鲁奇加压气化炉的运行与技术改造
- 格式:docx
- 大小:29.26 KB
- 文档页数:5
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是目前常用的一种炉型,广泛应用于能源行业中,主要用于煤炭和其他可燃性物质的气化转化为合成气。
本文将对鲁奇加压气化炉的运行和技术改造进行探讨。
1. 煤炭粒度要求:对于鲁奇加压气化炉来说,煤炭粒度是一个重要的运行参数。
太细的煤炭会导致气化效率降低,太粗的煤炭会导致气化速度过慢。
在运行过程中应该控制好煤炭的粒度,以保证气化效果。
2. 气化温度控制:气化温度是指鲁奇加压气化炉内部的温度。
太低的温度会导致气化反应不完全,气化产物质量下降;太高的温度会导致过烧现象,降低气化装置的寿命。
对于鲁奇加压气化炉的运行,应该控制好气化温度,以保证气化效果和气化装置的安全运行。
3. 炉内烟气循环与净化:鲁奇加压气化炉炉内烟气循环是指气化过程中烟气的循环和净化处理。
通过烟气循环,可以提高气体产率和气化效率;通过净化处理,可以降低废气中的有害物质含量,减少环境污染。
在运行过程中需要关注炉内烟气循环和净化措施,以保证气化效果和环境安全。
1. 炉内温度控制系统改造:为了更好地控制气化温度,可以进行炉内温度控制系统的改造。
可以引入先进的自动控制技术,如PID控制算法和智能控制系统,实现对气化温度的精确控制,提高气化效率和气化装置的安全性。
2. 煤粉喷射系统改造:煤粉喷射系统是鲁奇加压气化炉中的关键部件之一,对气化效果有着重要影响。
通过改进煤粉喷射系统的设计,如增加喷射口数量和改善喷射口结构,可以提高煤粉的喷射均匀性和混合效果,增加气化效率。
3. 烟气处理系统改造:为了更好地净化废气,可以进行鲁奇加压气化炉烟气处理系统的改造。
可以引入先进的废气净化技术,如脱硫、脱硝和除尘等技术,降低废气中有害物质的排放量,减少环境污染。
4. 安全监控系统改造:为了提高鲁奇加压气化炉的安全性,可以进行安全监控系统的改造。
可以引入先进的监控设备和监控算法,实现对气化炉运行情况的实时监测和预警,及时发现并处理故障,确保气化装置的安全运行。
鲁奇加压气化炉的运行与技术改进摘要:随着我国市场经济体制的深入发展,能源利用方式也面临着新的改革,不仅要满足市场需求,更要实现多样化创新以适应多方面需求。
煤化工业在此基础上得到了较快的发展,如合成氨、甲醇、煤制天然气、煤制油等产业,在不同程度上提出了碎煤加压气化工艺的需求。
鲁奇炉是在煤化工业中重要的设备,也被看作是煤气化炉中的发生器。
这种产自德国的工艺设备在世界范围内都得到了广泛地应用,上世纪五十年代,我国根据生产需求引入了鲁奇工艺,同时也开始了针对鲁奇工艺生产的探索和研究。
基于此,本文主要对鲁奇加压气化炉的运行与技术改进进行分析探讨。
关键词:鲁奇加压气化炉;运行;技术改进1、前言我国引入鲁奇工艺是在上世纪五十年代,第一代鲁奇炉从苏联引入之后在较长的一段时间内没有进行技术改造方面的探索。
这是因为建国初期的煤化工业几乎都是有苏联技术援建的,以碎煤加压气化为主要技术,国内几乎没有相关的技术人员。
经过长期的研究,碎煤加压气化技术得到了大幅度创新,但在工艺运行和技术改造方面都存在较大的空间。
2、鲁奇炉的设计结构和工艺原理目前,我国鲁奇加压炉的改造方向,主要用于氨气和煤气的生产,应用于化肥生产、城市煤气供应等方面。
虽然不同的生产企业对气化炉的结构改造不同,但在利用煤炭资源性质方面是相同,通过技术改造造成部件方面的差异,本文基于化肥生产过程进行研究。
