奥数专题百分数应用题
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
六年级奥数百分数问题
六年级奥数百分数问题
百分数问题
例3、某乡要修一条长5000米的环山水渠。
第一期工程修了全长的20%,第二期修了第一期的.70%。
两期工程一共修了多少米?
例4、玩具商店同时出售两件玩具,各为120元,一件可以赚25%,另一件赔25%,那么同时出手这两件玩具,是赚还是赔?
练习:
工程问题
例4、甲、乙两队开挖一条水渠。
甲队单独挖要8天完成,乙队单独挖要12天完成。
现在两队同时挖了几天后,乙队调走,余下的甲队3天内完成。
乙队挖了多少天?
例3、修一条公路,甲队独修15天完工,乙队独修12天完工。
两队和修4天后,乙队调走,剩下的路由甲队继续修完。
甲队一共修了多少天?
例4、甲、乙两队开挖一条水渠。
甲队单独挖要8天完成,乙队单独挖要12天完成。
现在两队同时挖了几天后,乙队调走,余下的甲队3天内完成。
乙队挖了多少天?
练习:
6、一批零件有200个,由师傅单独做,需4小时完成;由徒弟单独做,需5小时完成。
谁做得快?快百分之几?
7、两列火车同时从甲、乙两地相对开出。
快车行完全程需要20小时,慢车行完全程需要30小时。
两车开出几小时相遇?。
基本知识:1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)5、折扣几折就是十分之几也就是百分之几十6、纳税缴纳的税款叫做应纳税额。
应纳税额与各种收入的比率叫做税率。
应纳税额=总收入×税率7、利率存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%典型例题1去年春天,我们学校的同学在小河边先种240棵小树,18棵没有成活,后来补种了160棵,又有7棵没有成活,这年春天植数的成活率是多少?对应练习11、王爷爷在自家的小屋后面种下了150棵小树,过了一段时间发现枯死了10棵,于是又补种了10棵,结果全部成活,王爷爷去年植树的成活率是多少?2、小明做了180道口算题,要想使正确率达到98%以上,他至少要做对多少道题?典型例题2小王是一个狂热的“驴友”,每周六都要进行户外活动,今天又是一个周六,原计划每小时步行6千米。
8小时可以达到目的地。
实际行进中由于天气原因,速度减少了10%,实际用了多长时间到达目的地?对应练习21、王师傅加工一批零件,计划每小时加工10个,12小时全部完成,实际每小时多加工20%,实际用了多长时间?2、修一条水渠,每天修500米,5天修了全程的50%,剩下的工作效率提高了20%,剩下这段工程可以提前多少天完工?3、王先生向某工厂订购一批产品,每件定价100元,订购60件,王先生对厂长说:“如果你每件减价1元,我就多订购3件。
分数百分数应用题一、单位“1”定长短。
1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。
哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。
哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。
哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。
哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。
哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。
哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。
他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。
基本知识:1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)5、折扣几折就是十分之几也就是百分之几十6、纳税缴纳的税款叫做应纳税额。
应纳税额与各种收入的比率叫做税率。
应纳税额=总收入×税率7、利率存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%典型例题1去年春天,我们学校的同学在小河边先种240棵小树,18棵没有成活,后来补种了160棵,又有7棵没有成活,这年春天植数的成活率是多少?对应练习11、王爷爷在自家的小屋后面种下了150棵小树,过了一段时间发现枯死了10棵,于是又补种了10棵,结果全部成活,王爷爷去年植树的成活率是多少?2、小明做了180道口算题,要想使正确率达到98%以上,他至少要做对多少道题?典型例题2小王是一个狂热的“驴友”,每周六都要进行户外活动,今天又是一个周六,原计划每小时步行6千米。
8小时可以达到目的地。
实际行进中由于天气原因,速度减少了10%,实际用了多长时间到达目的地?对应练习21、王师傅加工一批零件,计划每小时加工10个,12小时全部完成,实际每小时多加工20%,实际用了多长时间?2、修一条水渠,每天修500米,5天修了全程的50%,剩下的工作效率提高了20%,剩下这段工程可以提前多少天完工?3、王先生向某工厂订购一批产品,每件定价100元,订购60件,王先生对厂长说:“如果你每件减价1元,我就多订购3件。
