2018年高考数学总复习 9.7 抛物线
- 格式:ppt
- 大小:2.14 MB
- 文档页数:42
简解抛物线问题的三种途径一、回归定义例 1 点(32)P ,在抛物线24y x =的内部,F 是抛物线的焦点,在抛物线上求一点M ,使MP MF +最小,并求此最小值. 解:过M 作准线l 的垂线MA ,垂足为A ,那么由抛物线的定义有MF MA =.MP MF MP MA +=+∴,显然当P M A ,,三点共线时,MP MF +最小. 此时,M 点的坐标为(12),,最小值为4.二、设而不求例2 抛物线28y x =-的弦PQ 被点(11)A -,平分,求弦PQ 所在的直线方程.解:设PQ 的端点1122()()P x y Q x y ,,,,那么有21122288y x y x ⎧=-⎪⎨=-⎪⎩,, 两式相减得121212()()8()y y y y x x +-=--, ∴21214y y x x -=--,即4PQ k =-. 故弦PQ 所在的直线方程为14(1)y x -=-+,即4x y ++=.三、运用向量例3 过抛物线22(0)y px p =>的焦点F 的直线与抛物线相交于A B ,两点,自A B ,向准线作垂线,垂足分别为A B '',,求证:90A FB ''∠=°.证明:抛物线的焦点02p F ⎛⎫ ⎪⎝⎭,, 设A B ,两点的纵坐标分别为12y y ,,易得212y y p =-.又1222p p A y B y ⎛⎫⎛⎫''-- ⎪ ⎪⎝⎭⎝⎭,,,, 那么12()()FA p y FB p y ''=-=-,,,, 故222120FA FB p y y p p ''=+=-=·, 那么FA FB ''⊥,即90A FB ''∠=°.。
第九节抛物线(一)1.掌握抛物线的定义、几何图形、标准方程及简单性质.2.理解数形结合的思想.知识梳理一、抛物线的定义平面内到定点F的距离等于到定直线l(定点不在定直线上)的距离的点的轨迹是抛物线.其中定点叫做焦点,定直线叫做准线.注意:当定点在定直线上时,点的轨迹是过该定点且与定直线垂直的一条直线.二、抛物线的类型、标准方程及其几何性质(注意:表中各式的p>0)标准方程y2=2px y2=-2px x2=2py x2=-2py图形焦点F ⎝⎛⎭⎫p2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 准线 x =-p 2x =p 2y =-p 2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈R x ∈R ,y ≥0x ∈R ,y ≤0 对称轴 x 轴y 轴顶点 (0,0) 离心率e =1焦半径||PF = p2 +x 1||PF = p2 +||x 1||PF = p2 +y 1||PF = p2 +||y 1基础自测1.(2013·四川卷)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .2 3B .2C. 3D .1解析:抛物线y 2=8x 的焦点为F (2,0),由点到直线的距离公式得F (2,0)到直线x -3y =0的距离d =|2-3×0|12+(-3)2=22=1.故选D.答案:D2.一动圆的圆心在抛物线x 2=-8y 上,且动圆恒与直线y -2=0相切,则动圆必过定点( )A .(4,0)B .(0,-4)C .(2,0)D .(0,-2)解析:由抛物线的定义知到焦点距离与到准线的距离相等,动圆必过焦点(0,-2).答案:D3.若动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则点P 的轨迹方程为____________.解析:由抛物线定义知点P 的轨迹是以F (2,0)为焦点,直线x =-2为准线的抛物线,所以p =4,所以其方程为y 2=8x .答案:y 2=8x4.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________. 解析:椭圆x 26+y 22=1的右焦点为(2,0),所以抛物线y 2=2px 的焦点为(2,0),则p =4.答案:41.(2013·新课标全国Ⅰ卷)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解析:由y 2=42x 知:焦点F (2,0),准线x =- 2.设P 点坐标为(x 0,y 0),则x 0+2=42,所以x 0=32,所以y 20=42×32=24, 所以|y 0|=26,所以S △POF =12×2×26=2 3.故选C.答案:C2.已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1. (1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求A D →·E B →的最小值.解析:(1)设动点P 的坐标为(x ,y ),由题意有(x -1)2+y 2-|x |=1.化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0. 所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0(x <0).