2.1鲁奇炉简介鲁奇炉是德国鲁奇工程公司生产的煤气化装置,最早成形于十九世纪三十年代,鲁奇炉的是经过对多种煤炭资源测试试验后发明的煤气化装置。
在最初采用燃烧值较低的褐煤进行实验,并取得了成功,在十九世纪50年代到70年代,鲁奇工程公司进行了一系列的改造,其中鲁奇Ⅳ型汽化炉的技术已经相当成熟,目前在国内应用的鲁奇炉设备大多是这一型号。
MARK-Ⅳ型中设置了炉箅,对气化的强度提升高,残渣形成少,技术更加先进;MARK-Ⅳ型鲁奇炉结构其他主要部件包括炉体、煤锁、膨胀冷凝器、洗涤冷却器等。
鲁奇气化炉的改进技术及措施【摘要】气化床层自上而下分干燥、干馏、还原、氧化和灰渣等层,产品煤气经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤气。
粗煤气经烃类分离和蒸汽转化后可作合成气,但流程长,技术经济指标差,对低温焦油及含酚废水的处理难度较大,环保问题不易解决。
鉴于此,本文主要探讨鲁奇气化炉的改进技术及措施。
【关键词】鲁奇气化炉;改进技术;处理鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂数量最多的煤气化技术。
正在运行中的气化炉达数百台,主要用于生产城市煤气和合成原料气。
德国Lurgi 加压气化炉压力2.5~4.0MPa,气化反应温度800~900℃,固态排渣,以小块煤(对入炉煤粒度要求是6mm以上,其中13mm以上占87%,6~13mm占13%)原料、蒸汽一氧连续送风制取中热值煤气。
1 鲁奇气化炉的技术特点鲁奇炉的技术特点有以下几方面:(1)鲁奇碎煤气化技术系固定床气化,固态排渣,适宜弱黏结性碎煤(5~50mm)。
(2)生产能力大。
自工业化以来,单炉生产能力持续增长。
例如,1954年在南非沙索尔建立的10台内径为3.72m的气化炉,其产气能力为1.53×104m3/(h·台);而1966年建设的3台,产气能力为2.36×104m3/(h·台);到1977年所建的13台气化炉,平均产气能力则达2.8×10tms/(h·台)。
这种持续增长,主要是靠操作的不断改进。
(3)气化炉结构复杂,炉内设有破黏和煤分布器、炉篦等转动设备,制造和维修费用大。
(4)入炉煤必须是块煤,原料来源受一定限制。
(5)出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多,炉渣含碳5%左右。
通过扩大炉径和增设破黏装置后,提高了气化强度和煤种适应性。
煤种涉及到次烟煤、褐煤、贫煤,用途为F~T合成、天然气、城市煤气、合成氨,气化能力8000~100000m3/h,气化炉内径最大5.0m,装置总规模1100~11600t/d。
鲁奇加压气化炉的运行与技术改造探讨
鲁奇加压气化炉是一种采用间歇式加压气化技术的燃烧设备,其优点是在燃烧过程中可以获得高效的热能转换,同时还能有效地进行废气处理。
然而随着时间的推移,设备的运行效率与性能将会降低,这时需要进行技术改造来提高设备的运行效率与性能。
首先,加装旋流式废气净化装置可以在提高燃烧效率的同时,也能有效地减少废气排放量。
旋流式废气净化装置采用惯性沉积与湍流碰撞相结合的方式对废气中的灰尘、烟雾等固体颗粒进行捕捉过滤,因此其过滤效率高且能力强,能够在一定程度上提高燃料利用率,同时还能保护环境。
其次,对炉内加热方式进行改善,尤其是对炉底的加热方式进行改良。
传统的燃烧方式采用电加热或者燃气加热,而这种方式的加热效率不高,因此可以尝试改用气体喷射式加热或者热电偶感应加热等加热方式。
