=ii i x x p x f δ。
例题:利用重复掷硬币的试验定义一个随机过程:()⎩⎨⎧=出现反面出现正面,2,cos tt t X π 设“出现正面”和“出现反面”的概率各为0.5;(1)求X(t)的一维分布函数()1,,21,x F x F X X ⎪⎭⎫⎝⎛(2)求X(t)的二维分布函数⎪⎭⎫ ⎝⎛1,21;,21x x F X解:令随机变量Y 表示试验结果,Y=1表示正面,Y=0表示反面。
第 一 章1.1△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()2XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
1、仪器是人们用来对客观世界中的物质实体及其属性进行观察、测定、传输、变换、显示、分析处理与控制的各种器具与系统的总称。
仪器研究内容是信息获取、信息处理和信息利用。
2、一台完整的精密仪器,主要由基准部件即标准器、感受转换部件即传感器、转换放大部件、瞄准部件、数据处理部件、显示部件以及将它们连接起来的特定部件组成。
3、惯性导航系统完全自主、保密性强,且机动灵活,具备多功能参数输出。
误差随时间迅速累积;导航精度随时间而发散,不能长时间单独工作,必须不断校准。
4、主要包括功能、性能、精度、经济实用和外观等方面;1、精度是测量值与真值的接近程度。
中等、高、超高,对应于1 ~10,0.1~1,小于0.1单位微米。
分别以直线位移精度、主轴回转精度和圆分度精度为例进行划分2、精密仪器的主要参数是能基本反映设备的概貌和特点的一些项目。
包括精度参数、尺寸参数、运动参数、动力参数和结构参数等。
3、古典的阿贝原则是阿贝于1890年提出的一项量仪设计的指导性原则:为使仪器能够给出准确的测量结果,必须将被测件布置在基准元件沿运动方向的延长线上。
也就是说,仪器中被测零件的尺寸线和作为读数用的基准线(如线纹尺)应顺次排列成一条直线。
遵守阿贝原则的测量结果:消除了一次误差,保留了二次微小误差。
布莱恩于1979年提议将阿贝原则改成为更具有普遍意义的叙述方式:位移测量系统工作点的路程,应和被测位移作用点的路程位于一条直线上。
如果这不可能,那么就必须使传送位移的导轨没有角运动,或者用实际角运动的数据来计算偏移的影响。
一般认为阿贝原则包含三方面的意思:①一条直线;②没有角运动;③计算出偏移的影响并加以补偿。
遵守了这三条中的任何一条,都是遵守了阿贝原则4、粗精分离原则:高速低精度,低速高精度5、如果温度波动速率足够慢,被测薄壁管件和C形框架都能跟得上温度的变化,则读数头给出的偏差值很小;如果温度变化的速率足够快,即使薄壁管件也来不及对此变化作出反应, 则读数头给出的偏差值也很小。
第 一 章1.1不考 条件部分不考△雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况)△随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58)△ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61()()()()()()()221()211222211,,exp 22exp ,,exp 22T Tx m X XXX X n n XT T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E ejM U σπσμ---⎡⎤--⎢⎥==-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=-==-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦C C C u u r u u ru u r u u r u u r u u r L u r u ru u r u r L另外一些性质: []()20XY XY X YX C R m m D X E X m ⎡⎤=-=-≥⎣⎦第二章 随机过程的时域分析1、随机过程的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机过程的概率密度P74、特征函数P81。
(连续、离散)一维概率密度、一维特征函数 二元函数4、随机过程的期望、方差、自相关函数。
(连续、离散)5、严平稳、宽平稳的定义 P836、平稳随机过程自相关函数的性质:0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88222()()()()()(0)()X X XX X X X X XXC R m R R R R τττρτσσ--∞==-∞=非周期相关时间用此定义(00()d τρττ∞=⎰)8、两个随机过程之间的“正交”、“不相关”、“独立”。
(P92 同一时刻、不同时刻)9、两个随机过程联合平稳的要求、性质。
P92()()()()XY YX XY YX R R C C ττττ=-=-10、复随机过程定义、自相关函数定义、复平稳定义。
P94()()(),Z R t t E Z t Z t ττ*⎡⎤+=+⎣⎦11、随机过程 “均方可微”P104、“均方可积”P106 12、平稳过程导数的分析P106。
期望、自相关函数、互相关函数()()()22()()()X X X XY YX Y dR dR d R R R R d d d τττττττττ==-=-13、高斯随机过程的一系列性质:◆高斯过程的特征函数、协方差矩阵。