(2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k 2,x 1x 2=1.因为l 1⊥l 2,所以l 2的斜率为-1k.设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.故A D →·E B →=(A F →+F D →)·(E F →+F B →)=A F →·E F →+A F →·F B →+F D →·E F →+F D →·F B →=|A F →|·|F B →|+|F D →|·|E F →|=(x 1+1)(x 2+1)+(x 3+1)(x 4+1)=x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1 =1+⎝⎛⎭⎫2+4k 2+1+1+(2+4k 2)+1=8+4⎝⎛⎭⎫k 2+1k 2≥8+4×2k 2·1k2=16. 当且仅当k 2=1k2,即k =±1时,AD →·E B →取得最小值16.1.(2013·汕头一模)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为________.解析:因为y 2=4x ,所以p =2,焦点坐标为(1,0),依题意可知当P ,Q 和焦点三点共线且点P 在中间的时候,距离之和最小如图,故P 的纵坐标为-1,然后代入抛物线方程求得x =14.答案:⎝⎛⎭⎫14,-12.在平面直角坐标系xOy 中,动点P 到定点F ()1,0的距离与到定直线l :x =-1的距离相等.(1)求动点P 的轨迹E 的方程;(2)过点F 作倾斜角为45°的直线m 交轨迹E 于点A ,B ,求△AOB 的面积. 解析:(1)设P ()x ,y ,由抛物线定义知,点P 的轨迹E 为抛物线,方程为y 2=4x .(2)m :y =x -1,代入y 2=4x ,消去x 得y 2-4y -4=0.设A ()x 1,y 1,B ()x 2,y 2,则||y 2-y 1=42,所以S △AOB =12×||OF ×||y 2-y 1=12×1×42=2 2.。
第7讲 抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质标准 方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线 方程 x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0, x ∈R开口方向 向右向左向上向下焦半径 (其中P (x 0, y 0))|PF |=x 0+p 2|PF |= -x 0+p2|PF |= y 0+p 2|PF |= -y 0+p23.与焦点弦有关的常用结论 (以右图为依据)设A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p.(4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(3)若一抛物线过点P (-2,3),则其标准方程可写为y 2=2px (p >0).( )(4)抛物线既是中心对称图形,又是轴对称图形.( ) 答案:(1)× (2)× (3)× (4)×(教材习题改编)抛物线y =-14x 2的焦点坐标是( )A .(0,-1)B .(0,1)C .(1,0)D .(-1,0)解析:选A.抛物线y =-14x 2的标准方程为x 2=-4y ,开口向下,p=2,p2=1,故焦点为(0,-1).顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( ) A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y解析:选D.设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .(教材习题改编)焦点在直线2x +y +2=0上的抛物线的标准方程为________.解析:抛物线的标准方程的焦点都在坐标轴上,直线2x +y +2=0与坐标轴的交点分别为(-1,0)与(0,-2),故所求的抛物线的焦点为(-1,0)或(0,-2),当焦点为(-1,0)时,易得抛物线标准方程为y 2=-4x .当焦点为(0,-2)时,易得抛物线标准方程为x 2=-8y . 答案:y 2=-4x 或x 2=-8y设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.解析:如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2,由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6. 答案:6抛物线的定义(高频考点)抛物线的定义是高考的热点,考查时多以选择题、填空题形式出现,个别高考题有一定难度.高考对该内容的考查主要有以下三个命题角度:(1)求抛物线的标准方程;(2)求抛物线上的点与焦点的距离; (3)求距离和的最值.[典例引领]角度一 求抛物线的标准方程(2018·天津模拟)已知动圆过定点F ⎝ ⎛⎭⎪⎫p 2,0,且与直线x =-p2相切,其中p >0,则动圆圆心的轨迹E 的方程为________________.