这种改变可以提高炉内温度,加快热能传递速度,从而加快燃料的气化速度,提高燃烧效率。
除了上述改进技术之外,还可以对鲁奇加压气化炉的控制系统进行优化。
利用现代化控制技术对设备进行智能化、自动化控制,能够实现对加压气化炉的全面监测、实时调整与分析,提高运行效率与稳定性。
优化控制系统可以大大减少人力操作,降低运行成本,更好地保障设备的持久稳定运行。
总的来说,鲁奇加压气化炉在运行过程中,可以通过加装旋流式废气净化装置、改善炉内加热方式以及优化控制系统等方式进行技术改造,以提高设备的运行效率与性能,使其更好地适应现代化产业需求。
鲁奇加压气化炉工艺操作新疆广汇新能源造气车间--程新院一、相关知识1、影响化学平衡的因素有三点:①反应温度(T)、②反应压力(P)、③反应浓度(C)。
勒夏特列原理:如果改变影响化学平衡条件之一(T、P、C),平衡将向着能够减弱这种改变的方向移动。
2、气化炉内氧化层主反应方程式① 2C+O₂=CO₂(-Q)ΔH<0②2C+O₂=2CO(-Q)ΔH₂<0ΔH<ΔH₂3、气化炉内还原层主反应方程式③C+CO₂=2CO(+Q)ΔH₃>0④C+H₂O=CO+H₂(+Q)ΔH₄>0⑤C+2H₂=CH₄(+Q)ΔH5>0ΔH₃>ΔH₄>ΔH5|ΔH|>ΔH₃>|ΔH₂|>ΔH₄>ΔH₄4、煤灰熔点对气化炉的影响鲁奇气化炉的操作温度介于煤的DT(变形温度)和ST(软化温度)之间。
若入炉煤的灰熔点高,则操作时适当降低汽氧比,相应提高炉温,蒸汽分解率增加,煤气水产量低,气化反应完全,有利于产气。
但是受气化炉设计材料的制约,汽氧比不能无限制降低,否则可能会烧坏炉篦及内件。
因此受设备材质的局限,煤灰熔点不能太高,一般控制在1150℃≦DT≦1250℃。
反之,若煤灰熔点低,则操作时要适当提高汽氧比,相应降低炉温(防止炉内结渣,造成排灰困难),蒸汽分解率降低,煤气水产量增加,气化反应速度减缓,不利于产气。
因此入炉煤的灰熔点要尽可能在一定的范围内,不能变化太大。
二、汽氧比的判断鲁奇加压气化炉汽氧比是调整控制气化过程温度,改变煤气组份,影响副产品产量及质量的重要因素。
汽氧比过低,会造成气化炉结渣,排灰困难,不利于产气;汽氧比过高,会造成灰细或排灰困难,煤气水产量增加等。
因此,在不引起灰份熔融的情况下,尽可能采用低的汽氧比。
汽氧比的高低应该结合煤气组份中有效气体的含量、灰样和指标参数做出准确的判断!1、从煤气组份¹判断汽氧比的高低我们在实际操作中一般都根据CO2、CO、H2、CH₄来判断汽氧比的高低,下面分情况进行说明。
鲁奇气化炉鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
鲁奇加压气化炉的运行与技术改造
摘要:在煤化工行业的发展中,鲁奇加压气化炉是一个重要的工程,它也是煤化工行业发展的一个阶段性展示,我国使用鲁奇加压气化炉的数量越来越多,因此,就必须要提高鲁奇加压气化炉的技术手段,提高技术管理和建设能力。
分析鲁奇加压气化炉的工作原理和工作过程性出现的主要问题,逐个突破,提高解决的效率,提高整体发展实力。
关键词:鲁奇加压气化炉;运行;技术改造;
引言
我国能源的特点是富煤、缺油、少气,但煤炭储量中高硫、高灰、高灰熔点的“三高”劣质煤比例较高。
世界煤气化技术从诞生至今已有近80年,不仅改写了煤直接燃烧的历史,而且更加清洁环保,成为被广泛采用的清洁利用煤炭资源的重要途径和手段。