小学奥数六年级上百分数的应用练习题(含答案)班级-------------------- 姓名----------------学号-----------------1、西山村2006年每一百户拥有电脑60台,比2004年增加24台,2006年比2004年增加了百分之几?(百分号前保留一位小数)24÷(60-24)≈66.7%2、王叔叔养的鸡死了2只,存活率是95%,他养活了几只鸡?2÷(1-95%)×95%=38(只) 3、实验小学有女生336人,占全校学生的127,这个学校有男生几人? 336÷127×(1-127)=240(人) 4、两个工程队修一条路,甲工程队修了51,正好修了120米,乙队修了30%,两队共修了多少米?120÷51×(51+30%)=300(米) 5、服装店一款服装打八折出售,后因销售量很好,又提价51。
这款服装现在的售价是原定价的百分之几? 1×80%×(1+51)=96%6、某商品按获利30%定价,实际打八折出售,实际获得的利润率是多少?假设进价为10元,定价就是10×(1+30%)13元,实际打八折售价是13×80%=10.4元,利润率是(10.4-10)÷10=4%7、某小学学生中83是男生,男生比 女生少328人,该小学共有学生多少人?328÷(1—83—83)=1312人8、水结成冰时,它的体积增加了原来的111。
冰化成水后,它的体积减少了冰的几分之几? (1112—1)÷1112=1219、某校六(1)捐款数是另外两个班的32,六(2)斑班的捐款数是另外两个班的21,六(3)班的捐款数是120元。
问:这三个班共捐款多少元? 120÷(1-52-31)=450(元)10、含盐8%的盐水500克,蒸发掉多少水后,就可以得到含盐10%的盐水? 500×8%=41克 40÷10%=400克 500-400=100克11、一批零件,第一天完成了它的一半,第二天完成了它的21%,这时已完成的比未完成的多84个,这批零件共有几个?50%+21%=71% 1-71%=29%84÷(71%-29%)=200(个) 12、一袋面粉,吃去31又加千克,这时反而比原来重20%,原来这袋面粉多少千克?8÷(31+20%)=15千克13、甲商店今年1月营业额是210万元,2月比1月增加了10%,3月比2月减少了20%,商店今年第一季度营业额一共多少?210×(1+1+20%)+210×(1+20%)×(1—20%)=625.8万元14、商店将两件不同的商品均以每件120元出售,结果一件赚了20%,另一件却赔了20%,那么商店老板到底是赚了还是赔了?赚(赔)了几元?120÷(1+20%)=100元 120÷(1-20%)=150元 100+150-240=10元15、张明看一本书,每天看30页,3天后还剩全书的85没有看,这本书共有多少页?30×3÷(1—85)=240页 16、一杯水,第一次倒出31,第二次倒出5升,第三次倒出剩下的91,第四次加入4升,这时杯中有盐水多少升?12—4=8升 8÷(1—91)=9升 9+5=14升 14÷(1—31)=21升17、运来一种含水量为90%的 水果1000千克,5天后检测发现含水量降低了,只有80%,现在这批水果有多少千克?1000×(1—90%)=100千克 100÷(1—80%)=500千克18、牛的头数比羊的头数多25%,羊的头数比牛的头数少百分之几? (1+25%—1)÷(1+25%)=20%19、姐妹俩共养兔100只,姐姐养的31比妹妹养的101多16只,求姐姐、妹妹各养了多少只?(100—16×3)÷(1+101×3)=40只20、六(1)班今天请假人数是上学人数的91,中途又有一人请假离开,这时请假人数是上学人数的223,那么,这个班共有几人? 1÷(253—101)=50(人)。
奥数-----百分数的应用1. 星期天的早晨,红红和兰兰进行长跑比赛。
两人一共跑了9千米。
如果红红少跑2千米,那么红红跑的路程就是兰兰跑的3/4,两人各跑了多少?2. 有甲乙两个课外活动小组,甲组的人数是乙组的4/5,后来又从乙组调16人到甲组,这时乙组人数是甲组的3/4,甲乙两组原来各有多少人?3. 有两根长短粗细均不同的蚊香,短的一根可燃5小时,长的一根燃烧的时间是短的一根的3/5,同时点燃两根蚊香,经过2小时他们剩下的长度正好相等。
未点燃之前短的一根是长的一根的几分之几?4. 一段路程,先上坡后平路,再下坡。
各段路程的长度比是2:4:5,一个人骑车行这三段路程用的时间比是4:3:2,已知它们平路每小时行16千米,求这个骑车人上坡和下坡的速度。