【解析】 依题意得,圆心到定点F ⎝ ⎛⎭⎪⎫p 2,0的距离与到直线x =-p2的距离相等,再依抛物线的定义可知,动圆圆心的轨迹E 为抛物线,其方程为y 2=2px . 【答案】 y 2=2px角度二求抛物线上的点与焦点的距离(2017·高考全国卷Ⅱ)已知F是抛物线C:y2=8x的焦点,M 是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=____________.【解析】法一:依题意,抛物线C:y2=8x的焦点F(2,0),准线x=-2,因为M是C上一点,FM的延长线交y轴于点N,M为FN的中点,设M(a,b)(b>0),所以a=1,b=22,所以N(0,42),|FN|=4+32=6.法二:依题意,抛物线C:y2=8x的焦点F(2,0),准线x=-2,因为M是C上一点,FM的延长线交y轴于点N,M为FN的中点,则点M的横坐标为1,所以|MF|=1-(-2)=3,|FN|=2|MF|=6.【答案】6角度三求距离和的最值已知抛物线y2=4x的焦点是F,点P是抛物线上的动点,又有点B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|=|P1F|,则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】4若本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部.因为|PB|+|PF|的最小值即为B,F两点间的距离,所以|PB |+|PF |≥|BF |=42+22=16+4=2 5.即|PB |+|PF |的最小值为2 5.抛物线定义的应用(1)利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2. [通关练习]1.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A .1 B .2 C .4D .8解析:选A.由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1.2.已知动点P 的坐标(x ,y )满足方程5(x -1)2+(y -2)2=|3x +4y +12|,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线D .抛物线解析:选 D.由5(x -1)2+(y -2)2=|3x +4y +12|⇒(x -1)2+(y -2)2=|3x +4y +12|5,所以动点P 到定点(1,2)的距离等于其到直线l :3x +4y +12=0的距离,所以点P 的轨迹是抛物线.3.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B .1 C.54D.74解析:选C.如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于A 1,BB 1⊥l 于B 1,MM 1⊥l 于M 1,由抛物线的定义知p =12,|AA 1|+|BB 1|=|AF |+|BF |=3,则点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-14=54.故选C.抛物线的性质[典例引领](1)(2016·高考全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)(2018·东北四市模拟)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2 B.12 C.14D.18【解析】 (1)由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p24+5,得p =4,所以选B.(2)由题意知x 2=12y ,则F ⎝⎛⎭⎪⎫0,18,设P (x 0,2x 20),则|PF |=x 2+⎝⎛⎭⎪⎫2x 20-182=4x 40+12x 20+164=2x 20+18,所以当x 20=0时,|PF |min =18.【答案】 (1)B (2)D抛物线性质的应用技巧(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.(2)要结合图形分析,灵活运用平面图形的性质以形助数.[通关练习]1.(2018·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( ) A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2解析:选 B.设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .2.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .当水面宽为2 6 m 时,水位下降了________ m.解析:以抛物线的顶点为坐标原点,水平方向为x 轴建立平面直角坐标系,设抛物线的标准方程为x 2=-2py (p >0),把(2,-2)代入方程得p =1,即抛物线的标准方程为x 2=-2y .将x =6代入x 2=-2y 得:y =-3,又-3-(-2)=-1,所以水面下降了1 m.