2023年高考数学一轮复习点点练34抛物线含解析理
- 格式:docx
- 大小:186.76 KB
- 文档页数:11
第八节 抛 物 线2023年高考数学总复习内容索引必备知识·自主学习核心考点·精准研析核心素养测评【教材·知识梳理】1.抛物线的定义(1)M为平面内的动点,F为平面内的定点,l 为平面内的定直线,d为M到l 的距离,满足下列两个条件的点M的轨迹为抛物线:①______;②_____.(2)当F∈l 时,点M的轨迹为过__________________.2.抛物线中参数p的几何意义:_________________.|MF|=d 点F且与l 垂直的直线焦点到准线的距离F ∉l3.标准方程的形式:(1)焦点在x轴正半轴:___________;(2)焦点在x轴负半轴:____________;(3)焦点在y轴正半轴:___________;(4)焦点在y轴负半轴:____________.4.标准位置抛物线的对称性:对称轴为焦点所在坐标轴.y 2=2px(p>0)y 2=-2px(p>0)x 2=2py(p>0)x 2=-2py(p>0)【易错点索引】序号易错警示典题索引1不会利用定义转化考点一、T1,22联想不到利用焦点弦的有关结论求解考点二、T33运算不过关导致出错考点三、角度1【教材·基础自测】1.(选修2-1P69例4改编)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )A.9B.8C.7D.6【解析】选B.抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,根据题意可得|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.2.(选修2-1P73A组T3改编)已知抛物线y2=2px(p>0)的焦点为F,P为抛物线上任意一点,则以PF为直径的圆C与y轴( )A.相交B.相切C.相离D.以上都不对。
高考数学第一轮复习:《抛物线》最新考纲1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的简单应用.【教材导读】1.若抛物线定义中定点F 在定直线l 上时,动点的轨迹是什么图形?提示:当定点F 在定直线l 上时,动点的轨迹是过点F 且与直线l 垂直的直线. 2.抛物线的标准方程中p 的几何意义是什么? 提示:p 的几何意义是焦点到准线的距离.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程及其简单几何性质标准 方程 y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形顶点 (0,0)对称轴 x 轴y 轴焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率 e =1准线方程x =-p 2x =p 2y =-p2y =p 2【重要结论】抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2 α(α为弦AB 的倾斜角). (3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p .1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) (A)(-1,0) (B)(1,0) (C)(0,-1)(D)(0,1)B 解析:由准线过已知点可求出p 的值,进而可求出抛物线的焦点坐标.抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) (A)2 (B)12 (C)14(D)18D 解析:本题考查抛物线的定义.抛物线y =2x 2上的点到焦点的距离等于该点到准线的距离,所以最小距离是p 2,又2p =12,则p 2=18,即|PF |的最小值为18,故选D.3.已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( ) (A)2 (B)12 (C)32(D)52C 解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,所以x 1+x 2=3, 所以点C 的横坐标是x 1+x 22=32.4.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:依题意知F 坐标为p2,0, 所以B 的坐标为p4,1代入抛物线方程得 p 22=1,解得p =2,所以抛物线准线方程为x =-22,所以点B 到抛物线准线的距离为24+22=34 2. 答案:34 25.直线l 过抛物线x 2=2py (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是6,AB 的中点到x 轴的距离是1,则此抛物线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=y 1+y 2+p =2+p =6,∴p =4.即抛物线方程为x 2=8y .答案:x 2=8y考点一 抛物线的定义及其应用(1)长为2的线段AB 的两个端点在抛物线y 2=x 上滑动,则线段AB 的中点M到y 轴距离的最小值是________.(2)已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|P A |+|PM |的最小值是________.(3)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:(1)如图,AB=2,要使AB的中点M到y轴的距离最小,则|BG|+|AE|的值最小,即|AF|+|BF|的值最小.在△ABF中,|AF|+|BF|≥|AB|,当A,B,F三点共线时取等号,即当线段AB过焦点F时,AB的中点M到y轴的距离最小,最小值为|AE|+|BG|2-14=1-14=34.(2)将x=4代入抛物线的方程y2=4x,得y=±4.又|a|>4,所以点A在抛物线的外部.由题意知F(1,0),设抛物线上点P到准线l:x=-1的距离为|PN|,由定义知,|P A|+|PM|=|P A|+|PN|-1=|P A|+|PF|-1.画出简图(图略),易知当A,P,F三点共线时,|P A|+|PF|取得最小值,此时|P A|+|PM|也最小,最小值为|AF|-1=9+a2-1.(3)由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2.依据抛物线的定义知,当|AB为通径,即|AB|=2p=4时,|AB|的值最小,所以|AC|+|BD|的最小值为2.答案:(1)34(2)9+a2-1(3)2【反思归纳】利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的相互转化.【即时训练】(1)已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值是()(A)522+2 (B)522+1 (C)522-2(D)522-1(2)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )(A)(0,0) (B)⎝ ⎛⎭⎪⎫12,1 (C)(1,2)(D)(2,2)解析:(1)如图,点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x -y +4=0的垂线,此时d 1+d 2=|PF |+d 2-1最小.因为F (0,1),则|PF |+d 2=|1-0+4|1+1=522,则d 1+d 2的最小值为522-1.(2)过M 点作左准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).故选D.答案:(1)D (2)D考点二 抛物线的标准方程及性质(1)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )(A)±3 (B)±1 (C)±34(D)±33(2)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )(A)133 (B)143 (C)5(D)163(3)过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则|AF |=( )(A)1 (B)2 (C)3(D)4解析:(1)设M (x 0,y 0),易知焦点为F ⎝ ⎛⎭⎪⎫p 2,0,由抛物线的定义得|MF |=x 0+p 2=2p ,所以x 0=32p ,故y 20=2p ×32p =3p 2,解得y 0=±3p ,故直线MF 的斜率k =±3p 32p -p 2=±3,选A. (2)∵p =2,∴|AB |=2+103=163.故选D. (3)∵x 2=2y ,∴y =x 22,∴y ′=x ,∵抛物线C 在点B 处的切线斜率为1, ∴B ⎝ ⎛⎭⎪⎫1,12 ∵抛物线x 2=2y 的焦点F 的坐标为⎝ ⎛⎭⎪⎫0,12,∴直线l 的方程为y =12, ∴|AF |=|BF |=1.故选A. 答案:(1)A (2)D (3)A【反思归纳】 (1)抛物线几何性质的确定由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.