5. 牛的头数比羊的只数多25%,羊的只数比牛的头数少百分之几?6. 果园里桃树的棵数比梨树少20%,梨树的棵数比桃树多百分之几?7. 甲厂产量比乙厂多25%,乙厂产量比甲厂少百分之几?8. 某工厂去年的水费比前年增加了5%,今年采取节约用水措施,水费预计比去年减少5%,这个工厂今年的水费预计是前年的百分之几9. 某工厂三月份电费比二月份增加了15%,四月份实行节约用电措施,电费比三月份减少了20%,四月份电费是二月份的百分之几10. 某工厂去年产量比前年减少了20%,今年产量比去年增加了30%,今年产量比前年增加了百分之几?11. 有一桶油第一次取出了40%,第二次比第一次多取出了5千克,这时桶里还有油15千克,这桶油重多少?12. 一个粮仓第一次运出30%的粮食,第二次运出的比第一次的2倍还多5吨,这时粮仓中还剩下20吨粮食,这个粮仓原来有多少吨粮食13. 一个粮仓第一次运出30%的粮食,第二次运出的比第一次的2倍少10吨,这时粮仓中还剩下50吨粮食,第二次比第一次多运出多少吨粮食?14. 兄弟二人共存钱110元,如果兄弟取出自己存款的20%,弟存入7元,这时两人存款相等。
经典奥数:百分数的实际应用(专项试题)一.选择题(共7小题)1.一瓶饮料,喝了它的80%后剩下130毫升,这瓶饮料原来有多少毫升?列式为()A.130×80%B.130÷80%C.130×(1﹣80%)D.130÷(1﹣80%)2.一件上衣的进价为150元,商家加价20%出售,后因款式过时,再打八折出售,现价比进价()A.高B.低C.相同D.无法比较3.有甲、乙、丙三筐苹果,甲筐比乙筐重30%,乙筐比丙筐轻30%,()筐最重。
A.甲B.乙C.丙D.无法比较4.一套西装,裤子90元,上衣的价格比裤子多75%,上衣()元。
A.157.5B.176.5C.167.5D.152.55.修一条800m长的公路,已经修了全长的30%。
根据列式“800×(1﹣30%)”,可以提出的问题是()A.修了多少米?B.还剩多少米没有修?C.修了全长的百分之几?D.还剩百分之几没有修?6.加工一批零件,原计划8小时完成,实际只用5小时就完成了。
实际工作效率比原计划提高了()%。
A.37.5B.60C.62.5D.1607.为了缓解交通拥挤状况,某市正在进行道路拓宽。
人民路的路宽由原来的10米增至18米,拓宽了()%。
A.60B.44C.85D.80二.填空题(共9小题)8.一道数学题,全班45人做对,5人做错,正确率是%;一种商品现价160元,比原价低了40元,是打折出售的。
9.从甲地到乙地,客车要用8小时,货车要用10小时,客车的速度比货车快%。
10.某楼盘2020年销售总额48亿元,相当于2019年销售总额的,2021年受楼市调控影响,销售总额只有2019年的50%,2021年销售总额亿元。
11.5G技术打破了信息传输的空间限制,因此具有高速率等特性。
中国电影《长津湖》用4G下载需要10分钟,如果改用5G下载所需的时间约是4G的1%,这部电影用5G下载只需要秒。
12.一种洗面奶,第一天按原价出售,无人问津;第二天降价20%,仍没有人来买,第三天再降价24元,终于售出。
例1:一件商品按20%的利润定价,然后又打八折出售,结果亏了80元,求这件商品的成本是多少元?练习:某商品按20%的利润定价,然后按八八折出售,共获得利润84元,求商品的成本是多少元?例2:某种商品每个5元利润卖出8个的钱数,与按每个20元利润卖出5个的钱数一样多。
这种商品的成本是多少元?练习:某商品按定价出售,每件可获利润45元,如果按定价的70%出售10件,与按定价每件减价25元出售12件所获得的利润一样多,这种商品每件定价多少元?例3:某种商品按定价卖出可获利润960元,若按定价的80%出售,则亏损832 元,求商品的成本是多少元?练习:1、一种商品,如果按定价的90%出售,可获利180元;如果按定价的75% 出售,仍可获利90元,这件商品进价多少元?2、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么这堆糖果中有奶糖多少块?能力检测:1、国美商场有电视760台,九月份以原价出售了一部分后,国庆期间又以八折出售,恰好全部售完。
结算时发现每台正好是按原价85%出售的,那么按原价出售的有多少台?2、有24个相同体积的圆柱桶,其中5个装满水,11个装了一半水,8个是空的。
要把这些桶分给3个人,使每个人得到的桶数相同,水量也相同,该怎样分?(不允许将水倒出)3、一件衣服,第一天按原价出售,没人来买,第二天降价20%出售,仍没人来买,第三天再降低24元,终于售出,已知售出价格恰是原价的56%,那么原价多少元?4、一件商品随季节的变化出售,如果按现价降价10%,仍可获得180元;如果降价20%出售,就要亏损240元,这件商品进价多少元?5、甲、乙两种商品进货价共220元,甲种商品按30%的利润定价,乙种商品按20%的利润定价,后来两种商品降价处理,都按90%出售,结果仍获得29.3元,求两种商品的进货价。
