散热器基础知识..
- 格式:ppt
- 大小:581.50 KB
- 文档页数:24
低碳钢散热器十大品牌价格基础知识云集1、金旗舰散热器按最长环路,室内管道的摩阻和局部阻力,每米管长,按200-250Pa/M估算;2、机械循环热水采暖系统,摩擦阻力损失占50%,局部阻力损失占50%;3、换热器按0.1-0.15MPa估算;4、设计裕量:10-20%。
1MPa=10KGF/CM2=100MH2O 1MMH2O=10Pa26、循环水泵如何选择?应根据计算所得的水量G及总循环阻力H来选择水泵.与外网连接的系统应换算外网在本楼接口处的供回水压差,是否够用(城市热网一般预留压差≥5MH2O)。
27、金旗舰散热器的工作压力定多少是合适的?我国暖通空调设计规范规定,采暖系统高度超过50M时就应分区设置.这时系统的静压约为55MH2O。
而采暖系统的动压(推动水循环,包括换热器等)约为20M-30M H2O,动压和静压的总和约为70-90MH2O(即0.7-0.9MPa)。
所以散热器的工作压力取1.0MPa 已够用了。
关于个别城市热网直连的情况可作特殊处理。
28、系统运行前的压力测试如何进行?在系统或系数的某部分投入运行前,必须对其进行压力测试.首先,所测系统应排出空气并充满处理过的水,然后用泵将压力升到至少为工作压力的1.5倍。
这一压力应该至少保持10分钟,压力下降不超过0.02 Mpa才为合格,在压力测试过程中,应对接头,连接处和设备进行目测检查以确保无泄漏。
测试人员应进行记录,该记录应包括时间、地点、观测设备以及测试的初始和终了压力等信息,也应包括注意到的可能渗漏.最后测试人员在测试记录上签字。
具体测点位置及系统试压的压力值均应按施工验收规范要求确定。
29、热水供暖系统设计应强调哪些问题?应从以下6方面考虑:1、必须保证满水条件下的闭式循环,最好实现密闭式热水采暖系统;2、必须强调供暖水质的处理及控制;3、必须保证有足够的水量,足够的资用压头;4、必须有良好的排气,保证水循环畅通;5、必须考虑水力平衡,保证各组散热器均能通水;6、对较长的直管段,必须考虑热补偿。
散热器基础知识手册目录一、风扇结构二、风扇技术术语三、散热片材质介绍四、热管介绍五、测试篇章六、超频篇章七、CPU技术简介八、CPU ROADMAP九、导热膏第一章、风扇结构(工作原理)CPU散热器又称为CPU冷却器,英文名称CPU COOLER,它是针对CPU而设计的散热器装臵,其目的是通过CPU散热器的运作,将CPU之热能散发掉,以达到降低温度的效果。
它通过散热片迅速将CPU之热能传导出去,再借由风扇将其热量强制吹走。
1.1风扇的分类散热风扇是利用旋转叶片与气体的相互作用来压缩与输送气体的,其本体主要由转子和定子组成。
散热风扇一般分以下三类:1.1.1轴流式风扇:气流出口方向与叶片转动方向相同,在轴向剖面上,气流在旋转叶片的流道中沿着轴线方向流动。
1.1.2 离心式风扇:利用离心力作用实现气体输送,扇叶在电机的驱动下高速旋转,使充满叶片间的气体沿着叶片向外甩出,在蜗壳内将动能转换成压力能后从出风口排出。
在轴向剖面上,气流沿着半径方向流动。
1.1.3 混流式风扇:气流沿轴向进入叶轮后,近似地沿着锥面流动,气流方向界于离心式与轴流式之间。
1.2风扇的基本结构一般的风冷散热器使用的主要是轴流式风扇,我们以它为例加以说明。
轴流式风扇可分为两部分1.2.1转子:包括扇叶(含磁框)、轴芯、油圈及卡簧等1.2.2 定子:包括电机、轴承、扇框等。
1.3风扇运转的基本原理根据安培右手法则,导体通过电流,周围会产生磁场,若将此导体臵于另一固定磁场中,则会产生吸力或斥力,造成物体移动。
依据此原理,在直流风扇的扇叶底部,事先安装一个充有磁性的橡皮胶磁铁。
环绕着矽钢片,轴心部分缠绕两组线圈,并使用霍尔感应元件作为同步侦测装臵,控制一组电路,该电路使缠绕轴心的两组线圈轮流工作。
矽钢片产生不同磁极,此磁极与橡胶磁铁产生吸斥力。
当吸斥力大于风扇的静摩擦力时,扇叶自然转动,由于霍尔感应元件提供同步信号,扇叶因此得以持续运转,至于其运转方向,可依右手法则而定。