(2)求抛物线的标准方程的方法①因为抛物线方程有四种上标准形式,因此求抛物线方程时,需先定位,再定量.②因为未知数只有p,所以只需利用待定系数法确定p值即可.提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx 或x2=my(m≠0).【即时训练】(1)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()(A)y2=3 2x(B)y2=3x(C)y2=9 2x(D)y2=9x(2)若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=43,则m的值是________.答案:(1)B(2)20考点三直线与抛物线的位置关系考查角度1:直线与抛物线的交点问题.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)证明:设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2p y 1+y 3,直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2.故直线AB 与直线MN 斜率之比为定值. 【反思归纳】 直线与抛物线位置关系的判断直线y =kx +m (m ≠0)或x =my +n 与抛物线y 2=2px (p >0)联立方程组,消去y ,得到k 2x 2+2(mk -p )x +m 2=0的形式.当k =0时,直线和抛物线相交,且与抛物线的对称轴平行,此时与抛物线只有一个交点;当k ≠0时,设其判别式为Δ,(1)相交:Δ>0⇔直线与抛物线有两个交点; (2)相切:Δ=0⇔直线与抛物线有一个交点; (3)相离:Δ<0⇔直线与抛物线没有交点.提醒:过抛物线外一点总有三条直线和抛物线有且只有一个公共点;两条切线和一条平行于对称轴的直线.考查角度2:直线与抛物线的相交弦问题设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,△ABF 是边长为4的等边三角形.(1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值?若存在,求出点N 的坐标,若不存在,请说明理由.解析:(1)由题知,|AF |=|AB |,则AB ⊥l .设准线与x 轴交于点D ,则AB ∥DF .又△ABF 是边长为4的等边三角形,∠ABF =60°,所以∠BFD =60°,|DF |=|BF |·cos ∠BFD =4×12=2,即p=2.(2)设点N (t,0),由题意知直线的斜率不为零, 设直线的方程为x =my +t ,点Q (x 1,y 1),R (x 2,y 2),由⎩⎪⎨⎪⎧x =my +t y 2=4x 得,y 2-4my -4t =0,则Δ=16m 2+16t >0,y 1+y 2=4m ,y 1·y 2=-4t .又|NQ |2=(x 1-t )2+y 21=(my 1+t -t )2+y 21=(1+m 2)y 21,同理可得|NR |2=(1+m 2)y 22,则有1|NQ |2+1|NR |2=1(1+m 2)y 21+1(1+m 2)y 22=y 21+y 22(1+m 2)y 21y 22=(y 1+y 2)2-2y 1y 2(1+m 2)y 21y 22=16m 2+8t 16(1+m 2)t 2=2m 2+t (2m 2+2)t2. 若1|NQ |2+1|NR |2为定值,则t =2,此时点N (2,0)为定点. 又当t =2,m ∈R 时,Δ>0,所以,存在点N (2,0),当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值14.【反思归纳】 直线与抛物线相交问题处理规律(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用根与系数的关系,避免求交点坐标的复杂运算.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图象结合几何性质做出解答.并注意“设而不求”“整体代入”“点差法”的灵活应用.抛物线的综合问题已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.审题点拨关键点 所获信息 抛物线y 2=4x 可求焦点坐标 ∠AMB =90°k MA ·k MB =-1解题突破:把∠AMB =90°转化为斜率之积为-1.解析:由题意知,抛物线的焦点坐标为F (1,0),设直线方程为y =k (x -1),直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k 2. 由M (-1,1),得AM→=(-1-x 1,1-y 1),BM →=(-1-x 2,1-y 2).由∠AMB =90°,得AM →·BM →=0,∴ (x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴ x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0. 又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1], y 1+y 2=k (x 1+x 2-2),∴ 1+2k 2+4k 2+1+k 2⎝ ⎛⎭⎪⎫1-2k 2+4k 2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0,整理得4k 2-4k +1=0,解得k =2.答案:2命题意图:本题重点考查直线与抛物线的应用,考查考生的运算能力.课时作业基础对点练(时间:30分钟)1.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )(A)12 (B)1 (C)32(D)2B 解析:设P (x p ,y p ),由题可得抛物线焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由定义知点P 到准线的距离为2,∴x P +1=2,∴x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.若抛物线y =ax 2的焦点坐标是(0,1),则a =( ) (A)1 (B)14 (C)2(D)12B 解析:因为抛物线方程为x 2=1a y ,所以其焦点坐标为⎝ ⎛⎭⎪⎫0,14a ,则有14a =1,a =14,故选B.3.已知P 为抛物线y 2=-6x 上一个动点,Q 为圆x 2+(y -6)2=14上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和的最小值是( )(A)317-72(B)317-42 (C)317-12(D)317+12B 解析:结合抛物线的定义知,P 到y 轴的距离为P 到焦点的距离减去32,则所求最小值为抛物线的焦点到圆心的距离减去半径及32,即62+⎝ ⎛⎭⎪⎫322-12-32=317-42,故选B.4.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为43,则该抛物线方程是()(A)y2=233x(B)y2=3x(C)y2=23x(D)y2=3 3xA解析:根据对称性,AB⊥x轴,由于正三角形的面积是43,故34AB2=43,故AB=4,正三角形的高为23,故可以设点A的坐标为(23,2),代入抛物线方程得4=43p,解得p=33,故所求的抛物线方程为y2=233x.故选A.5.已知直线l1:4x-3y+7=0和直线l2:x=-2,抛物线y2=8x上一动点P到直线l1和l2的距离之和的最小值是()(A) 5 (B)2 5(C)3 (D)3 5C解析:如图所示,过点P作PH1⊥l1,PH2⊥l2,连接PF,H1F,过F作FM⊥l1,交l1于M,由抛物线方程为y2=8x,得l2为其准线,焦点为F(2,0),由抛物线的定义可知|PH1|+|PH2|=|PH1|+|PF|≥|FH1|≥|FM|=|4×2-0+7|42+32=3,故选C.6.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A ,B 两点,如果OA →·OB→=-12,那么抛物线C 的方程为( )(A)x 2=8y (B)x 2=4y (C)y 2=8x(D)y 2=4xC 解析:由题意,设抛物线方程为y 2=2px (p >0), 直线方程为x =my +p2,联立⎩⎨⎧y 2=2px ,x =my +p2,消去x 得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=my 1+p 2my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12⇒p =4,即抛物线C 的方程为y 2=8x .7.过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.解析:依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎪⎨⎪⎧x 2=4y ,x =3(y -1),消去x 得3(y -1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163.