鲁奇气化炉
- 格式:docx
- 大小:18.40 KB
- 文档页数:4
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是目前常用的一种炉型,广泛应用于能源行业中,主要用于煤炭和其他可燃性物质的气化转化为合成气。
本文将对鲁奇加压气化炉的运行和技术改造进行探讨。
1. 煤炭粒度要求:对于鲁奇加压气化炉来说,煤炭粒度是一个重要的运行参数。
太细的煤炭会导致气化效率降低,太粗的煤炭会导致气化速度过慢。
在运行过程中应该控制好煤炭的粒度,以保证气化效果。
2. 气化温度控制:气化温度是指鲁奇加压气化炉内部的温度。
太低的温度会导致气化反应不完全,气化产物质量下降;太高的温度会导致过烧现象,降低气化装置的寿命。
对于鲁奇加压气化炉的运行,应该控制好气化温度,以保证气化效果和气化装置的安全运行。
3. 炉内烟气循环与净化:鲁奇加压气化炉炉内烟气循环是指气化过程中烟气的循环和净化处理。
通过烟气循环,可以提高气体产率和气化效率;通过净化处理,可以降低废气中的有害物质含量,减少环境污染。
在运行过程中需要关注炉内烟气循环和净化措施,以保证气化效果和环境安全。
1. 炉内温度控制系统改造:为了更好地控制气化温度,可以进行炉内温度控制系统的改造。
可以引入先进的自动控制技术,如PID控制算法和智能控制系统,实现对气化温度的精确控制,提高气化效率和气化装置的安全性。
2. 煤粉喷射系统改造:煤粉喷射系统是鲁奇加压气化炉中的关键部件之一,对气化效果有着重要影响。
通过改进煤粉喷射系统的设计,如增加喷射口数量和改善喷射口结构,可以提高煤粉的喷射均匀性和混合效果,增加气化效率。
3. 烟气处理系统改造:为了更好地净化废气,可以进行鲁奇加压气化炉烟气处理系统的改造。
可以引入先进的废气净化技术,如脱硫、脱硝和除尘等技术,降低废气中有害物质的排放量,减少环境污染。
4. 安全监控系统改造:为了提高鲁奇加压气化炉的安全性,可以进行安全监控系统的改造。
可以引入先进的监控设备和监控算法,实现对气化炉运行情况的实时监测和预警,及时发现并处理故障,确保气化装置的安全运行。
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种用于生产工业原料和能源的设备,它可以将固体燃料,如煤、木材等,通过加压气化的方式转化为可燃气体,从而实现能源的高效利用。
随着能源需求的不断增加和环境保护意识的提高,对加压气化炉的运行和技术改造的探讨变得愈发重要。
本文将从加压气化炉的基本原理、运行情况以及技术改造方面展开讨论。
一、加压气化炉的基本原理鲁奇加压气化炉是一种通过给固体燃料施加高压,使其在高温下与氧气发生气化反应的设备。
其基本原理是将固体燃料加热至一定温度后,通过给予一定的高压使其与氧气发生气化反应,生成可燃气体和灰渣。
这种气化反应产生的可燃气体可以作为燃料供给燃烧设备,从而实现能源的利用。
二、加压气化炉的运行情况1. 原料选择:加压气化炉可以使用各种固体燃料,包括煤、木材、秸秆等。
在实际运行中,不同的原料会对气化反应的速度和产物的成分产生影响,因此在选择原料时需要进行综合考虑。
2. 气化反应:气化反应是加压气化炉的核心部分,其速度和效果对设备的运行效率和产物的质量有重要影响。
在实际操作中,需要控制气化反应的温度、压力和气体流速等参数,以保证气化反应的稳定和高效进行。
3. 清灰处理:加压气化炉在运行过程中会产生大量的灰渣,这些灰渣会对设备的正常运行产生影响。
需要定期进行清灰处理,确保设备的正常运行。
4. 安全管理:加压气化炉是一种高温高压设备,其运行安全至关重要。
在运行中需要加强对设备的监控和维护,确保设备的安全运行。
三、加压气化炉的技术改造随着科技的进步和能源需求的变化,对加压气化炉的技术改造变得愈发重要。
以下是一些可能的技术改造方向:1. 节能改造:通过提高设备的热效率和气化反应的效率,减少能源的消耗,从而实现节能降耗。
2. 环保改造:通过改进气化反应的参数控制和气体净化系统,降低气化过程中产生的有害气体排放,实现环保目标。
3. 自动化改造:通过引入自动控制系统,提高设备的稳定性和可靠性,减少人为操作的误差,提高生产效率。
鲁奇式气化炉
3.0MPa气化炉
煤槽——流槽——煤锁————
煤槽和流槽为常压;煤锁为2个,是上下阀,采用亚纲控制。
从煤锁加煤料,受压3MPa;从流槽加煤料,为常压。
整体组成分为3部分:煤槽、炉槽、废热锅炉
加煤料一次操作10-15min。
BGL碎煤熔渣气化炉
根据鲁奇式气化炉改进,气化温度变高,在外又加一层耐火材料,可达到1600~1800℃,气化区温度1300℃。
其荒煤气中水蒸气含量很少,蒸汽含量为鲁奇式的五分之一。
煤槽——过渡仓——炉体(无炉壁)——熔渣池(保持其稳定性)——出渣口(要小,保持通畅)——急冷室(含冷水,废渣变成玻璃状碎渣)——渣锁
炉体:喷口:斜喷路(朝下,16—19°)
托渣板:独立的
BGL碎煤熔渣气化炉技术是在鲁奇式固定床加压气化炉技术基础上,由英国燃气公司开发出来的新型煤气化技术。
该产品由中国化学工业第二设计院设计,太原重工煤化工设备分公司生产制造。