散热器采暖系统安装基础知识什么是采暖系统?散热器采暖系统:以壁挂炉为热源的散热器系统一般采用单管跨越式、并联式、章鱼式(前两种应用较多),供回水管道为地下直埋。
各房间散热器可安装温控阀,如与室内温控器配合则可以达到明显的节能效果。
散热器的连接方式:1.单管串联式:单管室内采暖系统不能单独调节每个散热器的流量,在实际中应尽力避免采用这种连接方法。
2.串联跨跃管式:跨越管单管室内采暖系统是针对单管系统无法调节的弊病设计的,有专用的阀门,可以调节每个散热器的流量。
3.同程并联式:每个散热器中的水流都经过相同的管道长度。
所以,对每个散热器中的水流量水力平衡的调节更加简单。
如果散热器可以被安装成一个环路,所用管道的长度和双管异程系统是等长的。
4.异程并联式:这种管网系统上,每个散热器上,都需要安装水力平衡阀门,对不同散热器上的水循环进行水力平衡的调节。
以避免在离水泵较近的散热器水流量大,而较远的散热器水流量小的问题。
5.章鱼式连接主要特点:节能:一对一供热,单组使用加热的水量比较少,循环快。
全开时所用管径比较小,热水循环次数快,热交换次高;安全:地面无任何接口连接,无漏水隐患;均热:单管供暖,分水器流量调节,各组升温一制;使用双管系统应注意:由于散热器与壁挂炉之间呈并联关系会出现水力失调现象。
在系统中应利用相应的平衡手段对系统进行水力平衡。
最简单的做法是利用安装在散热器出口处的截止阀,将距离壁挂炉近的散热器上的截止阀适当关小。
较远散热器上的截止阀适当开大,经反复几次调节后可使每个散热器流过相同的流量。
暖气片安装位置及注意事项:1、最佳的安装位置为窗户底部或者冷墙壁上(见左下图)。
虽然这样做会增加房间的热量损失,但是这样能够使热量在室内的分布更加均匀,使室内更加舒适(散热器安装位置对室内温度的影响分布的影响见右下图)。
2、连接方法的选择:散热器的进、出口成对角线时,它的散热效果最佳。
当散热器长度小于1米时,它的进、出口也可以在同侧安装。
了解电脑散热器的作用与选择电脑散热器的作用与选择电脑散热器在现代计算机中起着至关重要的作用。
电脑使用过程中会产生大量的热量,如果不能有效地散热,就会导致计算机的温度过高,进而影响计算机的性能,甚至造成硬件损坏。
因此,了解电脑散热器的作用与选择是每个电脑用户都应该具备的基础知识。
一、电脑散热器的作用电脑散热器主要有以下几个作用:1.散热:电脑的主要部件,如CPU(中央处理器)、显卡等,在工作过程中会产生大量的热量。
散热器通过与这些部件接触,将其产生的热量快速散发出去,确保计算机的温度保持在正常范围内。
2.保护硬件:过高的温度会对计算机的硬件造成损害。
散热器的主要作用之一就是保护硬件,降低其工作温度,延长硬件的使用寿命。
3.降低噪音:一些高性能的计算机部件在工作过程中会发出噪音,而电脑散热器可以通过降低这些部件的工作温度,减少机器的负载,进而降低噪音产生的频率和强度。
二、电脑散热器的选择选择合适的电脑散热器是确保电脑性能和稳定性的重要一步。
下面是一些选择电脑散热器的注意事项:1.散热性能:散热器的主要功能是散热,因此散热性能是选择散热器的首要考虑因素。
要选择具有优秀散热性能的散热器,可以参考散热器额定功率、耐用性以及其他用户的评价。
2.适配性:散热器必须与计算机的硬件兼容。
因此,在购买散热器之前,要了解自己计算机的规格和接口类型,以确保散热器可以正确安装并与硬件配合使用。
3.噪音:一些电脑散热器在工作过程中会产生噪音。
对于对噪音比较敏感的用户,可以选择一些专门设计用于降低噪音的散热器,以获得更好的使用体验。
4.价格:散热器的价格因品牌、型号以及性能而异。
在购买散热器时,要根据自己的需求和经济实力做出合理的选择。
总结:电脑散热器是确保计算机性能和稳定性的重要组成部分。
了解电脑散热器的作用与选择是每个电脑用户必备的知识。
选择合适的电脑散热器需要考虑散热性能、适配性、噪音以及价格等因素。
希望本文的内容可以帮助读者更好地了解电脑散热器,并为选择合适的散热器提供一些参考建议。