答案:1638.抛物线y 2=2px (p >0)的焦点为F ,AB 为抛物线上的两点,以AB 为直径的圆过点F ,过AB 的中点M 作抛物线的准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为__________.解析:由抛物线定义得|MN ||AB |=|AF |+|BF |2|AF |2+|BF |2≤|AF |2+|BF |22|AF |2+|BF |2=22,即|MN ||AB |的最大值为22.答案: 229.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,若|AF |=5,则|BF |=________. 解析:由题意,设A (x 1,y 1),B (x 2,y 2), 则|AF |=x 1+1=5⇒x 1=4,y 21=4x 1=16, 根据对称性,不妨取y 1=4, 所以直线AB :y =43x -43,代入抛物线方程可得,4x 2-17x +4=0, 所以x 2=14, 所以|BF |=x 2+1=54. 答案:5410.在平面直角坐标系中,动点M (x ,y )(x ≥0)到点F (1,0)的距离与到y 轴的距离之差为1.(1)求点M 的轨迹C 的方程;(2)若Q (-4,2),过点N (4,0)作任意一条直线交曲线C 于A ,B 两点,试证明k QA +k QB 是一个定值.解析:(1)M 到定点F (1,0)的距离与到定直线x =-1的距离相等, ∴M 的轨迹C 是一个开口向右的抛物线,且p =2, ∴M 的轨迹方程为y 2=4x .(2)设过N (4,0)的直线的方程为x =my +4,联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +4整理得y 2-4my -16=0,设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2), 则有y 1+y 2=4m ,y 1y 2=-16, 又k QA +k QB =y 1-2x 1+4+y 2-2x 2+4=y 1-2my 1+8+y 2-2my 2+8=-8m 2-3216m 2+64=-12, 因此k QA +k QB 是一个定值为-12.能力提升练(时间:15分钟)11.已知直线l 1:x =2,l 2:3x +5y -30=0,点P 为抛物线y 2=-8x 上的任一点,则P 到直线l 1,l 2的距离之和的最小值为( )(A)2 (B)234 (C)181734(D)161534C 解析:抛物线y 2=-8x 的焦点为F (-2,0),准线为l 1:x =2. ∴P 到l 1的距离等于|PF |,∴P 到直线l 1,l 2的距离之和的最小值为F (-2,0)到直线l 2的距离d =|-6+0-30|9+25=181734.故选C.12.已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( )(A)18 (B)14 (C)2(D)4C 解析:设M (x M ,y M ),N ⎝ ⎛⎭⎪⎫-p 2,y N ,由|FM ||MN |=55,知|FM ||FN |=15+1,所以y N =(5+1)y M ;由k F A =k FN 知,y N -p =2-p 2,所以y N =4,所以y M =45+1;又|FM ||FN |=15+1,所以p 2-x M =15+1⎝ ⎛⎭⎪⎫p 2+p 2=p 5+1,所以x M =()5-1p 2(5+1),将(x M ,y M )代入y 2=2px ,得⎝ ⎛⎭⎪⎫45+12=2p ×(5-1)p 2(5+1),解得p =2.故选C.13.已知抛物线C :x 2=2py (p >0)的焦点为F ,O 为坐标原点,点M ⎝ ⎛⎭⎪⎫-4,p 2,N ⎝ ⎛⎭⎪⎫1,p 2,射线MO ,NO 分别交抛物线C 于异于点O 的点A ,B ,若A ,B ,F 三点共线,则p 的值为________.解析:直线OM 的方程为y =-p8x ,将其代入x 2=2py , 解方程可得⎩⎪⎨⎪⎧x =-p 24y =p 332,故A ⎝ ⎛⎭⎪⎫-p 24,p 332.直线ON 的方程为y =p2x ,将其代入x 2=2py ,解方程可得⎩⎨⎧x =p 2y =p 32,故B ⎝ ⎛⎭⎪⎫p 2,p 32.又F ⎝ ⎛⎭⎪⎫0,p 2,所以k AB =3p 8,k BF =p 2-12p ,因为A ,B ,F 三点共线,所以k AB =k BF ,即3p 8=p 2-12p ,解得p =2.答案:214.顶点在原点,经过圆C :x 2+y 2-2x +22y =0的圆心且准线与x 轴垂直的抛物线方程为________.解析:将圆C 的一般方程化为标准方程为(x -1)2+(y +2)2=3,圆心为(1,-2).由题意,知抛物线的顶点在原点,焦点在x 轴上,且经过点(1,-2).设抛物线的标准方程为y 2=2px ,因为点(1,-2)在抛物线上,所以(-2)2=2p ,解得p =1,所以所求抛物线的方程为y 2=2x .答案:y 2=2x15.已知AB 是抛物线x 2=4y 的一条焦点弦,若该弦的中点纵坐标是3,则弦AB 所在的直线方程是________.解析:设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =m (y -1),由抛物线的定义及题设可得,y 1+y 2=6, 直线与抛物线方程联立消去x 可得 m 2y 2-(2m 2+4)y +m 2=0, 则y 1+y 2=2m 2+4m 2,即6=2m 2+4m 2, 可得m =1或m =-1.故直线方程为x -y +1=0或x +y -1=0. 答案:x -y +1=0或x +y -1=016.已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q ,①求抛物线C 的焦点坐标.②若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值.③是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.解析:①因为抛物线C :x 2=1m y ,所以它的焦点F (0,14m ). ②因为|RF |=y R +14m ,所以2+14m =3,得m =14.③存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0恒成立.解得m >-12.设A (x 1,mx 21),B (x 2,mx 22),则⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m .(*)因为P 是线段AB 的中点,所以P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m ,y P ,所以Q ⎝ ⎛⎭⎪⎫1m ,1m .得QA →=⎝ ⎛⎭⎪⎫x 1-1m ,mx 21-1m , QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m , 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形, 则QA →·QB→=0,即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0, 结合(*)化简得-4m 2-6m +4=0,即2m 2-3m -2=0, 所以m =2或m =-12.而2∈(-12,+∞),-12∉(-12,+∞).。
专题9.5 抛物线(知识点讲解)【知识框架】【核心素养】1.考查抛物线的定义、求抛物线方程、最值等问题,凸显直观想象、数学运算的核心素养.2.结合抛物线的几何性质及几何图形,求抛物线相关性质及其应用,凸显数学运算、直观想象的核心素养.3.考查直线与抛物线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(二)抛物线的标准方程及几何性质y 2=2px (p >0) (三)直线和抛物线的位置关系(1)将直线的方程y kx m =+与抛物线的方程y 2=2px (p >0)联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.2220ky py pm -+=若0k =,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若0k ≠①Δ>0 ⇔直线和抛物线相交,有两个交点; ②Δ=0⇔直线和抛物线相切,有一个公共点; ③Δ<0⇔直线和抛物线相离,无公共点. (2)直线与抛物线的相交弦设直线y kx m =+交抛物线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP =12|x x -同理可得1212|||(0)PP y y k =-≠[来源:Z*xx*] 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -=(四)焦半径、焦点弦1.通径过焦点垂直于轴的弦称为抛物线的通径,其长为__2p __.2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A (x 0,y 0),则四种标准方程形式下的焦半径公式为3.