当前较为流行的粉煤气化技术包括两大类别,即水煤浆煤气化技术与干粉煤气化技术。
1鲁奇气化用型煤的研发进展
针对适用于鲁奇气化粉煤成型的相关技术,诸多的学者与研究人员已经进行了大量的研究工作。
其中以田亚鹏学者为首的团队通过义马长焰煤为基础原料,在添加经过改进的专业复合黏结剂后生产出了冷强度等各项指标性能十分优良的气化型煤。
田斌、许德平等学者带领团队以亲水有机高分子原料为黏结剂成功制备气化用型煤,并且成功通过小型实验设备实现了鲁奇炉加压运行工况的模拟,并成功考察了型煤的气化以及渣块特征。
曹敏等学者则通过开发新工艺以及新型黏结剂,成功以晋城无烟煤为基础原料制成高强防水气化型煤。
王东升等学者也通过自主研发的复合添加剂成功通过新疆长焰煤制备出高强度型煤。
并且通过实验表明了型煤具有十分理想的冷压强度、热强度和浸水强度。
王峰带领的学者团队则成功的在添加膨润土、腐殖酸和小麦淀粉作为黏结剂后,采用伊犁长焰煤和
尼勒克气煤为原料制备出气化型煤。
除此之外,多家企业也进行了工业试烧工作,对气化型煤进行大力研发。
2鲁奇炉的工作原理
鲁奇炉的建造方式较为复杂,工作原理也比较复杂,面临的问题越来越多。
鲁奇炉的工作原理可以划分为:一、煤炭的燃烧,通过煤炭的燃烧,产生大量的
气体,这些气体就是后期鲁奇炉的主要燃烧资源。
二、鲁奇炉的优化工作,煤炭
燃烧产生的气体,经过鲁奇炉内部不断的加压、干燥、燃烧等工艺,经过提炼,
逐渐成为煤气。
三、鲁奇炉的高压设备装置,高压设备需要整个鲁奇炉内部要有
极其强大的稳定性,这就要求在建造鲁奇炉过程中必须要有精准的工艺,逐渐提
高鲁奇炉的高压功能,产生大量的煤气资源,提高煤气的产生率。
四、鲁奇炉的
安全工作,鲁奇炉的工作原理复杂,对设备的精准度和稳定性要求较高,为了避
免爆炸现象的发生,一定要做好安全护理工作,在制造周围不能出现大火和严重
的高温。
3碎煤加压气化炉的排渣工艺和灰渣特点
碎煤加压气化炉操作压力3.0MPa~4.0MPa,灰渣排放需要通过灰锁来实现。
气化产生的灰渣位于气化炉下部,首先经炉篦排至灰锁,当灰锁内灰渣达到一定
量时,灰锁与气化炉隔离,通过灰锁膨胀冷凝器减压到常压,然后打开灰锁下阀,灰渣通过竖灰管或溜槽落入渣沟。
渣沟设置一定的坡度并设有激流喷嘴,激流喷
嘴喷出的冲渣水将渣沟内的渣冲入沉渣池。
根据煤中灰分差异,排渣周期一般为
每小时1~2次。
碎煤加压气化炉的操作温度可达1300℃以上,气化产生的高温灰
渣与由氧气和蒸汽组成的气化剂逆流接触换热,气化剂温度升高,灰渣温度降低,离开气化炉的灰渣一般比气化剂温度高30℃~50℃,即在温度为350℃~400℃条
件下排至灰锁。
正常情况下,这种灰渣是具有一定粒度分布的颗粒状干燥固体物料,但在操作异常时,其特性也将发生变化。
当操作温度较低时,灰渣中细颗粒
占比增大;当操作温度较高时,有可能造成灰渣部分烧结,经炉篦破碎后,灰渣
中大颗粒占比增大。
4鲁奇加压气化炉技术改造过程中的原理分析
4.1阀门的改造方法
阀门的使用次数较多,使用效率较高,选择阀门时,一定要选择质量安全可靠的阀门,提高阀门的使用效率,提高整体建设的安全性能。
阀门的选择首先从设计原理进行分析,阀门必须要有独特的性能,经过某种方法或者某种技术,能够提高阀门的准确性和快速性,使其能够快速的掌握煤气的运输情况。
其次,阀门建造的材料,材料是确定阀门质量的有效保障,通过选用不同的材料,进行对比,找到阀门材料的独特性,分析那种材料能够耐高温、耐腐蚀,整体安全性能较好。