答案:1直线与抛物线的位置关系[典例引领](2016·高考全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 【解】 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =ptx ,代入y 2=2px ,整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.直线与抛物线位置关系的判断直线y =kx +m (m ≠0)与抛物线y 2=2px (p >0)联立方程组,消去y ,得到k 2x 2+2(mk -p )x +m 2=0的形式.当k =0时,直线和抛物线相交,且与抛物线的对称轴平行,此时与抛物线只有一个交点;当k ≠0时,设其判别式为Δ,(1)相交:Δ>0⇔直线与抛物线有两个交点; (2)相切;Δ=0⇔直线与抛物线有一个交点; (3)相离:Δ<0⇔直线与抛物线没有交点.[提醒] 过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.[通关练习]1.过点(-2,1)斜率为k 的直线l 与抛物线y 2=4x 只有一个公共点,则由k 的值组成的集合为________. 解析:设l 的方程为y -1=k (x +2),由方程组⎩⎪⎨⎪⎧y =kx +(2k +1)y 2=4x,得ky 2-4y +4(2k +1)=0,①当k =0时,y =1,此时x =14,l 与抛物线仅有一个公共点⎝ ⎛⎭⎪⎫14,1. ②当k ≠0时,由Δ=-16(2k 2+k -1)=0,得k =-1或k =12,所以k的值组成的集合为⎩⎨⎧⎭⎬⎫0,-1,12.答案:⎩⎨⎧⎭⎬⎫0,-1,122.(2018·湖南长沙四县联考)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.解:(1)由抛物线定义可得|AF |=2+p2=3,解得p =2.所以抛物线E 的方程为y 2=4x .(2)证明:因为点A (2,m )在抛物线E 上, 所以m 2=4×2,解得m =22,即A (2,22), 又F (1,0),所以直线AF 的方程为y =22(x -1),由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或12,所以B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =223,k GB =-223,所以k GA +k GB =0,所以∠AGF =∠BGF , 所以GF 为∠AGB 的平分线.抛物线定义的实质可归结为“一动三定”;一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率). 抛物线最值问题的求法(1)求抛物线上一点到定直线的最小距离,可以利用点到直线的距离公式表示出所求的距离,再利用函数求最值的方法求解,亦可转化为抛物线过某点的切线与定直线平行时,两直线间的距离问题.(2)求抛物线上一点到定点的最值问题,可以利用两点间的距离公式表示出所求距离,在利用函数求最值的方法求解时,要注意抛物线上点的设法及变量的取值范围. 易错防范(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .-43B .-1C .-34D .-12解析:选C.由已知,得准线方程为x =-2,所以F 的坐标为(2,0).又A (-2,3),所以直线AF 的斜率为k =3-0-2-2=-34.2.若点A ,B 在抛物线y 2=2px (p >0)上,O 是坐标原点,若正三角形OAB 的面积为43,则该抛物线方程是( ) A .y 2=233xB .y 2=3x C .y 2=23xD .y 2=33x解析:选 A.根据对称性,AB ⊥x 轴,由于正三角形的面积是43,故34AB 2=43,故AB =4,正三角形的高为23,故可以设点A 的坐标为(23,2),代入抛物线方程得4=43p ,解得p =33,故所求的抛物线方程为y 2=233x .故选A. 3.(2018·皖北协作区联考)已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截弦长为45,则抛物线C 的方程为( ) A .x 2=8yB .x 2=4yC .x 2=2y D .x 2=y解析:选C.由⎩⎪⎨⎪⎧x 2=2py ,y =2x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4p ,y =8p ,即两交点坐标为(0,0)和(4p ,8p ),则(4p )2+(8p )2=45,得p =1(舍去负值),故抛物线C 的方程为x 2=2y .4.(2018·湖南省五市十校联考)已知抛物线y 2=2x 上一点A 到焦点F 的距离与其到对称轴的距离之比为5∶4,且|AF |>2,则点A 到原点的距离为( ) A.41 B .22 C .4D .8解析:选B.令点A 到点F 的距离为5a ,点A 到x 轴的距离为4a ,则点A的坐标为⎝ ⎛⎭⎪⎫5a -12,4a ,代入y 2=2x 中,解得a =12或a =18(舍),此时A (2,2),故点A 到原点的距离为2 2.5.