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l __相切__; (2)|AB |=2(x 0+p2)=x 1+x 2+__p __;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.【常考题型剖析】题型一:抛物线定义的应用例1.(2023·全国·高三专题练习(文))已知抛物线C :()220y px p =>的焦点为1,04F ⎛⎫ ⎪⎝⎭,A 00(,)x y 是C 上一点,|AF |=054x ,则0x =( ) A .1B .2C .4D .8例2.(2020·全国·高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .9【总结提升】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.2.抛物线上的点到焦点距离等于到准线距离,注意转化思想的运用.3.利用抛物线定义可以解决距离的最大和最小问题,该类问题一般情况下都与抛物线的定义有关.实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解. (2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.提醒:利用抛物线定义进行距离转化的同时,要注意平面几何知识在其中的重大运用. 题型二:抛物线的标准方程例3.(2021·全国高二课时练习)已知动圆M 经过点A (3,0),且与直线l :x =-3相切,则动圆圆心M 的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=12yD .x 2=12y例4.(2023·全国·高三专题练习)过抛物线22(0)y px p =>的焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若2,3CB BF AF ==,则此抛物线方程为__________. 【规律方法】1.求抛物线标准方程的方法:①直接法:直接利用题中已知条件确定焦参数p .②待定系数法:先设出抛物线的方程,再根据题中条件,确定焦参数p.当焦点位置不确定时,应分类讨论或设抛物线方程为y 2=mx 或x 2=my . 2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;已知焦点坐标或准线方程可确定抛物线标准方程的形式;已知抛物线过某点不能确定抛物线标准方程的形式,需根据四种抛物线的图象及开口方向确定.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 题型三:抛物线的焦点及准线例5.(2023·全国·高三专题练习)抛物线243y x =的焦点坐标为( ) A .10,3⎛⎫ ⎪⎝⎭B .1,03⎛⎫ ⎪⎝⎭C .30,16⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭例6.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)例7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【规律总结】求抛物线的焦点及准线方程的步骤: (1)把抛物线解析式化为标准方程形式; (2)明确抛物线开口方向;(3)求出抛物线标准方程中参数p 的值; (4)写出抛物线的焦点坐标或准线方程. 题型四 抛物线对称性的应用例8.(2021·全国高二课时练习)已知A ,B 是抛物线22(0)y px p =>两点,O 为坐标原点.若OA OB =,且AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________.例9.(2023·全国·高三专题练习)已知抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点.(1)过F 作垂直于x 轴的直线与抛物线C 交于,A B 两点,AOB 的面积为2.求抛物线C 的标准方程; (2)抛物线上有,M N 两点,若MON △为正三角形,求MON △的边长. 【总结提升】1.为了简化解题过程,有时可根据抛物线方程的特征利用参数表示抛物线上动点的坐标,有时还可以利用抛物线的对称性避免分类讨论.2.不能把抛物线看作是双曲线的一支.虽然两者都是沿开口方向越来越远离对称轴,但抛物线却越来越接近于对称轴的平行线. 题型五 抛物线的焦点弦问题例10.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.例11.(2018·全国·高考真题(理))已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C交于A ,B 两点.若90AMB ∠=︒,则k =________. 【总结提升】解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.题型六 抛物线的最值问题例12.(2022·云南民族大学附属中学模拟预测(理))已知点P 为抛物线24y x =-上的动点,设点P 到2:1l x =的距离为1d ,到直线40x y +-=的距离为2d ,则12d d +的最小值是( )A .52B C .2 D例13.(2023·全国·高三专题练习)已知以F 为焦点的抛物线2:4C y x =上的两点A ,B ,满足133AF FB λλ⎛⎫=≤≤ ⎪⎝⎭,则弦AB 的中点到C 的准线的距离的最大值是( )A .2B .83 C .103D .4例14.【多选题】(2022·全国·高三专题练习)设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论正确的是( )A .当02x =时,抛物线C 在点P 处的切线方程为220x y --=B .当04x =时,||PF 的值为6C .||||PA PF +的最小值为3D .||||PA PF -【规律方法】1.求抛物线最值的常见题型是求抛物线上一点到定点距离的最值、求抛物线上一点到定直线距离的最值,解有关抛物线的最值问题主要有两种思路:一是利用抛物线的定义,进行到焦点的距离与准线的距离的转化,数形结合,利用几何意义解决;二是利用抛物线的标准方程,进行消元代换,得到有关距离的含变量的代数式,用目标函数最值的求法解决.2. 常见题型及处理方法:(1)求抛物线上一点到定直线的最小距离.可以利用点到直线的距离公式表示出所求的距离,再利用函数求最值的方法求解,亦可转化为抛物线的切线与定直线平行时两直线间的距离问题.(2)求抛物线上一点到定点的最值问题.可以利用两点间的距离公式表示出所求距离,再利用函数求最值的方法求解,要注意抛物线上点的设法及变量的取值范围.(3)方法:设P (x 0,y 0)是抛物线y 2=2px (p >0)上一点,则x 0=y 202p ,即P (y 202p,y 0).由两点间距离公式,点到直线的距离公式表示出所求距离,再用函数求最值的方法求解.(4)此类问题应注意抛物线几何性质的应用,尤其范围的应用.如:y 2=2px (p >0),则x ≥0,y 2≥0. 题型七:与抛物线有关的综合问题例15.(2022·天津·高考真题)已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=例16.(2019·北京·高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.例17. (2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.例18.(2020·山东·高考真题)已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A +,求直线l 的方程. 【总结提升】抛物线的综合问题常常涉及方程、几何性质,以及与直线、圆、椭圆、双曲线、向量等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线、圆、圆锥曲线有关时,常常联立方程组,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.专题9.5 抛物线(知识点讲解)【知识框架】【核心素养】1.考查抛物线的定义、求抛物线方程、最值等问题,凸显直观想象、数学运算的核心素养.2.结合抛物线的几何性质及几何图形,求抛物线相关性质及其应用,凸显数学运算、直观想象的核心素养.3.考查直线与抛物线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(二)抛物线的标准方程及几何性质y 2=2px (p >0) (三)直线和抛物线的位置关系(1)将直线的方程y kx m =+与抛物线的方程y 2=2px (p >0)联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.2220ky py pm -+=若0k =,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若0k ≠①Δ>0 ⇔直线和抛物线相交,有两个交点; ②Δ=0⇔直线和抛物线相切,有一个公共点; ③Δ<0⇔直线和抛物线相离,无公共点. (2)直线与抛物线的相交弦设直线y kx m =+交抛物线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP =12|x x -同理可得1212|||(0)PP y y k =-≠[来源:Z*xx*] 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -=(四)焦半径、焦点弦1.