CFD散热基础知识介绍人们对手机等电子产品的依赖程度越来越高,长时间用手机聊天、看影视剧、玩游戏,往往会导致手机迅速发热,而手机类电子产品发热温升超过10度,性能往往会下降50%以上,并且手机类电子产品发热严重会导致手机重启或者爆炸等意外事故的发生。
如何更好提升手机的散热性能并且预防上述意外事故的发生,需要借助CFD手段在手机类电子产品的研发阶段就“把好关”。
那么,CFD软件如何在手机类电子产品中产生作用?1电子热设计基础理论1热传递的方式热量传递的基本规律是热量从高温区域向低温区域传递,热量的传递方式主要包括三种:传导、对流、辐射。
•传导传导是由于动能从一个分子转移到另一个分子而引起的热传递。
传导可以在固体、液体或气体中发生,它是在不透明固体中发生传热的唯一形式。
对于电子设备,传导是一种非常重要的传热方式。
利用传导进行散热的方法有:增大接触面积,选择导热系数大的材料,缩短热流通路,提高接触面的表面质量,在接触面填导热脂或加导热垫,接触压力均匀等。
•对流对流是固体表面和流体表面间传热的主要方式。
对流分为自由对流和强迫对流,是电子设备普遍采用的一种散热方式——所谓的自然对流是因为冷、热流体的密度差引起的流动,而强迫风冷是由外力迫使流体进行流动,更多是因为压力差而引起的流动。
产品设计中提到的风冷散热和水冷散热都属于对流散热方式。
影响对了换热的因素很多,主要包含:流态(层流/湍流)、流体本身的物理性质、换热面的因素(大小、粗糙程度、放置方向)等。
•辐射辐射是在真空中进行传热的唯一方式,它是量子从热体(辐射体)到冷体(吸收体)的转移。
提高辐射散热的方法有:提高冷体的黑度,增大辐射体与冷体之间的角系数,增大辐射面积等。
2增强散热的方式电子产品的设计可以通过以下几种方式增强散热:•增加有效散热面积:散热面积越大,热量被带走的越多•增加强迫风冷的风速、增大物体表面的对流换热系数•减小接触热阻:在芯片与散热器之间涂抹导热硅脂或者填充导热垫片,可有效减小接触面的接触热阻,这种方法在电子产品中最常见。
暖气片(散热器)基础知识【1】暖气片(散热器)基础1、暖气片(散热器)计量单位的W 是什么?散热器技术性能中的W 是热功率计量单位。
是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。
2、什么是金属热强度?其在工程中的实际意义是什么?金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量.Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。
各种散热器的金属热强度比较表散热器的类型金属热强度范围(W/Kg℃)散热器类型金属热强度范围(W/Kg℃)钢制柱型散热器0.6-1.3 铝制柱翼型散热器 1.8-3.9钢制板型散热器0.9-1.4 铜铝复合柱翼散热器 1.2-2.83、什么是散热器的传热系数?散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面情况等。
4、散热器的散热过程是什么样的?当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散热器不断地传给温度较低的室内空气,其散热过程为:1、散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数)2、内壁面靠导热把热量传给外壁;3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人.5、散热器的水容量对采暖的影响如何?散热器水容量对采暖的影响:1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度.但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响;2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快,便于分户计量供热,既省钱又方便;3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。