(2018·太原模拟)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( ) A.72 B.52 C .3D .2解析:选C.因为FP →=4FQ →,所以|FP →|=4|FQ →|,所以|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,所以|PQ ||PF |=|QQ ′||AF |=34,所以|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3.6.(2018·云南大理州模拟)在直角坐标系xOy 中,有一定点M (-1,2),若线段OM 的垂直平分线过抛物线x 2=2py (p >0)的焦点,则该抛物线的准线方程是________.解析:依题意可得线段OM 的垂直平分线的方程为2x -4y +5=0,把焦点坐标⎝⎛⎭⎪⎫0,p 2代入可求得p =52,所以准线方程为y =-54.答案:y =-547.(2018·河北六校模拟)抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________. 解析:设满足题意的圆的圆心为M . 根据题意可知圆心M 在抛物线上, 又因为圆的面积为36π,所以圆的半径为6,则|MF |=x M +p 2=6,即x M =6-p2,又由题意可知x M =p 4,所以p 4=6-p2,解得p =8.所以抛物线方程为y 2=16x .答案:y 2=16x8.已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________.解析:抛物线的焦点坐标为⎝⎛⎭⎪⎫0,p 2,双曲线的右焦点坐标为(2,0),所以上述两点连线的方程为x 2+2yp=1.双曲线的渐近线方程为y =±33x .对函数y =12p x 2,y ′=1p x .设M (x 0,y 0),则1p x 0=33,即x 0=33p ,代入抛物线方程得y 0=16p ,由于点M 在直线x 2+2y p =1上,所以36p +2p ×p 6=1,解得p =43=433.答案:4339.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2] =5⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫a +1642-16=35,所以5⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫a +1642-16=45, 所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x .10.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x . (2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又因为F (1,0),所以k FA =43,因为MN ⊥FA ,所以k MN =-34.又FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以点N的坐标为⎝ ⎛⎭⎪⎫85,45.1.(2018·甘肃兰州模拟)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33 B.23 C.22D .1解析:选C.由题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 202p ,y 0, 显然当y 0<0时,k OM <0;当y 0>0时,k OM >0.要求k OM 的最大值,则y 0>0,则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03,所以k OM =y 03y 206p +p 3=2y 0p +2p y 0≤22y 0p ·2p y 0=22, 当且仅当y 20=2p 2时,取得等号.2.(2018·福建省普通高中质量检查)过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,且A ,C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于( ) A .2 B .3 C .4D .5解析:选C.设抛物线的准线与x 轴交于点D ,则由题意,知F (1,0),D (-1,0),分别作AA 1,BB 1垂直于抛物线的准线,垂足分别为A 1,B 1,则有|AC ||FC |=|AA 1||FD |,所以|AA 1|=43,故|AF |=43.又|AC ||BC |=|AA 1||BB 1|,即|AC ||AC |+|AF |+|BF |=|AF ||BF |,亦即2|AF |3|AF |+|BF |=|AF ||BF |,解得|BF |=4,故选C.3.(2017·高考北京卷)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.解:(1)由抛物线C :y 2=2px 过点P (1,1),得p =12.所以抛物线C的方程为y 2=x . 