通径过焦点垂直于轴的弦称为抛物线的通径,其长为__2p __.2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A (x 0,y 0),则四种标准方程形式下的焦半径公式为3.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l __相切__; (2)|AB |=2(x 0+p2)=x 1+x 2+__p __;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.【常考题型剖析】题型一:抛物线定义的应用例1.(2023·全国·高三专题练习(文))已知抛物线C :()220y px p =>的焦点为1,04F ⎛⎫ ⎪⎝⎭,A 00(,)x y 是C 上一点,|AF |=054x ,则0x =( ) A .1 B .2 C .4 D .8例2.(2020·全国·高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .96p.【总结提升】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.2.抛物线上的点到焦点距离等于到准线距离,注意转化思想的运用.3.利用抛物线定义可以解决距离的最大和最小问题,该类问题一般情况下都与抛物线的定义有关.实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解. (2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.提醒:利用抛物线定义进行距离转化的同时,要注意平面几何知识在其中的重大运用. 题型二:抛物线的标准方程例3.(2021·全国高二课时练习)已知动圆M 经过点A (3,0),且与直线l :x =-3相切,则动圆圆心M 的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=12y D .x 2=12y【答案】A 【分析】设出点M 的坐标,由题意可知|MA |=|MN |,进而根据抛物线的定义即可得到答案. 【详解】设动点M (x ,y ),圆M 与直线l :x =-3的切点为N ,则|MA |=|MN |,即动点M 到定点A 和定直线l :x =-3的距离相等.∴点M 的轨迹是抛物线,且以A (3,0)为焦点,以直线l :x =-3为准线, 故动圆圆心M 的轨迹方程是y 2=12x . 故选:A.例4.(2023·全国·高三专题练习)过抛物线22(0)y px p =>的焦点F 的直线交抛物线于点A ,B ,交其准线于点C ,若2,3CB BF AF ==,则此抛物线方程为__________.30,结合2【详解】30,在直角三角形ACE轴交于G【规律方法】1.求抛物线标准方程的方法:①直接法:直接利用题中已知条件确定焦参数p.②待定系数法:先设出抛物线的方程,再根据题中条件,确定焦参数p.当焦点位置不确定时,应分类讨论或设抛物线方程为y2=mx或x2=my.2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;已知焦点坐标或准线方程可确定抛物线标准方程的形式;已知抛物线过某点不能确定抛物线标准方程的形式,需根据四种抛物线的图象及开口方向确定.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 题型三:抛物线的焦点及准线例5.(2023·全国·高三专题练习)抛物线243y x =的焦点坐标为( ) A .10,3⎛⎫ ⎪⎝⎭B .1,03⎛⎫ ⎪⎝⎭C .30,16⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭例6.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.例7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2p Q PQ p ∴+∴=-因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【规律总结】求抛物线的焦点及准线方程的步骤: (1)把抛物线解析式化为标准方程形式; (2)明确抛物线开口方向;(3)求出抛物线标准方程中参数p 的值; (4)写出抛物线的焦点坐标或准线方程.题型四 抛物线对称性的应用例8.(2021·全国高二课时练习)已知A ,B 是抛物线22(0)y px p =>两点,O 为坐标原点.若OA OB =,且AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________. 【答案】52p x = 【分析】由抛物线的性质知,A B 关于x 轴对称,设出坐标,利用三角形垂心的性质,结合斜率之积为1-,求出,A B 坐标即可求解. 【详解】由抛物线的性质知,A B 关于x 轴对称, 设(,)A x y ,则(,)B x y -,焦点为,02p F ⎛⎫⎪⎝⎭.由题意知AF OB ⊥,21AF OB y k x yk p x ∴⋅=⋅-⎛⎫=- ⎪⎝⎭-, 所以22p y x x ⎛=-⎫ ⎪⎝⎭,即22p px x x ⎛=-⎫ ⎪⎝⎭.因为0x ≠,所以22p p x =-,即52p x =,所以直线AB 的方程为52px =. 故答案为:52p x =例9.(2023·全国·高三专题练习)已知抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点.(1)过F 作垂直于x 轴的直线与抛物线C 交于,A B 两点,AOB 的面积为2.求抛物线C 的标准方程; (2)抛物线上有,M N 两点,若MON △为正三角形,求MON △的边长.230MNt =AOB S =)MON为正三角形,2pt =230MN t =【总结提升】1.为了简化解题过程,有时可根据抛物线方程的特征利用参数表示抛物线上动点的坐标,有时还可以利用抛物线的对称性避免分类讨论.2.不能把抛物线看作是双曲线的一支.虽然两者都是沿开口方向越来越远离对称轴,但抛物线却越来越接近于对称轴的平行线. 题型五 抛物线的焦点弦问题例10.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163例11.(2018·全国·高考真题(理))已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C交于A ,B 两点.若90AMB ∠=︒,则k =________. 【答案】2【分析】利用点差法得到AB 的斜率,结合抛物线定义可得结果. 【详解】详解:设()()1122A ,,B ,x y x y【总结提升】解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解. 题型六 抛物线的最值问题例12.(2022·云南民族大学附属中学模拟预测(理))已知点P 为抛物线24y x =-上的动点,设点P 到2:1l x =的距离为1d ,到直线40x y +-=的距离为2d ,则12d d +的最小值是( ) A .52B .2C .2 D【答案】B【分析】直线2:1l x =为抛物线24y x =-的准线,点P 到准线的距离等于点P 到焦点F 的距离,过焦点F 作直线40x y +-=的垂线,此时12d d +最小,再根据点到直线距离公式即可求解.【详解】直线2:1l x =为抛物线24y x =-的准线,点P 到准线的距离等于点P 到焦点F 的距离,过焦点F 作直()1,0F -,则121045222d d --==++. 例13.(2023·全国·高三专题练习)已知以F 为焦点的抛物线2:4C y x =上的两点A ,B ,满足133AF FB λλ⎛⎫=≤≤ ⎪⎝⎭,则弦AB 的中点到C 的准线的距离的最大值是( )A .2B .83 C .103D .4【分析】根据抛物线焦点弦的性质以及AF FB λ=,联立可得的焦点坐标为()1,0,准线方程为为AF FB λ=,所以所以AB AF =+=3λ时,AB =12λ⎛⎫++例14.【多选题】(2022·全国·高三专题练习)设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论正确的是( )A .当02x =时,抛物线C 在点P 处的切线方程为220x y --=B .当04x =时,||PF 的值为6C .||||PA PF +的最小值为3D .||||PA PF -由题意得:()0,2F ,连接AF 并延长,交抛物线于点P ,此点即为||||PA PF -取最大值的点,此时415PA PF AF -==+=,其他位置的点P ',由三角形两边之差小于第三边得:5P A P F AF ''-<=,故||||PA PF -的最大值为5,D 正确.