百分数奥数应用题专项训练一、填空题1.甲数比乙数少20%,那么乙数比甲数多百分之 .2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之 .(400:肺呼出;500: ;100:固体废物;1500:水性废物)3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖 块.4.把25克盐放进100克水里制成盐水,制成的这种盐水,含盐量是百分之几?有200克这样的盐水,里面含盐 克.5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是 厘米.6.某次会议,700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有 人.7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之 .8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是 .9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是 .10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆黑子 个,白子 个.. 100 500 400 1500 A B C二、解答题11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本⨯(1+20%)⨯N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元?12.盈利百分数=买入价买入价买出价-⨯100% 某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价是多少?13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85,问这位顾客第二次买了多少钱的书.14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几?。
小学奥数百分数应用题【三篇】【第一篇:纳税问题】扬州某风景区2007年“十一”黄金周接待游客9万人次,门票收入达270万元。
按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%答:“十一”黄金周期间应缴纳营业税13.5万元。
【第二篇:和应纳税额有关的简单实际问题】王叔叔买了一辆价值16000元的摩托车。
按规定,买摩托车要缴纳10%的车辆购置税。
王叔叔买这辆摩托车一共要花多少钱?分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。
也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000 ×10%+ 16000 = 1600 + 16000 = 17600(元)方法2:16000 ×(1 + 10%)= 16000 ×1.1 = 17600(元)答:王叔叔买这辆摩托车一共要花17600元钱。
【第三篇:应纳税额的计算方法】益民五金公司去年的营业总额为400万元。
如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。
缴纳营业税占营业额的3%,即400万元的3%。
求一个数的百分之几是多少,也用乘法计算。
计算时可将百分数化成分数或小数来计算。
400×3%= 12(万元)或400×3%= 400×0.03 = 12(万元)答:去年应缴纳营业税12万元。
点评:在现实社会中,各种税率是不一样的。
应纳税额的计算从根本上讲是求一个数的百分之几是多少。
奥数10百分数应用题1、较复杂的百分数应用题例1、甲校学生人数是乙校学生人数的40%,甲校女生人数是甲校学生人数的30%,乙校男生人数是乙校学生人数的42%,那么,两校女生总数占两校学生总数的百分之几?分析:首先统一单位“1”,把乙校学生人数看作单位“1”,甲校学生就是40%,两校学生的总人数用(1+40%)表示。
甲校女生占乙校学生的40%×30%=12%乙校女生占乙校学生的1-42%=58%解:40%×30%+(1-42%)=70%70%÷(1+40%)=50% 答:两校女生总数占两校学生总数的50%做一做:1、如果一个三角形的底边长增加10%,底边上的高缩短10%,那么这个三角形的面积是原来三角形面积的百分之几?解:把三角形原来的底和高分别看作单位“1”,则变化后三角形的底和高分别为1+10%和1-10%,变化后的三角形的面积是原来三角形面积的(1+10%)×(1-10%)=99%,答:例2、有一堆糖果,其中奶糖占45%,再放入32块水果糖后,奶糖就只占25%,那么这堆糖中有奶糖多少块?分析:奶糖的个数是不变的,把它看作单位“1”。
原来水果糖占奶糖的100-45/45加入32块后水果糖占奶糖的100-25/25加入的32块水果糖点奶糖的(100-45/45)-(100-25/25)解:32÷{(100-45/45)-(100-25/25)}=18(块)答:这堆糖中有奶糖18块。
做一做:2、某中学上年度高中男、女生共有290人,这一年度高中男生增加4%,女生5增加%,共增加了13人,本年度该校有男、女生各多少人?分析:可以假设男生和女生增加的一样多,可以都是4%,也可以都是5%,这样就可以算出增加总人数的差,从而可以求出原来男生和女生的总数。