抛物线C的焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14.(2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +12,y 2=x得4k 2x 2+(4k -4)x +1=0. 则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1).直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2.因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0, 所以y 1+y 2x 1x 2=2x 1. 故A 为线段BM 的中点.4.(2018·湖南六校联考)已知抛物线的方程为x 2=2py (p >0),其焦点为F ,点O 为坐标原点,过焦点F 作斜率为k (k ≠0)的直线与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的两条切线,设两条切线交于点M . (1)求OA →·OB →;(2)设直线MF 与抛物线交于C ,D 两点,且四边形ACBD 的面积为323p 2,求直线AB 的斜率k .解:(1)设直线AB 的方程为y =kx +p2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2=2py ,y =kx +p 2,得x 2-2pkx -p 2=0, 则⎩⎪⎨⎪⎧x 1+x 2=2pk ,x 1·x 2=-p 2, 所以OA →·OB →=x 1·x 2+y 1·y 2=-34p 2.(2)由x 2=2py ,知y ′=xp,所以抛物线在A ,B 两点处的切线的斜率分别为x 1p ,x 2p,所以直线AM 的方程为y -y 1=x 1p(x -x 1),直线BM 的方程为y -y 2=x 2p (x -x 2),则可得M ⎝⎛⎭⎪⎫pk ,-p 2.所以k MF =-1k,所以直线MF 与AB 相互垂直.由弦长公式知,|AB |=k 2+1|x 1-x 2|=k 2+1·4p 2k 2+4p 2=2p (k 2+1),用-1k代替k 得,|CD |=2p ⎝ ⎛⎭⎪⎫1k2+1,四边形ACBD 的面积S =12·|AB |·|CD |=2p 2⎝⎛⎭⎪⎫2+k 2+1k 2=323p 2,解得k 2=3或k 2=13,即k =±3或k =±33.。
A 组基础对点练1.(2018·沈阳质量监测)抛物线y =4ax 2(a ≠0)的焦点坐标是()A .(0,a)B .(a,0) C.0,116aD.116,0解析:将y =4ax 2(a ≠0)化为标准方程得x 2=14a y(a ≠0),所以焦点坐标为0,116a,所以选C. 答案:C2.(2018·辽宁五校联考)已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是()A .2 B.12C.32D.52解析:设A(x 1,y 1),B(x 2,y 2),则|AB|=x 1+x 2+p =4,又p =1,所以x 1+x 2=3,所以点C 的横坐标是x 1+x 22=32.答案:C3.(2018·邯郸质检)设F 为抛物线y 2=2x 的焦点,A 、B 、C 为抛物线上三点,若F 为△ABC的重心,则|FA →|+|FB →|+|FC →|的值为()A .1B .2C .3D .4解析:依题意,设点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),又焦点F 12,0,x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=(x 1+12)+(x 2+12)+x 3+12=(x 1+x 2+x 3)+32=32+32=3.选C.答案:C4.(2018·沈阳质量监测)已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P作P A ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF|=________.解析:设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB|=233,设P(x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF|=|P A|=y 0+1=43. 答案:435.已知抛物线C的方程为y2=2px(p>0),⊙M的方程为x2+y2+8x+12=0,如果抛物线C 的准线与⊙M相切,那么p的值为__________.解析:将⊙M的方程化为标准方程:(x+4)2+y2=4,圆心坐标为(-4,0),半径r=2,又抛物线的准线方程为x=-p2,∴|4-p2|=2,解得p=12或4.答案:12或46.如图,过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是__________.解析:分别过点A、B作准线的垂线AE、BD,分别交准线于点E、D(图略),则|BF|=|BD|,∵|BC|=2|BF|,∴|BC|=2|BD|,∴∠BCD=30°,又|AE|=|AF|=3,∴|AC|=6,即点F是AC的中点,根据题意得p=32,∴抛物线的方程是y2=3x.