热力学里的散热结构-概述说明以及解释1.引言1.1 概述在热力学中,散热是一个重要的概念。
散热结构是指能够有效传递热量并将其散发出去的结构体系。
在很多工程领域,如电子设备、汽车、建筑等,散热结构都扮演着至关重要的角色,能够确保设备正常运行并提高其寿命。
本文将探讨散热结构在热力学中的基本概念和设计原则,以及其在工程领域中的重要性和应用展望。
通过深入探讨散热结构的相关知识,希望能够为读者提供更深入的了解和认识。
1.2 文章结构文章结构是整篇文章的骨架,它清晰地规划了文章的内容和逻辑顺序。
在本文中,我们将按照以下结构展开讨论:1. 热力学基础:- 我们将简要介绍热力学的基本概念,如热量、功和热力学第一定律,以便为后续的讨论做好铺垫。
2. 散热结构的重要性:- 探讨散热结构在工程领域中的重要性,以及其在各种设备和系统中的作用和意义。
3. 散热结构设计原则:- 着重介绍散热结构的设计原则和方法,包括如何提高散热效率、减少热损失和优化散热结构的关键要点。
通过以上内容的逐步展开,我们将全面探讨热力学中散热结构的重要性和设计原则,为读者深入了解该主题提供系统化的指导和知识。
1.3 目的:本文旨在探讨热力学中散热结构的重要性和设计原则,旨在帮助读者深入了解散热技术在各种行业和领域中的应用。
通过对热力学基础知识和散热结构的相关理论进行分析和讨论,希望读者能够更好地理解散热结构在热传导和能量转换中的重要作用,进一步提高工程实践中的散热效率和能源利用率。
同时,希望通过本文的阐述,引起人们对散热技术的重视和关注,促进相关研究和应用的发展,为推动绿色环保和节能减排做出贡献。
2.正文2.1 热力学基础热力学是研究能量转化与传递规律的一门学科,它描述了热量如何在物质之间传递的过程。
在热力学中,有一些基本的概念需要了解,比如热力学第一定律和热力学第二定律。
热力学第一定律也称为能量守恒定律,它表明能量不会在热传导中消失,只是会从一个系统转移到另一个系统。
热参数热参数电子组件热管理技术中最常用也是重要的评量参考是热阻(thermal resistance),以IC封装而言,最重要的参数是由芯片接面到固定位置的热阻,其定义如下:热阻值一般常用θ或是R表示,其中Tj为接面位置的温度,Tx为热传到某点位置的温度,P为输入的发热功率。
热阻大表示热不容易传递,因此组件所产生的温度就比较高,由热阻可以判断及预测组件的发热状况。
早期的电子热传工业标准主要是SEMI标准,该标准定义了IC封装在自然对流、风洞及无限平板的测试环境下的测试标准。
自1990年之后,JEDEC JC51委员会邀集厂商及专家开始发展新的热传工业标准,针对热管理方面提出多项的标准,其中包含了已出版的部分、已提出的部分建议提出的部分,热管理相关标准整理成如图一之表格分布。
和SEMI标准相比,虽然基本量测方式及原理相同,但内容更为完整,另外也针对一些定义做更清楚的说明。
SEMI的标准中定义了两种热阻值,即θja及θjc,其中θja是量测在自然对流或强制对流条件下从芯片接面到大气中的热阻,如图二(a)所示。
由于量测是在标准规范的条件下去做,因此对于不同的基板设计以及环境条件就会有不同的结果,此值可用于比较封装散热的容易与否,用于定性的比较,θjc是指热由芯片接面传到IC封装外壳的热阻,如图二(b),在量测时需接触一等温面。
该值主要是用于评估散热片的性能。
和θ之定义类似,但不同之处是Ψ是指在大部分的热量传递的状况下,而θ是指全部的热量传递。
在实际的电子系统散热时,热会由封装的上下甚至周围传出,而不一定会由单一方向传递,因此Ψ之定义比较符合实际系统的量测状况。
Ψjt是指部分的热由芯片接面传到封装上方外壳,如图二(d)所示,该定义可用于实际系统产品由IC封装外表面温度预测芯片接面温度。
Ψjb和Θjb类似,但是是指在自然对流以及风洞环境下由芯片接面传到下方测试板部分热传时所产生的热阻,可用于由板温去预测接面温度。
电子散热器技术手册一、引言电子设备在工作时会产生大量的热量,如果不能及时散热将会导致设备的性能下降甚至损坏。