解:假设男女生都增加4%,则增加的总人数为290×4%=11.6(人),增加人数的差为13-11.6=1.4(人)则原来女生的人数为1.4÷(5%-4%)=140(人)现在女生的人数为140×(1+5%)=147(人)现在男生人数为(290-140)×(1+4%)=156(人)答:本年度有男生156人,女生147人。
五年级奥数题及答案百分数问题(精选5篇)第一篇:五年级奥数题及答案百分数问题五年级奥数题及答案:百分数问题将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
答案与解析:因为销售总额相等,故商品单价与销售量成反比,单价之比为1:1.25,即4:5,那么销售量之比为5:4,减少了(5-4)5*100%=20%。
第二篇:小学五年级奥数题及答案小学五年级奥数真题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
六年级奥数百分比的应用典型题训练2例甲、乙两种商品的成本共300元,商品甲按30%的利润来定价,商品乙按20%的利润来定价。
为了促销,两种商品按定价9折出售,仍获利42元。
甲商品的成本是多少元?解设甲商品的成本是x元,乙商品的成本为(300-x)元。
[(1+30%)x+(1+20%)(300-x)]×90%=300+42,[1.3x+1.2×(300-x)]×0.9=342,x=200。
答:甲商品的成本是200元。
练习一1.一种商品,甲店进货价比乙店便宜12%,两店同样按20%的利润定价,一件商品乙店比甲店多收入24元。
甲店的定价是多少元?2.某商品按定价出售,每个可以获得45元的利润。
现在按定价的八五折出售8个,或按定价每个减价35元出售12个,所获得的利润一样多。
这种商品每个定价多少元?3.书店卖书,凡购买同一种书100本以上,就按书价的90%收款。
某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的,只有甲种书得到了优惠,这时,买甲种书所付总钱数是买乙种书所付总钱数的2倍。
已知乙种书每本定价是15元,优惠前甲种书每本定价多少元?例2、果品公司购进西瓜5.2万千克,每千克进价0.98元,共付运费1840元,预计损耗为1%。
如果希望全部售出后能获利17%,那么每千克西瓜的零售价应当定为多少元?解设每千克西瓜的零售价为x元。
(52000×0.98+1840)×(1+17%)=52000×(1-1%)x,x =1.2。
答:每千克西瓜的零售价为1.2元。
练习二1.玩具店新进一批成本为40元的玩具,按40%的利润定价出售,售出80%以后,剩下的玩具打折出售,结果获得的利润是原计划的86%。
剩下的玩具出售时是按定价打了几折?2.甲、乙两个个体户做生意,甲得利30%,乙损失20%,因此乙现在的资金仅是甲现在的资金的-已知两人原有资金共12035元,甲、乙两人原来分别有资金多少元?3.商店购进玻璃工艺品500个,每个进价100元。
阶梯奥数----百分数应用题(二)【例题】姐妹两人要折纸鹤240个,当妹妹完成自己任务的80%和姐姐完成自己任务的75%时,还剩56个纸鹤没折,问姐妹两人两人各自的任务是多少?【详解】[56-240*(1-80%)]/(80%-75%)=160个-----------------姐姐的任务240-160=80个----------------妹妹的任务【仿练1】小明有一些玻璃球放在A,B两个盒子里,其中A盒里的玻璃球占全班玻璃球的56%。
如果从A盒里取出18个放入B盒中,这时两个盒中的玻璃球各占总数的50%,问小明共有多少玻璃球?【仿练2】某校六年级男生人数是女生人数的5/6,后从外校转来4名男生,从本校转走2名女生,这时男生人数是女生人数的87.5%,问这个学校六年级现在又多少学生?【仿练3】某服装厂要加工一批服装,任务分配给4间车间。
三车间比四车间的工人数多20%,二车间工人比三车间工人少10%,一车间工人比二车间多10%,已知一车间比四车间多47人,那么4个车间共有多少工人?【拓展1】一次数学考试共有5道试题,作对第1,2,3,4,5题的人数分别占参加考试人数的82%,93%,86%,78%,80%。
如果做错三道或三道以上为不及格,那么这次数学考试的及格率至少是多少【提示:设参加考试人数为100人】【拓展2】某冷饮店有一茶桶酸梅汤,上午售出其中的20%,下午售出20升,晚上售出剩下的15%,最后剩下半桶多一升,问一茶桶酸梅汤有多少升?【拓展3】书架上共有故事书和辅导书324本,故事书的4/9和辅导书的30%加起来是118本,问书架上有故事书和辅导书各多少本?【提示:先假设辅导书也是4/9,,再与实际本数相比较】【拓展4】有大小相同的红、白、黑三种颜色塑料小球两包,第二包的球数是第一包的1.5倍,第一包里红色球占20%,第二包里白色球占45%,两包中黑球所占百分数相同,现将两包混合在一起,红色球占26%,问这时白色球占百分之几?【拓展5】某部队为扩收新兵做准备, 将原来两个连重新编为三个连,将原一连的1/3与原二连的25%编成新一连,将原一连的25%与原二连的1/3编成新二连,余下的120 人编成新三连,若新一连比新二连人数多10%,问原一连有多少人?。
乐平巨人学校,专注中小学生课外辅导。
巨人教育,把最好的教育带给您的孩子!