最后,阀门质量的安全检查工作,在阀门生产和制造的整个过程中,对于使用的大、中、小三种不同结构的阀门进行抽查检测,确定阀门的整体质量,对于使用不同场合的阀门要有明确的规定和设计。
阀门的选择具有一定的特殊性和针对性,在选择时,一定要做好市场调研工作,确定阀门的良好性能和特性。
4.2热渣输送与冷却
实现碎煤加压气化炉干法排渣的关键在于高温灰渣的输送和冷却。
一方面离开灰锁的灰渣是高温颗粒状固体,具有一定的磨蚀性;另一方面由于灰锁采用蒸汽充压,在降压过程中蒸汽易凝结,造成灰渣黏附性增强,附着在设备壁面或堵塞管道。
因此,这种灰渣具有高温、磨蚀、易堵的特点,是干法排渣技术方案设计必须考虑的问题。
碎煤加压气化炉灰渣的输送可以根据输送距离、倾角等选用钢带式干式排渣机或履带式干式排渣机,这方面有很多成功经验[4]可供参考,在此不再赘述。
离开灰锁的灰渣应尽快冷却,以减少后续处理过程的难度。
灰渣冷却方案要和能量回收利用方案综合设计。
在火电行业,灰渣冷却和能量回收一般采用空气或水作为介质,采用水冷时,因灰渣温度过高,为避免结垢,通常用脱盐水或凝结水。
空气或水吸收灰渣的热量后,温度升高,进入锅炉燃烧系统或锅炉水系统,达到能量回用。
碎煤加压气化炉灰渣与锅炉灰渣相比,温度低约400℃,显热大大减少;所含的残炭接触空气后,由于温度和活性不高,发生燃烧或氧化反应的可能性较小,这部分能量也不能回收。
因此,碎煤加压气化炉灰渣可以回收的能量较小,干法排渣技术方案设计的重点是灰渣冷却,是否考虑能量回收,要进行技术经济比选。
灰渣冷却可以考虑采用以空气为冷却介质的干式排渣机方案,以减少系统的复杂性。
5技术研发方向
在我国的鲁奇加压气化用型煤工业发展进程中,“黏结剂+冷压成型”的形
式一般被认作是粉煤成型的最佳方式。
采用该技术实现型煤气化,工作的难点主
要聚焦在研制黏结剂的方面。
客观来说,我国现阶段对这一工作重难点的突破还
处于瓶颈,短期内难以取得显著进展。
面对这种情况,相关行业的人员唯有借助
更换粉煤成型的工艺来填补黏结性能不足的弱项这一发展方案。
具体来说,可以
采用“有黏结剂冷压成型+高温碳化”对鲁奇气化用型煤进行工艺创新。
之所以
提出这种方法,主要是煤颗粒的大分子结构在作用过程中发生了明显的变化,最
终形成了和块状煤结构比较相似的稳定化学键。
所以说,型煤的物理化学性能从
宏观维度上来看与块煤比较相近,其性能都比较优良。
正由于这种性质,水蒸气
并不会作为型煤质量的干扰因素,所以,现阶段的工艺水平能够满足实验的基本
要求,并推动气化炉工作的有效开展,黏结剂的作用便显得不那么重要。
但是,
相关研究人员必须深刻意识到碳化过程的引入虽然会降低黏结剂的成本,但同时
会提高生产成本,在接下来的研究中必须找准抵消型煤生产成本上涨的发展方向。
结束语
针对鲁奇炉建设过程中出现的不同问题,进行具体的分析和研究,逐个问题
依次解决,依次突破,确定其整体发展性能。
在鲁奇炉改造的过程中,考虑的问
题有很多,除了要注意质量安全以外,也要注意经济效益,确定不会产生大量的
经济消耗,给企业的发展带来一定的阻力,产生投入资金较大,收益长时间不见
效的情况。
还需要我们确定更科学的设计方案。
如今,鲁奇炉的使用范围更加广泛,更需要一定的技术手段进行支持。
参考文献
[1]谢满成.鲁奇加压气化炉的运行与技术改造[J].化工管理,2020(12):141-142.
[2]刘岗,张军.鲁奇加压气化炉的运行与技术改造探讨[J].科技
风,2019(19):145.
[3]郇景瑞.煤气化技术及气化炉使用情况分析[J].科技风,2019(14):155.。