为了解决这个问题,电子散热器技术应运而生。
本手册将介绍电子散热器的原理、分类、选型和应用等相关内容。
二、散热原理电子散热器的工作原理是利用散热材料的导热性能将设备产生的热量传导到周围环境中。
常见的散热材料有金属散热器、热导胶、热管等。
其中,金属散热器是最常用的一种散热材料,它能够有效地将热量传递给周围空气,从而实现散热的效果。
三、散热器分类根据散热方式和结构形式的不同,电子散热器可以分为以下几种类型:1.被动散热器:被动散热器是指不需要额外的电源或风扇来驱动的散热器。
被动散热器通常由散热片、散热底座和散热材料组成。
被动散热器适用于散热功率较低或环境温度较低的场合。
2.主动散热器:主动散热器是指需要额外的电源或风扇来驱动的散热器。
主动散热器通常由散热风扇、散热片和散热底座组成。
主动散热器适用于散热功率较高或环境温度较高的场合。
3.水冷散热器:水冷散热器是一种利用水冷却设备的散热器。
水冷散热器由水冷头、水泵、水箱和散热片组成。
水冷散热器具有散热效率高、噪音小的优点,适用于对散热效果和噪音要求较高的场合。
4.热交换器:热交换器是一种同时能够吸热和散热的设备。
热交换器通常由两个独立的热交换单元组成,用以实现对流热交换。
热交换器适用于需要精确控制温度的场合。
四、散热器选型在选型散热器时,需要考虑以下几个因素:1.散热功率:散热功率是指设备需要散热的热量。
选型时要根据设备的散热功率选择合适的散热器,以确保散热效果良好。
2.散热材料:散热材料的导热性能直接影响散热效果。
常见的散热材料有铜、铝等,选型时要根据散热要求选择合适的散热材料。
3.散热方式:不同的散热方式适用于不同的散热功率和环境温度。
例如,被动散热器适用于散热功率较低或环境温度较低的场合,而主动散热器适用于散热功率较高或环境温度较高的场合。
五、散热器应用电子散热器广泛应用于以下领域:1.计算机:电子散热器是计算机散热的重要设备,可以有效降低CPU等组件的温度,提高计算机的稳定性和性能。
散热设计基础知识概述散热设计是指为了有效地降低电子设备的温度,保证其正常工作和延长使用寿命而进行的一系列设计和措施。
在电子设备中,由于电子元器件的工作会产生大量的热量,如果不及时散去,就会导致设备过热,影响性能甚至发生故障。
因此,良好的散热设计对于电子设备的可靠性和稳定性至关重要。
热传导热传导是指热量从高温区域传递到低温区域的过程。
在散热设计中,通过合理的热传导路径和散热材料的选择,可以有效地提高散热效率。
常见的热传导路径有导热胶、散热铜片等。
导热胶可以填充在散热片和芯片之间,提高热量的传导效率;散热铜片可以用于连接芯片和散热器,增加传热面积。
散热器散热器是散热设计中常用的设备,通过增大散热面积和利用辐射、传导和对流等方式来散热。
散热器的设计应考虑散热面积、散热片的数量和间距、散热片的形状等因素。
同时,散热器的材料也需要选择热导率高、密度低的材料,如铝合金、铜等。
风扇风扇可以通过强制对流的方式增加空气流动,加速热量的传递。
在散热设计中,风扇通常和散热器结合使用,形成风冷散热系统。
风扇的选型应考虑风量、噪音、功耗等因素。
同时,风扇的布局和安装位置也需要合理,以确保散热效果最佳。
散热片散热片是散热器中的重要组成部分,通过增大散热面积来提高散热效果。
散热片的设计应考虑片的数量、间距、形状等因素。
常见的散热片形状有直翅片、弯曲片等。
直翅片可以增大散热面积,提高散热效率;弯曲片可以增加空气流动路径,增强对流散热效果。
散热材料散热材料是散热设计中的关键因素之一,直接影响散热效果。
常见的散热材料有导热胶、导热硅脂、热导率较高的金属材料等。
散热材料的选择应根据散热要求和成本等因素进行综合考虑。
综合考虑在散热设计中,需要综合考虑多个因素,如散热器的尺寸、散热片的形状、风扇的选型等。
同时,还需要考虑电子设备的工作环境和工作负载等因素。
合理的散热设计应确保散热效果最佳、成本最低、可靠性最高。
总结散热设计是电子设备设计中的重要环节,良好的散热设计可以有效地提高设备的可靠性和稳定性。