小学奥数浓度问题百分数应用题
把盐放入盐水中溶解后,得到盐水,这里的盐水叫溶液,其中盐叫溶质,水叫溶剂,盐的重量占盐水重量的百分比叫盐水的百分浓度。
溶质
一般有:百分浓度= ———×100%
溶液
溶质
或:百分浓度= ——————×100%
溶质+溶剂
如果我们把这个公式进行变化,可以得到下面的公式:
溶质=百分浓度×溶液
溶液=溶质÷百分浓度
从这些公式中,我们还不难发现这样一些比例关系。
比如:
当百分浓度一定时,溶质与溶液成正比例关系。
当溶质一定时,溶液与百分浓度成反比例关系。
当溶液一定时,溶质与百分浓度成正比例关系。
例1、蜜蜂采的花蜜含有60%的水分,用这种花蜜酿成只含水分20%的蜂蜜3.5千克,需这样的花蜜多少千克?
例2、甲容器中有8%的盐水300克,乙容器中有12.5%的盐水120克,往甲、乙两个容器中分别倒入等量的水,要使两个容器的盐水浓度一样,各需倒入多少克水?
例3、配制硫酸含量为20%的硫酸溶液1000克,需要用硫酸含量为18%和23%的硫酸溶液各多少克?
例4、甲、乙、丙三种盐水的浓度分别为20%、18%、16%,混合后得到100克18.8%的盐水,已经知道乙比丙多30克,那么甲盐水有多少克?
例5、有甲、乙两只有刻度的大容器,其中甲装有40千克水,乙装有80千克酒精,第一次从乙倒一半给甲,混合后再从甲倒一半给乙,这样连续做四次,第四次混合后,乙容器中还剩多少纯酒精?它的浓度是多少?
地址:乐平市乐平中学直走150米(长寿路557号)。
六年级百分数的奥数题一、基础概念类。
1. 把10克盐放入90克水中,盐水的含盐率是多少?解析:含盐率 = 盐的质量÷盐水的质量×100%。
盐的质量是10克,盐水的质量是盐的质量 + 水的质量 = 10+90 = 100克。
所以含盐率 = 10÷100×100% = 10%。
2. 一个数增加20%后是120,这个数是多少?解析:设这个数为x,增加20%后的数就是x(1 + 20%)。
已知x(1+20%)=120,即1.2x = 120,解得x=120÷1.2 = 100。
3. 某工厂去年的产量是800件,今年比去年增产25%,今年的产量是多少件?解析:今年的产量 = 去年的产量×(1 + 增产的百分数)。
去年产量是800件,增产25%,所以今年产量 = 800×(1 + 25%)=800×1.25 = 1000件。
二、折扣与利润类。
4. 一件商品原价200元,打八折出售,售价是多少元?解析:打八折就是按原价的80%出售。
售价 = 原价×折扣率,所以售价 = 200×80% = 200×0.8 = 160元。
5. 某商品按20%的利润定价,然后按八八折卖出,共得利润84元,这件商品的成本是多少元?解析:设成本是x元,定价就是x(1 + 20%),售价就是x(1 + 20%)×0.88。
利润= 售价成本,可列方程x(1 + 20%)×0.88−x = 84。
化简得1.2x×0.88 x=84,即1.056x x = 84,0.056x = 84,解得x = 1500元。
6. 商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。
问:这批凉鞋共多少双?解析:设这批凉鞋有x双。
已经卖出的凉鞋是(x 5)双。
总售价是14.8(x 5),总成本是13x。
六上--第三单元--百分数--奥数题(附答案)第三单元 百分数奥数题板块一 百分率【例题1】实验小学二(1)班今天没到校人数是到校人数的191。
求二(1)班今天的出勤率。
【练习1】希望小学六(3)今天缺勤人数占出勤人数的241。
求六(3)班今天的出勤率。
【例题2】水量问题(1)160千克青草,晒成干草后质量是28千克。
求青草的含水率。
(2)新疆盛产葡萄干,假如有1000千克葡萄,含水率为96.5%,晾晒一周后,含水率降为95%,那么这些葡萄干的质量减少了多少千克?【练习2】妈妈买来10千克蘑菇,含水量为99%,晾晒一会儿后,含水量变为98%,那么蒸发掉多少千克水分?【例题3】六年级男、女生各有80人参加数学竞赛。