BGL气化炉包括炉体、煤锁、渣锁、中间短节、过
渡仓、激冷室六个部件,其炉体是核心设备,设备总重184.652吨,属我国第一次生产制造。
鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
鲁奇气化炉工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!《鲁奇气化炉工艺流程》一、气化炉介绍气化炉是煤化工的关键设备之一,用于将煤炭转化为合成气。
鲁奇气化炉
鲁奇加压气化炉
1、第三代鲁奇加压气化炉
第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体
加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器
如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算
炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐
热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有
调速方便、结构简单、工作平稳等优点。
由于气化炉炉径较大,为使炉箅受力均匀,采用两台液压马达对称布置。
④煤锁
煤锁是一个容积为12m3的压力容器,它通过上下阀定期定量地将煤加入到气化炉内。
根据负荷和煤质的情况,每小时加煤3~5次。
加煤过程简述如下。
a.煤锁在大气压下(此时煤锁下阀关,煤锁上阀开),煤从煤斗经过给煤溜槽流入煤锁。
b.煤锁充满后,关闭煤锁上阀。
煤锁用煤气充压到和炉内压力相同。
c.充压完毕,煤锁下阀开启,煤开始落入炉内,当煤锁空后,煤锁下阀关闭。
d.煤锁卸压,煤锁中的煤气送入煤锁气柜,残余的煤气由煤锁喷射器抽出,经过除尘后排入大气。
煤锁上阀开启,新循环开始。
⑤灰锁
灰锁是一个可以装灰6m3的压力容器,和煤锁一样,采用液压操作系统,以驱动底部和顶部锥形阀和充、卸压阀。
灰锁控制系统为自动可控电子程序装置,可以实现自动、半自动和手动操作,该循环过程如下。
a.连续转动的炉箅将灰排出气化炉,通过顶部锥形阀进入灰锁。
此时灰锁底部锥形阔关闭,灰锁与气化炉压力相等。
b.当需要卸灰时,停止炉箅转动,灰锁顶部锥形阎关闭,再重新启动炉箅。
c.灰锁降压到大气压后,打开底部锥形阀,灰从灰锁进入灰斗,在此灰被急冷后去处理。
d.关闭底部锥形阀,用过热蒸汽对灰锁充压,然后炉算运行一段时间后,再打开顶部锥形阀,新循环开始。
2、液态排渣加压气化炉
液态排渣加压气化炉的基本原理是,仅向气化炉内通入适量的水蒸气,控制炉温在灰熔点以上,灰渣要以熔融状态从炉底排出。
气化层的温度较高,一般在1100~1500℃之间,气化反应速度大,设备的生产能力大,灰渣中几乎无残碳。
液态排渣气化炉的主要特点是炉子下部的排灰机构特殊,取消了固态排渣炉的转动炉箅。
在炉体的下部设有熔渣池。
在渣箱的上部有一液渣急冷箱,用循环熄渣水冷却,箱内充满70%左右的急冷水。
由排渣口下落在急冷箱内淬冷形成渣粒,在急冷箱内达到一定量后,卸
入渣箱内并定时排出炉外。
由于灰箱中充满水,和固态排渣炉相比,灰箱的充、卸压就简单多了。
在熔渣池上方有8个均匀分布、按径向对称安装并稍向下倾斜、带水冷套的钛钢气化剂喷嘴。
气化剂和煤粉及部分焦油由此喷入炉内,在熔渣池中心管的排渣口上部汇集,使得该区域的温度可达1500℃左右,使熔渣呈流动状态。
为避免回火,气化剂喷嘴口的气流喷入速度应不低于100m/s。
如果要降低生产负荷,可以关闭一定数量的喷嘴来调节,因此它比一般气化炉调节生产负荷的灵活性大。
高温液态排渣,气化反应的速度大大提高,是熔渣气化炉的主要优点。
所气化的煤中的灰分是以液态形式存在,熔渣池的结构与材料是这种气化方法的关键。
为了适应炉膛内的高温,炉体以耐高温的碳化硅耐火材料作内衬。
该炉型装上布煤器和搅拌器后,可以用来气化强黏结性的烟煤。
与固态排渣炉相比,可以用来气化低灰熔点和低活性的无烟煤。
在实际生产中,气化剂喷嘴可以携带部分粉煤和焦油进入炉膛内,因此可
以直接用来气化煤矿开采的原煤,为粉煤和焦油的利用提供了一条较好的途径。
液态排渣气化炉有以下特点。
(1)由于液态排渣气化剂的汽氧比远低于固态排渣,所以气化层的反应温度高,碳的转化率增大,煤气中的可燃成分增加,气化效率高。
煤气中CO含量较高,有利于生成合成气。
(2)水蒸气耗量大为降低,且配入的水蒸气仅满足于气化反应,蒸汽分解率高,煤气中的剩余水蒸气很少,故而产生的废水远小于固态排渣。
(3)气化强度大。
由于液态排渣气化煤气中的水蒸气量很少,气化单位质量的煤所生成的湿粗煤气体积远小于固态排渣,因而煤气气流速度低,带出物减少,因此在相同带出物条件下,液态排渣气化强度可以有较大提高。
(4)液态排渣的氧气消耗较固态排渣要高,生成煤气中的甲烷含量少,不利于生产城市煤气,但有利于生产化工原料气。
(5)液态排渣气化炉体材料在高温下的耐磨、耐腐蚀性能要求高。
在高温、高压下如何有效地控制熔渣的排出等问题是液态排渣的技术关键,尚需进一步研究。