◆高斯过程的线性变换、高斯过程的微分、高斯过程的积分,仍是高斯过程。
◆高斯过程的不相关=独立。
◆平稳高斯过程 宽平稳=严平稳 (2-180)14、各态历经过程的定义、及在电子技术中的物理意义。
时间均值、时间自相关定义式直流分量、直流平均功率、总平均功率、交流平均功率第三章 随机信号的频域分析 最重要的知识点: 维纳—辛钦定理⑴平稳过程,()()XX G R ωτ↔⑵两个联合平稳的实随机过程,()()()()12j XYXY j XY XYG R e d R G e d ωτωτωτττωωπ∞--∞∞-∞⎧=⎪⎨⎪=⎩⎰⎰◆实随机过程功率谱密度()X G ω是非负、实、偶函数 ◆互谱密度的性质 ()()()XY YX YX G G G ωωω*==-◆2(),0()2()()0,01()02()1()()2X X X X X X X G F G U F G F G ωωωωωωωωωωωω≥⎧==⎨<⎩⎧≥⎪⎪⇒=⎨⎪⎪⎩-<是非函数偶负的实§3.3 白噪声⑴定义:平稳随机过程、均值为零、功率谱密度在整个频率轴(,)-∞+∞上均匀分布 (三个条件)⑵白噪声的自相关函数是一个面积等于功率谱密度的冲激函数()()()20()0X X P E X t R G ωδ⎡⎤===⎣⎦g⑶白噪声带宽无限⑷白噪声不同时刻的状态互不相关、正交 (如果是高斯。
)第四章 随机信号通过线性系统的分析§4.1 线性系统的基本理论 稳定的物理可实现系统 §4.2 随机信号通过线性系统 时域分析()()()()()(0)()()()()()()X Y X Y Y XY X YX X Y m h d R R h h P R R R m R h R h ττττττττττττ∞==**-==*=*-⎰频域分析 输入信号()X t 宽平稳,输出信号()Y t 也宽平稳,且()Y t 与()X t 联合平稳()22(0)(0)()()()()()()()()()()()()11()()()22Y X Y X X XY X YX X Y Y X m m H H h d G G H G H H G H G G H G P G d H G d ττωωωωωωωωωωωωωωωωωππ∞∞∞-∞-∞=⋅===-=⋅⎧⎨=-⋅⎩==⎰⎰⎰§4.3 色噪声的产生与白化滤波器掌握设计方法()()()()222()()()(),Y X G G H H j s H s H s H s H s ωωωωω⎧=⇒⎪⎪==-⎨⎪⎪⎩三个步骤:分解选择零极点都在左半平面§4.4 白噪声通过线性系统⑴白噪声通过线性系统后,白噪声通过线性系统后输出的功率谱密度完全由系统的频率特性所决定。
2001()()((22))2j Y N R h u h u du e N H d ωττωτωπ∞∞-∞=+=⎰⎰22(0)()()22Y Y N N P R h u du H d ωωπ∞∞===⎰⎰⑵等效噪声带:用一个频率响应为矩形的理想系统来代替实际系统max ()I YK H ω=⎧⎪⎨=⎪⎩P P 输入为同一白噪声时等效原则: 22max m x 0a 0()(22)Y Y I e e H N N H πωπωωω∆∆⋅⇒===P P P 频域法22max|()|()eH d H ωωωω∞∆=⎰低通22|()|(0)H d H ωω∞=⎰ 带通2200|()|()H d H ωωω∞=⎰时域法22max()()e h u duH ωπω∞∆=⎰低通 带通220()()()()2Y X N G G H H ωωωωω==-∞<<∞()220()e h t dt h t dt πω∞∞⎡⎥=∆⎤⎢⎣⎦⎰⎰()02020()t e j h u duh t e dt ωωπ∞∞-=⎡⎤⎢⎥⎣∆⎦⎰⎰X t输入物理可实现系统线性系统的结论:双侧随机信号()1、若输入()Y t也是宽平稳的,且输入与输出联合X t是宽平稳的,则系统输出()平稳2、若输入()Y t也是严平稳的。
X t是严平稳的,则输出()3、若输入()Y t也是宽各态历经的X t是宽各态历经的,则输出()4、若线性系统输入为高斯过程,则输出为高斯分布5、若系统输入信号的等效噪声带宽远大于系统的带宽,则输出接近于高斯分布(输入白噪声的情况)第六章 窄带随机信号㈠Hilbert 变换及其性质。
()()[][]()()()()11ˆˆˆ()()()()sgn()()ˆ()()()()()2()()ˆˆ()()cos sin cos sgn()sin sin sgn()cos sin cos st s t st S j S ts t s t js t s t S S U st s t H H H a t t a t t H t tH t tH a t t a t t ωωωπωωωωωωω-=*⇔=-=+⇔==-=-⎧=⎡⎤⎧Ω=Ω⋅Ω⎪⎪⎣⎦⎨⎨Ω=-Ω⋅Ω=-⎡⎤⎪⎪⎩⎣⎦⎩%%%g g㈡随机过程的“解析形式”、及性质及其复指数形式()()ˆˆˆˆˆˆˆ()()()()()()()ˆˆ()()()()()sgn ()()sgn ()ˆ()2()2()()()4()()()()()o X X X XX X XX XXX X XX XXX X X X X Xj X X A X t X t jXt R R G G R R R R G j G G j G R R R jR G G U R R e G G ωτττωωττττωωωωωωττττωωωττω=+=⎧⎪⎨=⎪⎩⎧==-⎪⎨=-=⎪⎩⎧⎡⎤==+⎪⎣⎦⎨=⎪⎩=↔=%%%%%%%%0()A ωω-。