男生不及格人数是及格人数的91,女生不及格人数是及格人数的73,求六年级这次数学竞赛的及格率是多少?【练习3】实验小学四年级有140人,体育达标率为95%,五年级学生体育达标率为98%,五年级体育不达标的学生比四年级少2人。
五年级体育达标的有多少人?【例题4】全世界胡杨的90%在中国,中国胡杨的90%在新疆,新疆胡杨的90%在塔里木,塔里木的胡杨占全世界的 %。
(2011•走美杯)【练习4】已知甲校学生人数是乙校学生人数的40%,甲校女生人数是甲校学生人数的30%,乙校男生人数是乙校学生人数的42%,两校女生总人数占两校学生总人数的百分之几?板块二 浓度问题一.基本概念:1.溶质:被溶解的物质(糖、盐、酒精);2.溶剂:溶解溶质的液体(一般是水);3.溶液:溶质+溶剂4.浓度:溶质占溶剂的质量百分比。
二、重要公式:1.溶质的质量+溶剂的质量=溶液的质量2.0000100100⨯+=⨯=溶剂质量溶质质量溶质质量溶液质量溶质质量浓度3.变形公式:(1)溶液=溶质÷浓度 (2)溶质=溶液×浓度三、解题方法:1.方程法;2.寻找不变量;3.十字交叉。
【例题1】加水稀释问题。
在含盐5%的480克盐水中,加入20克盐,这时新盐水的浓度是多少?【练习1】有一瓶200克的糖水,浓度为30%,如果在这瓶糖水中倒入100克水,那么得到的新糖水浓度是多少?【例题2】浓缩问题在一杯100克浓度为20%的糖水中,加入100克水。
百分数应用题(一) 知识引领 在日常生活中,我们常常听到出勤率、收视率、成活率等词语,这些都叫百分率,也叫百分数和百分比。
有关百分率的问题,经常会出现在我们的周围,例如,两杯糖水,比较哪一杯甜一些,农药的稀释等等,这些都是有关百分数的问题。
本章,我们就一起来探讨百分数的应用问题。
经典题型 例1、 某商品降价1200元后,售价为4800元,该商品打了几折出售? 思路导航 求打了几折,就是先要求降低的价格是原价的百分之几,我们把原价看做单位“1”,降低的价格和原价比,关系为:降价÷原价,知道了
降低了百分之几,就可以求出现价是原价的百分之几,最后再折算成折扣就可以了。
1200÷(1200+4800) =1200÷6000 =20% 1—20%=80%=8折 答:该商品打了8折。
模仿提升1 1、 一件商品第一次降价10%,第二次又降价10%,现价是原价的百分之几? 2、 姐妹两人上山采蘑菇,姐姐采的比妹妹多20%,妹妹采的比姐姐少百分之几? 3、 商场进行“买四赠一”的促销活动,某商品原价为每瓶100元,如果购买该商品10瓶比原来可节省多少钱?
例2 狐狸、小熊、小鹿、小猴得到了1千克饼干,怎样分配好呢?大家请狐狸出主意,狐狸说:“饼干不多,我就少分一点吧,我先留下20%,小猴从我留下来的饼干中分
25%,小鹿从小猴分剩后的饼干中分30%,小熊再从小鹿剩下的饼干中分35%,最后剩下的一点给我,怎么样?”大家都觉得狐狸分得最少,便同意了。
问狐狸、小猴、小熊、
小鹿各分得多少饼干? 思路导航 狐狸首先分出了20%,即分去了100
20×1=(千
克),
剩下的饼干为1—=(千克)
小猴分得的饼干为:×=(千克) 小鹿分得的饼干为:×=(千克) 小鹿所剩的饼干为:—=(千克) 小熊分得的饼干为:×=(千克) 剩下的饼干为: —=(千克) 狐狸分得的饼干为:+=(千克) 答:狐狸分到千克,小猴分到千克,小鹿分到千克,小熊分到千克。
方法总结:本题只要按百分比逐步计算就可以了,但把
百分数化成小数计算较为方便。
模仿提升2
1、 运一批货,第一天运了这批货物的94多300吨,
第二天运了这批货物的%少40吨,正好运完,这批货物有多少吨? 2、 果园里有苹果树、梨树共800棵,其中苹果树
占60%,后来又种了一些苹果树,这样苹果树占总数的80%,后来又种了多少苹果树?