故选:BCD【规律方法】1.求抛物线最值的常见题型是求抛物线上一点到定点距离的最值、求抛物线上一点到定直线距离的最值,解有关抛物线的最值问题主要有两种思路:一是利用抛物线的定义,进行到焦点的距离与准线的距离的转化,数形结合,利用几何意义解决;二是利用抛物线的标准方程,进行消元代换,得到有关距离的含变量的代数式,用目标函数最值的求法解决.2. 常见题型及处理方法:(1)求抛物线上一点到定直线的最小距离.可以利用点到直线的距离公式表示出所求的距离,再利用函数求最值的方法求解,亦可转化为抛物线的切线与定直线平行时两直线间的距离问题.(2)求抛物线上一点到定点的最值问题.可以利用两点间的距离公式表示出所求距离,再利用函数求最值的方法求解,要注意抛物线上点的设法及变量的取值范围.(3)方法:设P (x 0,y 0)是抛物线y 2=2px (p >0)上一点,则x 0=y 202p ,即P (y 202p,y 0).由两点间距离公式,点到直线的距离公式表示出所求距离,再用函数求最值的方法求解.(4)此类问题应注意抛物线几何性质的应用,尤其范围的应用.如:y 2=2px (p >0),则x ≥0,y 2≥0. 题型七:与抛物线有关的综合问题例15.(2022·天津·高考真题)已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=例16.(2019·北京·高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4.【分析】由抛物线方程可得焦点坐标,即圆心,焦点到准线距离即半径,进而求得结果. 【详解】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.例17. (2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,)()743,11,⎤⎡-++∞⎦⎣.)求出p 的值后可求抛物线的方程)方法一:设:1AB x ty =+,()11,,A x y B 24y t =,求出直线,MA MB 的方程,联立各直线方程可求出1m.-++∞.3)[743,1)(1,)ab=-.,即1+3][1483,-++∞.3][743,1)(1,)【整体点评】本题主要是处理共线的线段长度问题,主要方法是长度转化为坐标方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.例18.(2020·山东·高考真题)已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A +,求直线l 的方程. 联立,并利用韦达定理表示OM ON +,并利用()12//OM ON B A +,求直线的斜率,验证后,即可得到直线21y +=可知2a ,21b =,)2,0,(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,则(1OM ON x +=+因为()12//OM ON B A +,且12(2,0)B A =所以2284820k k k --⨯=,解得2k =-+因为11k -<<,且0k ≠,26=--不符合题意,舍去, )【总结提升】抛物线的综合问题常常涉及方程、几何性质,以及与直线、圆、椭圆、双曲线、向量等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线、圆、圆锥曲线有关时,常常联立方程组,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。
抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。
【新高考地区】2023年高考数学冲刺讲义抛物线的综合问题(新高考)引言在新高考改革的背景下,高中数学的学习内容和考试形式都发生了重大变化。
数学作为必修科目,对于学生来说是一个重要而必要的考核项目。
而在数学的学习中,抛物线的综合问题是一个常见但也较难的考点。
本文将针对2023年高考中的抛物线的综合问题进行分析和解答,帮助考生在考前进行有针对性的复习和冲刺。
一、抛物线的基本概念1.1 抛物线的定义抛物线是一种平面曲线,它的定义可以由以下几种方式给出:•平面上一点P到定点F的距离等于它到定直线L的距离的两倍。
这个定点F称为抛物线的焦点,定直线L称为抛物线的准线。
•平面上的点P(x, y)到定点F焦点(x₁, y₁)的距离等于它到定直线L准线的距离d的两倍。
即\[PF = PL = 2d\]。
•抛物线是平面上满足\[y = ax^2 + bx + c\](\(aeq 0\))的所有点的轨迹。
其中a,b,c为常数,且a为抛物线的开口(a > 0则开口向上,a < 0则开口向下)。
1.2 抛物线的性质抛物线具有以下几个重要的性质:•抛物线的对称轴是准线L,且焦点F在对称轴上。
•焦点到顶点的距离是\[PF = \frac{1}{4a}\]。
•抛物线的顶点坐标为\[(-\frac{b}{2a}, \frac{4ac-b^2}{4a})\)。
•抛物线开口方向与a的符号有关。
•当\[y = 0\]时,抛物线的两个交点称为抛物线的零点。
二、抛物线的综合问题2.1 抛物线的焦点和准线的求解给定抛物线的方程\[y = ax^2 + bx + c\],如何求解出焦点和准线的相关信息呢?2.1.1 求解焦点的坐标由抛物线的定义可知,焦点到顶点的距离是\[PF =\frac{1}{4a}\]。
而抛物线的顶点坐标为\[(-\frac{b}{2a},\frac{4ac-b^2}{4a})\)。
因此,我们可以通过顶点坐标来确定焦点的坐标。
专题57:抛物线精讲温故知新一、抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
{MF M =点M 到直线l 的距离} (一动三定)(注:定点F 不在定直线上,否则动点的轨迹是过定点F 垂直于直线l 的一条直线)(一焦一顶一轴一准无心,也叫无心圆锥曲线);p 是焦点F 到l 的距离,p 越大开口越大,反之越小。
二.抛物线的几何性质: 图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p(,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++三、焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2F(1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
高考数学一轮复习抛物线专题练习(含答案)【常规证法】抛物线y2=2px(p0)的焦点为F,显然直线AB 的斜率不为0,当AB斜率不存在时,直线AP方程为x=,不妨设A在第一象限,则易知A,B,C,此时kOA==2,kOC==2.kOA=kOC,A,O,C三点共线,即直线AC经过原点O.当AB斜率存在且不为0时,设直线AB方程为y=k代入y2=2px 得k2x2-(k2+2)px+=0,设A(x1,y1),B(x2,y2),则x1x2=,(y1y2)2=p4,由题意知y1y20,y1y2=-p2kOC======kOA直线AC过原点O,综上,直线AC经过原点O.【巧妙证法】因为抛物线y2=2px(p0)的焦点为F,而直线AB的斜率不为零,所以经过点F的直线AB的方程可设为x=my+.代入抛物线方程消去x得y2-2pmy-p2=0.若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根,所以y1y2=-p2.因为BCx轴,且点C在准线x=-上,所以点C的坐标为,故直线CO的斜率为k===,即k也是直线OA的斜率,所以直线AC经过原点O.3.(2019南师附中检测)设A(x1,y1),B(x2,y2)为抛物线y2=2px(p0)上位于x轴两侧的两点.(1)若y1y2=-2p,证明直线AB恒过一个定点;(2)若p=2,AOB(O是坐标原点)为钝角,求直线AB在x轴上的截距的取值范围.[解] (1)设直线AB在x轴上的截距为t,则可设直线AB的方程为x=my+t.代入y2=2px得y2=2p(my+t),即y2-2pmy-2pt=0,于是-2p=y1y2=-2pt,所以t=1,即直线AB 恒过定点(1,0).(2)因为AOB为钝角,所以0,即x1x2+y1y20.y=2px1,y=2px2,yy=2px12px2,于是x1x2===t2,故x1x2+y1y2=t2-2pt=t2-4t.解不等式t2-4t0,得00)把点P(-2,-4)代入得(-4)2=-2p(-2).解得p=4,抛物线方程为y2=-8x.当焦点在y轴负半轴上时,设方程为x2=-2py(p0),把点P(-2,-4)代入得(-2)2=-2p(-4).解得p=.抛物线方程为x2=-y.综上可知抛物线方程为y2=-8x或x2=-y.[答案] y2=-8x或x2=-y4.(2019广东高考)已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF||BF|的最小值.[解题思路] (1)由点到直线的距离求c的值,得到F(0,c)后可得抛物线的方程;(2)采用设而不求策略,先设出A(x1,y1),B(x2,y2),结合导数求切线PA,PB的方程,代入点P 的坐标,根据结构,可得直线AB的方程;(3)将|AF||BF|转化为关于x(或y)的函数,再求最值.[解] (1)依题意,设抛物线C的方程为x2=4cy(c0),由点到直线的距离公式,得=,解得c=1(负值舍去),故抛物线C的方程为x2=4y.(2)由x2=4y,得y=x2,其导数为y=x.设A(x1,y1),B(x2,y2),则x=4y1,x=4y2,切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以和为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF||BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1.由消去x并整理得到关于y的方程为y2+(2y0-x)y+y=0.由一元二次方程根与系数的关系得y1+y2=x-2y0,y1y2=y.所以|AF||BF|=y1y2+(y1+y2)+1=y+x-2y0+1.又点P(x0,y0)在直线l上,所以x0-y0-2=0,即x0=y0+2,所以y+x-2y0+1=2y+2y0+5=22+,所以当y0=-时,|AF||BF|取得最小值,且最小值为.2019年高考数学一轮复习抛物线专题练习及答案的所有内容就为考生分享到这里,查字典数学网请考生认真练习。