答案:y2=3x7.已知抛物线y2=4px(p>0)的焦点为F,圆W:(x+p)2+y2=p2的圆心到过点F的直线l 的距离为p.(1)求直线l的斜率;(2)若直线l与抛物线交于A、B两点,△WAB的面积为8,求抛物线的方程.解析:(1)易知抛物线y2=4px(p>0)的焦点为F(p,0),依题意直线l的斜率存在且不为0,设直线l的方程为x=my+p,因为W(-p,0),所以点W到直线l的距离为|-p-p|1+-m2=p,解得m=±3,所以直线l的斜率为±33.(2)由(1)知直线l的方程为x=±3y+p,由于两条直线关于x轴对称,不妨取x=3y+p,联立x=3y+p,y2=4px,消去x得y2-43py-4p2=0,设A(x1,y1),B(x2,y2),则y1+y2=43p,y1y2=-4p2,所以|AB|=1+32·43p2+4×4p2=16p,因为△WAB的面积为8,所以12p×16p=8,得p=1,所以抛物线的方程为y2=4x.8.已知抛物线C1:x2=2py(p>0),O是坐标原点,点A,B为抛物线C1上异于O点的两点,以OA为直径的圆C2过点 B.(1)若A(-2,1),求p的值以及圆C2的方程;(2)求圆C2的面积S的最小值(用p表示).解析:(1)∵A(-2,1)在抛物线C 1上,∴4=2p ,p =2.又圆C 2的圆心为-1,12,半径为|OA|2=52,∴圆C 2的方程为(x +1)2+y -122=54.(2)记A(x 1,x 212p ),B(x 2,x 222p ).则OB →=(x 2,x 222p),AB →=(x 2-x 1,x 22-x 212p).由OB →·AB →=0知,x 2(x 2-x 1)+x 22x 22-x 214p 2=0.∵x 2≠0,且x 1≠x 2,∴x 22+x 1·x 2=-4p 2,∴x 1=-x 2+4p2x 2.∴x 21=x 22+16p 4x 22+8p 2≥216p 4+8p 2=16p 2,当且仅当x 22=16p 4x 22,即x 22=4p 2时取等号.又|OA|2=x 21+x 414p2=14p2(x 41+4p 2·x 21),注意到x 21≥16p 2,∴|OA|2≥14p 2(162·p 4+4p 2·16p 2)=80p 2.而S =π·|OA |24,∴S ≥20πp 2,即S 的最小值为20πp 2,当且仅当x 22=4p 2时取得.B 组能力提升练1.(2018·唐山统考)已知抛物线y 2=2px(p >0),过点C(-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12. (1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.解析:(1)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.(*) 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12,得p =2,抛物线的方程为y 2=4x.(2)(1)中(*)式可化为y 2-4my +8=0,y 1+y 2=4m ,y 1y 2=8. 设AB 的中点为M ,则|AB|=2x M =x 1+x 2=m(y 1+y 2)-4=4m 2-4,①又|AB|=1+m 2|y 1-y 2|=1+m216m 2-32,②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2,解得m 2=3,m =±3.所以,直线l 的方程为x +3y +2=0或x -3y +2=0. 2.如图,由部分抛物线:y 2=mx +1(m >0,x ≥0)和半圆x 2+y 2=r 2(x ≤0)所组成的曲线称为“黄金抛物线C ”,若“黄金抛物线C ”经过点(3,2)和-12,32.(1)求“黄金抛物线C ”的方程;(2)设P(0,1)和Q(0,-1),过点P 作直线l 与“黄金抛物线C ”相交于A ,P ,B 三点,问是否存在这样的直线l ,使得QP 平分∠AQB ?若存在,求出直线l 的方程;若不存在,说明理由.解析:(1)∵“黄金抛物线C ”过点(3,2)和-12,32,∴r 2=-122+322=1,4=3m +1,∴m =1. ∴“黄金抛物线C ”的方程为y 2=x +1(x ≥0)和x 2+y 2=1(x ≤0).(2)假设存在这样的直线l ,使得QP 平分∠AQB ,显然直线l 的斜率存在且不为0,设直线l :y =kx +1,联立y =kx +1y 2=x +1,消去y ,得k 2x 2+(2k -1)x =0,∴x B =1-2kk 2,y B =1-k k ,即B 1-2k k 2,1-kk,∴k BQ =k 1-2k ,联立y =kx +1x 2+y 2=1,消去y ,得(k 2+1)x 2+2kx =0,∴x A =-2k k 2+1,y B=1-k2k 2+1,即A -2kk 2+1,1-k 2k 2+1,∴k AQ =-1k,∵QP 平分∠AQB ,∴k AQ +k BQ =0,∴k 1-2k -1k=0,解得k =-1±2,由图形可得k =-1-2应舍去,∴k =2-1,∴存在直线l :y =(2-1)x +1,使得QP 平分∠AQB.。