3、 甲数比乙数多20%,乙数比丙数少20%,甲数相当于丙数的百分之几?
4、 甲车从A 地到B 地,需要8小时,乙车从B 地开往A 地需10小时,甲车的速度比乙车快百分
之几?
例3 有两堆煤共136吨,从甲堆中取走30%,从一堆
中取走25%,这时乙剩下的比原来总数的85少13吨,原
来甲堆有多少吨煤?
思路导航 根据乙剩下的比原来总数的85少13吨,可
以求出乙堆剩下多少吨煤:
136×8
5—13=72(吨)
根据从乙堆中取走25%剩下72吨,可求出
乙堆原有多少吨煤:
72÷(1—25%)=96(吨)
最后再求出甲堆原有多少吨煤: 136—96=40(吨)
答:甲堆原有40吨煤。
模仿提升3
1、一个直角梯形,它的上底是下底的60%,如果将上第增加24米,可变成正方形,原来直角梯形的面积是多少平方米?
2、光明服装厂一车间人数占全厂的25%,二车间人数比一车间少
51,三车间人数比二车间多10
3,三车间是156人,这个工厂共有多少人?
4、 有两只桶共装44千克油,若从第一桶倒出20%,
第二桶倒进千克,则两只桶内的油相等,原来每只桶各装油多少千克?
例4 两个自然数之和等于90,第一个数的25%与第二个数的75%之和等于30,找出这两个数。
思路导航 如果把第一个数的25%与第二个数的75%之和扩大4倍,就得到第一个数的1倍与第二个数的3倍之和,再减去第一个数与第二个数之和,就得到第二个数的2倍的数。
因为25%×4=1,75%×4=3,所以第一个数与第二个数的3倍之和等于第一个数的25%与第二个数的75%之和的4倍,即第一个数与第二个数的3倍之和为:30×4=120 第二个数的2倍为: 120—90=30 第二个数为: 30÷2=15 第一个数为: 90—15=75 答:第一个数为75,第二个数为15。
模仿提升4
1、甲、乙两数之和为480,甲的30%和乙的40%的和等于164,求甲、乙两数各是多少?
2、甲、乙两人共带了540元去逛商场,甲用了180元买了一条裤子,乙用自己的钱的80%买了一双运动鞋,这时两人剩下的钱一样多,甲、乙各带了多少钱?
例5 有一堆糖果,其中甲种糖占总数的45%,再放入16块乙种糖后,甲种糖只占现在总数的25%,这堆糖果中有多少块甲种糖?
思路导航 题目中甲种糖的总量不变,在放入16块乙种
糖后,甲种糖只占总数的25%,这表明此时其他糖是甲种糖的(100%—25%)÷25%=3(倍),但在放入16块乙种糖前,其他糖只占原来总量的1—45%=55%,因此,原来这堆糖果共有:16÷(135%—55%)=20(块) 因此,甲种糖共有:20×45%=9(块) 答:这堆糖中有9块甲种糖。
模仿提升5
1、早上水缸里放满了水,白天用去其中的20%,傍晚又用去27升,晚上用去剩下的10%,最后还剩下半水缸多1升的水,问满水缸有多少升?
2、有甲、乙两个课外活动小组、甲组人数是乙组人数的80%,后来又有10人加入乙组,这时乙组人数是甲组人数的150%,原来甲、乙两组各有多少人?
3、甲、乙两个班共84人,甲班人数的%与乙班人数的75%共58人,问两班各有多少人?
4、某厂第一车间人数是第二车间的80%,如果从第一车间调10人到第二车间,这时第一车间人数是第二车间人数的75%,原来两个车间各多少人?
奥赛传真
1、某修路队修一条路,5天修完了全长的20%,照这样计算,完成任务还需多少天?
2、水果店香蕉筐数比苹果多40%、苹果筐数比梨多20%,香蕉筐数比梨的框数多百分之几?
3、甲数比乙数多25%,乙数比甲数少百分之几?
4、一项工程,甲独做30人完成,乙独做20天完成,甲的工作效率比乙的工作效率低百分之几?。