第七节 抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质[1.抛物线2x 2+y =0的准线方程为________.解析:∵抛物线的标准方程为x 2=-错误!y ,∴2p =错误!未定义书签。
, ∴ p2=错误!,故准线方程为y=错误!.ﻬ答案:y =错误!未定义书签。
2.若抛物线y =4x2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 解析:M 到准线的距离等于M 到焦点的距离,又准线方程为y=-错误!,设M(x,y),则y+错误!未定义书签。
=1,所以y=错误!未定义书签。
答案:错误!未定义书签。
3.若抛物线y2=2px上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为________.解析:由题意知,抛物线的准线为x=-p2.因为点P(2,y0)到其准线的距离为4,所以错误!=4,所以p=4。
所以抛物线的标准方程为y2=8x。
答案:y2=8x1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0才能证明其几何意义是焦点F到准线l的距离,否则无几何意义.[小题纠偏]1.平面内到点(1,1)与到直线x+2y-3=0的距离相等的点的轨迹是________.答案:一条直线2.抛物线8x2+y=0的焦点坐标为________.解析:由8x2+y=0,得x2=-\f(1,8)y.所以2p=错误!,p=错误!未定义书签。
,所以焦点为错误!未定义书签。
答案:错误!错误!未定义书签。
错误![典例引领]1.(2019·徐州调研)在平面直角坐标系xOy中,抛物线y2=16x上横坐标为1的点到其焦点的距离为________.解析:抛物线y2=16x中,p=8,∴准线方程为x=-4,∵抛物线y2=16x上横坐标为1的点到其焦点的距离即为到其准线的距离,∴d=1-(-4)=5。
点点练34抛物线一基础小题练透篇1.已知点P 到点F (0,1)的距离比它到直线l :y +2=0的距离小1,则点P 的轨迹方程为( )A .x 2=-4y B .x 2=4y C .y 2=-4x D .y 2=4x2.[2022·江西省南昌市摸底]设F 为抛物线C :x 2=16y 的焦点,直线l :y =-1,点A 为C 上一点且|AF |=5过点A 作AP ⊥l 于P ,则|AP |=( )A.4 B .3 C .2 D .13.已知抛物线y 2=8x 的准线为l ,点P 是抛物线上的动点,直线l 1的方程为2x -y +3=0,过点P 分别作PM ⊥l ,垂足为M ,PN ⊥l 1,垂足为N ,则|PM |+|PN |的最小值为( )A .655B .755C .5D .2+3554.已知抛物线y 2=16x ,过点M (2,0)的直线交抛物线于A ,B 两点,F 为抛物线的焦点,若|AF |=12,O 为坐标原点,则四边形OAFB 的面积是( )A.202B .102C .52D .5225.[2022·湖南省湘潭市一模]已知抛物线C :y 2=2px (p >0)的焦点为F ,点T 在C 上,且|FT |=52,若点M 的坐标为(0,1),且MF ⊥MT ,则C 的方程为( )A .y 2=2x 或y 2=8x B .y 2=x 或y 2=8x C .y 2=2x 或y 2=4x D .y 2=x 或y 2=4x6.已知直线l :y =k (x -2)(k >0)与抛物线C :y 2=8x 交于A ,B 两点,F 为抛物线C 的焦点,若AF →=2FB →,则k 的值是( )A .13B .223C .22D .247.[2022·云南省昆明市检测]O 为坐标原点,F 为抛物线C :y 2=4x 的焦点,P 为C 上的一点,若|PF |=3,则△POF 的面积为________.8.[2022·广东省深圳市月考]已知抛物线C :y 2=2px 的焦点为F ,点A 为抛物线C 上横坐标为3的点,过点A 的直线交x 轴的正半轴于点B ,且△ABF 为正三角形,则p =________.二能力小题提升篇1.[2022·广西柳州市摸底考试]已知F是抛物线y2=8x的焦点,直线l是抛物线的准线,则F到直线l的距离为( )A.2B.4C.6D.82.[2022·广西柳州联考]抛物线y2=2px(p>0)的焦点为F,准线为l,点P为抛物线上一点,PASymbol ^A @l ,垂足为A ,若直线AF 的斜率为-3,|PF |=4,则抛物线方程为( )A .y 2=4x B .y 2=43x C .y 2=8x D .y 2=83x3.[2022·吉林省长春市质量监测]已知P 是抛物线y 2=4x 上的一动点,F 是抛物线的焦点,点A (3,1),则|PA |+|PF |的最小值为( )A .3B .23C .4D .4 24.[2022·江西省临川月考]已知抛物线C :y 2=2px (p >0)的焦点为F ,O 为坐标原点,A ,B 为抛物线上两点,|AO |=|AF |且|AF |+|BF |=21p4,则直线AB 的斜率不可能为( ) A .-223B .223C .22D .-2255.(2022·安徽省滁州市摸底]抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.6.[2022·江苏省南京模拟]已知圆C: (x -3)2+y 2=4,点M 在抛物线T :y 2=4x 上运动,过点M 引直线l 1,l 2与圆C 相切,切点分别为P ,Q ,则|PQ |的取值范围为________.三高考小题重现篇1.[2019·全国卷Ⅱ]若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( )A .2B .3C .4D .82.[2020·全国卷Ⅰ]已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .93.[2020·全国卷Ⅲ]设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A .⎝ ⎛⎭⎪⎫14,0B .⎝ ⎛⎭⎪⎫12,0 C .(1,0) D .(2,0)4.[2020·北京卷]设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( )A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP5.[2021·北京卷]已知抛物线C :y 2=4x ,C 的焦点为F ,点M 在C 上,若|FM |=6,则M 的横坐标是________.6.[2021·山东卷]已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP ,若|FQ |=6,则C 的准线方程为________.四经典大题强化篇1.[2022·重庆模拟]如图,已知抛物线y 2=2px (p >0)上一点M (2,m )到焦点F 的距离为3,直线l 与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,且y 1>0,y 2<0,OA →·OB →=12(O 为坐标原点).(1)求抛物线的方程; (2)求证直线l 过定点.2.[2022·山西省运城市模拟]已知P(1,2)在抛物线C:y2=2px上.(1)求抛物线C的方程;(2)A,B是抛物线C上的两个动点,如果直线PA的斜率与直线PB的斜率之和为2,证明:直线AB过定点.点点练34 抛物线一基础小题练透篇1.答案:B解析:由题意,点P到点F(0,1)的距离等于它到直线y=-1的距离,则点P的轨迹是以F为焦点,y=-1为准线的抛物线,则点P的轨迹方程为x2=4y.2.答案:C解析:抛物线方程C:x2=16y,准线方程为:y=-4,因为|AF|=5,所以点A到准线的距离为5,且y A>0,直线l:y=-1与准线方程的距离为d=3,所以|AP|=5-3=2.3.