机械设计基础热传导和散热设计热传导和散热是机械设计中非常重要的考虑因素,特别是对于那些需要长时间运行或工作性能要求较高的设备。
良好的热传导和散热设计可以确保设备在工作过程中保持稳定的温度,提高设备的寿命和性能。
本文将介绍机械设计中的热传导和散热基础知识,并提供一些常用的散热设计方法。
一、热传导基础知识热传导是指热量通过物质的传递,通过各种物质中原子和分子之间的相互作用和碰撞实现。
常用的三种热传导方式包括导热、对流和辐射。
1. 导热导热是通过物质内部的分子或原子间的传递来进行的。
导热的速率取决于物质的导热系数、截面积和温度梯度。
在设计机械设备时,应选择导热系数较高的材料,以提高导热效率。
2. 对流对流是通过流体(如空气或液体)传递热量的方式。
对流的速率受到流体的速度、温度差和流体性质等因素的影响。
在热传导设计中,应考虑合理的流体通道设计,以便更好地实现对流散热。
3. 辐射辐射是通过热辐射进行的,即物体表面的热辐射。
辐射的速率取决于物体的温度和表面特性。
对于机械设计中的散热问题,通常需要选择适当的散热表面,以便更好地实现辐射散热。
二、散热设计方法在机械设备的设计过程中,为了确保设备的正常运行和工作效果,需要进行合理的散热设计。
下面介绍一些常用的散热设计方法。
1. 散热器设计散热器是机械设备中常用的散热元件之一,通过增大散热表面,提高散热效率。
在进行散热器设计时,应考虑以下因素:- 散热面积:散热面积越大,散热效果越好。
- 散热材料:选择导热性好的材料,例如铝合金或铜,以提高散热效率。
- 散热器结构:设计合理的散热片结构,以便更好地增加热传导面积和对流散热效果。
- 风扇设计:适当选择风扇的大小和转速,以达到最佳的对流效果。
2. 散热通道设计散热通道设计是指为了更好地实现流体对流散热而设计的通道结构。
在进行散热通道设计时,应注意以下几点:- 通道尺寸:通道的宽度、高度和长度应根据具体需求进行合理设计。
过大或过小的通道都会影响散热效果。
前言所谓风冷散热器,其散热原理即通过与发热物体(一般为CPU、GPU等半导体芯片)紧密接触的金属散热片,将发热物体产生的热量传导至具有更大热容量与散热面积的散热片上,再利用风扇的导流作用令空气快速通过散热片表面,加快散热片与空气之间的热对流,即强制对流散热。
风冷散热器分解图:一款优秀的风冷散热器必须具备三个条件:1、采用做工精良,设计合理。
材料合适的散热片。
2、配有性能强劲,工作稳定,长寿命的风扇。
3、以及出色的整体结构与安装设计。
然而要设计出一款优良的散热片,我们就必须对热力学、散热器的部件及其结构有所了解,那么我们就将风冷散热器的讲解分为热力学、散热片、风扇、扣具结构等几个部分,及其风冷散热器的各项指标以及现行技术进行浅要的分析与介绍。
第一章热力学基本知识首先来说说相关的热力学方面:物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。
为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。
热传导定义:通过物体的直接接触,热从温度高的部位传到温度低的部位。
热能的传递速度和能力取决于:1.物质的性质。
有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁。
这样就有了采用不同材质的散热器,铝、铜、银。
它们的散热性能依次递增,价钱当然也就成正比。
2.物体之间的温度差。
热是从温度高的部位传向温度低的部位,温差越大热的传导越快。
热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一。
所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。
许多厂商都在于CPU接触的部分采用塞铜柱或铜片的工艺,就是为了将热量尽快传导出来。
热对流热通过流动介质(气体或液体)将热量由空间中的一处传到另一处,即由受热物质微粒的流动来传播热能的现象。
根据流动介质的不同,可分为气体对流和液体对流。