答案:B解析:令抛物线y2=8x的焦点为F,则F(2,0),连接PF,如图,因l 是抛物线y 2=8x 的准线,点P 是抛物线上的动点,且PM ⊥l 于M ,于是得|PM |=|PF |,点F (2,0)到直线l 1:2x -y +3=0的距离d =|2×2-0+3|22+(-1)2=755,又PN ⊥l 1于N ,显然点P 在点F 与N 之间,于是有|PM |+|PN |=|PF |+|PN |≥d ,当且仅当F ,P ,N 三点共线时取“=”,所以|PM |+|PN |的最小值为d =755.4.答案:A解析:抛物线y 2=16x 的准线方程为x =-4,设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知,x 1+4=12,x 1=8,y 21 =16×8,由抛物线的对称性,不妨令y 1=82,设直线AB的方程为x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=16x ,得y 2-16my -32=0,y 1y 2=-32,∴y 2=-22,四边形OAFB 的面积S =12|OF |·|y 1-y 2|=12×4×102=20 2.5.答案:A解析:设T 为(x 0,y 0),则MT →=(x 0,y 0-1),又由F (p 2,0),所以MF →=(p 2,-1),因为MF ⊥MT ,所以MF →·MT →=0,可得p 2x 0-y 0+1=0,由y 20 =2px 0,联立方程组,消去x 0,可得y 20 -4y 0+4=0,所以y 0=2,故T (2p,2),又由|FT |=x 0+p 2=52,所以52-p 2=2p,即p 2-5p +4=0,解得p =1或p =4,所以C 的方程为y 2=2x 或y 2=8x .6.答案:C解析:直线l :y =k (x -2)(k >0)过(2,0),即直线l 过抛物线的焦点F (2,0),画出图象如图所示,过A 作直线垂直于抛物线的准线,垂足为D ;过B 作直线垂直于抛物线的准线,垂足为C ,过B 作BE ⊥AD ,交AD 于E .依题意AF →=2FB →,设|AF |=2|BF |=2t (t >0),则|AE |=|AD |-|BC |=t ,|AB |=|AF |+|BF |=3t ,|BE |=(3t )2-t 2=22t , 所以直线l 的斜率k =|BE ||AE |=2 2.7.答案: 2解析:由题意,抛物线C 的焦点为F (1,0),准线方程为x =-1,由|PF |=3, 设P (x ,y ),则x +1=3,x =2,所以y =±22,即点P 的坐标为(2,±22), 则△POF 的面积为S =12×1×22= 2.8.答案:2解析:由题意可知,当B 在焦点F 的右侧时,|AF |=3+p 2,|FD |=3-p2,又|FD |=12(3+p 2),所以12(3+p 2)=3-p2,解得p =2;当B 在焦点F 的左侧时,同理可得p =18,此时点B 在x 轴的负半轴,不合题意.二 能力小题提升篇1.答案:B解析:由y 2=8x 得p =4,所以F 到直线l 的距离为p =4. 2.答案:A解析:设准线l 与x 轴交点为K ,∵直线AF 的斜率为-3,∴∠PAF =∠AFK =60°,∵由抛物线的定义知|PF |=|PA |=4,∴△PAF 为等边三角形,∴|AF |=4,∴在Rt△AKF 中,|KF |=2,∴p =2,∴抛物线方程为y 2=4x .3.答案:C解析:过P 作PM 垂直准线,M 为垂足,|PM |=|PF |,所以|PA |+|PF |≥|AM |≥4(当且仅当M ,N ,A 纵坐标相等时取等号).4.答案:C解析:因为F 为抛物线C :y 2=2px (p >0)的焦点,所以F (p2,0),又|AO |=|AF |,即△AOF 为等腰三角形,所以x A =x O +x F 2=p4,又点A 在抛物线y 2=2px 上,所以y 2A =2p ×p 4=p 22,则y A =±2p 2,即A (p 4,±2p2),所以由抛物线的焦半径公式可得:|AF |=x A +p 2=34p ,又|AF |+|BF |=21p 4,所以|BF |=9p 2,即x B +p 2=9p2,所以x B =4p ,则y 2B =2p ×4p =8p 2,即y B =±22p ,所以B (4p ,±22p );当A ⎝ ⎛⎭⎪⎫p4,2p 2,B (4p ,22p )时,AB 的斜率为k AB =22p -22p4p -p 4=225; 当A ⎝ ⎛⎭⎪⎫p4,2p 2,B (4p ,-22p )时,AB 的斜率为k AB =-22p -2p24p -p 4=-223; 当A ⎝ ⎛⎭⎪⎫p4,-2p 2,B (4p ,22p )时,AB 的斜率为k AB =22p +2p24p -p 4=223; 当A ⎝ ⎛⎭⎪⎫p4,-2p 2,B (4p ,-22p )时,AB 的斜率为k AB =-22p +2p24p -p 4=-225; 故ABD 都能取到,C 不能取到. 5.答案:6解析:由题设,F ⎝ ⎛⎭⎪⎫0,p 2,令y =-p 2代入x 23-y 23=1得x =±p 2+122,∴|AB |=p 2+12,又△ABF 为等边三角形,则|AF |=p 2+12,∴由勾股定理知:|AF |2-⎝ ⎛⎭⎪⎫|AB |22=3(p 2+12)4=p 2,解得p 2=36,又p >0,∴p =6.6.答案:[22,4)解析:如图,连接CP ,CQ ,CM ,依题意,CP ⊥MP ,CQ ⊥MQ ,而|CP |=|CQ |=2, 而|MP |=|MQ |,则CM 垂直平分线段PQ ,于是得四边形MPCQ 的面积为Rt△CPM 面积的2倍,从而得12|PQ |·|CM |=2·12|CP |·|MP |,即|PQ |=2|CP |·|MP ||CM |=4|CM |2-|CP |2|CM |=41-4|CM |2, 设点M (t ,s ),而C (3,0),s 2=4t (t ≥0),则|CM |2=(t -3)2+s 2=t 2-2t +9=(t -1)2+8≥8,当且仅当t =1时取“=”,∀t ≥0,|CM |2∈[8,+∞), 因此得0<4|CM |2≤12,即12≤1-4|CM |2<1,得22≤|PQ |<4, 所以|PQ |的取值范围为[22,4).三 高考小题重现篇1.答案:D解析:由题意,知抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0),所以p2=2p ,解得p =8. 2.答案:C解析:设焦点为F ,点A 的坐标为(x 0,y 0),由抛物线定义得|AF |=x 0+p2,∵点A 到y 轴距离为9,∴x 0=9, ∴9+p2=12,∴p =6. 3.答案:B解析:由抛物线的对称性不妨设D 在x 轴上方、E 在x 轴下方.由⎩⎪⎨⎪⎧x =2,y 2=2px 得D (2,2p ),E (2,-2p ),∵OD ⊥OE ,∴OD →·OE →=4-4p =0,∴p =1,∴C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0.4.答案:B解析:不妨设抛物线的方程为y 2=2px (p >0),P (x 0,y 0)(x 0>0),则Q ⎝ ⎛⎭⎪⎫-p 2,y 0,F ⎝ ⎛⎭⎪⎫p2,0,直线FQ 的斜率为-y 0p ,从而线段FQ 的垂直平分线的斜率为p y 0,又线段FQ 的中点为⎝ ⎛⎭⎪⎫0,y 02,所以线段FQ 的垂直平分线的方程为y -y 02=py 0(x -0),即2px -2y 0y +y 20 =0,将点P 的横11 坐标代入,得2px 0-2y 0y +y 20 =0,又2px 0=y 20 ,所以y =y 0,所以点P 在线段FQ 的垂直平分线上.5.答案:5解析:设点M 的坐标为(x 0,y 0),则有|FM |=x 0+1=6,解得x 0=5.6.答案:x =-32解析:不妨设P ⎝ ⎛⎭⎪⎫p 2,p ,∴Q ⎝ ⎛⎭⎪⎫6+p 2,0,PQ →=(6,-p ),因为PQ ⊥OP ,所以p 2×6-p 2=0,∵p >0,∴p =3,∴C 的准线方程为x =-32.四 经典大题强化篇1.解析:(1)由题意可得2+p 2=3,p =2∴抛物线方程为y 2=4x .(2)设直线l 方程为x =my +t ,(t >0),代入抛物线方程y 2=4x 中,消去x 得,y 2-4my -4t =0,y 1y 2=-4t ,x 1x 2=116(y 1y 2)2=t 2.OA →·OB →=x 1x 2+y 1y 2=y 21 4·y 22 4+y 1y 2=t 2-4t =12,解得t =6或t =-2(舍去)直线l 方程为x =my +6,直线过定点Q (6,0).2.解析:(1)将P 点坐标代入抛物线方程y 2=2px 得4=2p ,即p =2, 所以抛物线C 的方程为y 2=4x ;(2)设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0, Δ>0=16m 2+16t >0⇒m 2+t >0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k PA =y 1-2x 1-1=y 1-2y 21 4-1=4y 1+2,同理:k PB =4y 2+2,由题意:4y 1+2+4y 2+2=2,4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,有-4t =4,即t =-1,故直线AB :x =my -1恒过定点(-1,0).。