椭圆方程,双曲线方程,抛物线方程联立
- 格式:docx
- 大小:37.58 KB
- 文档页数:4
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
椭圆型方程和双曲线方程在数学和物理学中都是重要的方程形式。
它们在描述各种自然现象和工程问题中起着非常重要的作用。
本文将分别介绍椭圆型方程和双曲线方程的相关知识和应用。
一、椭圆型方程1.1 椭圆型方程的定义椭圆型方程是指二次型方程中的常对称阵为正定的方程。
具体而言,一个椭圆型方程可以写成如下形式:a(x^2) + 2bxy + cy^2 + dx + ey + f = 0其中a,b,c为实数且满足a*c - b^2>0。
当a*c - b^2=0时,方程表示一个退化的椭圆。
1.2 椭圆型方程的性质椭圆型方程描述的图形是一个椭圆,其性质包括但不限于:(1)椭圆对称性:椭圆与x轴和y轴对称。
(2)离心率:椭圆的长轴和短轴之比称为椭圆的离心率,是一个重要的椭圆参数。
(3)焦点、直径、面积等椭圆的相关性质。
1.3 椭圆型方程的应用椭圆型方程在物理学、工程学和金融学等领域有着广泛的应用。
在天体力学中,行星公转的轨道可以用椭圆型方程描述;在工程学中,椭圆型方程可以用于描述声波在二维介质中的传播等。
二、双曲线方程2.1 双曲线方程的定义双曲线方程是指二次型方程中的常对称阵为否定定的方程。
具体而言,一个双曲线方程可以写成如下形式:a(x^2) - c(y^2) = 1其中a,c为实数且满足a*c - 1<0。
当a*c - 1=0时,方程表示一个退化的双曲线。
2.2 双曲线方程的性质双曲线方程描述的图形是一个双曲线,其性质包括但不限于:(1)双曲线的渐近线:双曲线有两条渐近线,分别与曲线的两支趋向于并成的方向平行。
(2)双曲线的焦点、直径、面积等相关性质。
2.3 双曲线方程的应用双曲线方程在物理学、工程学和经济学等领域也有着广泛的应用。
在电磁学中,电磁波的传播可以用双曲线方程描述;在经济学中,需求曲线和供给曲线的交点通常可以用双曲线方程来表示。
椭圆型方程和双曲线方程是数学中重要的方程形式,它们在各个领域都有着广泛的应用。
直线和双曲线联立韦达定理圆锥曲线在高考数学中具有重要的地位,在全国卷中通常有一道选择题、一道填空题和一道大题,分值占比很大,对高考数学起着决定性作用。
圆锥曲线考察的知识点主要是基本概念、基本公式、综合分析和计算能力,考察的核心素养是计算能力。
然而,大多数学生圆锥曲线丢分在根本原因在于计算错误,要么计算结果不准,要么计算速度太慢。
显然,如何计算的又快又准就变得特别重要。
为了帮助大家能够更好的解决圆锥曲线中的计算问题,特别撰写本文。
众所周知,在圆锥曲线中经常需要联立圆锥曲线和直线方程,然后运用韦达定理,进而进行计算,比如距离弦长、面积、斜率等。
而联立圆锥曲线和直线方程和计算韦达定理结论是其中重要一环,几乎不可避免,并且这计算量大难度大,那么有没有好的解决办法呢?答案是肯定的。
最好的办法就是记忆并熟练掌握其计算公式,以下分三类情况进行说明。
一、联立椭圆与直线方程的相关计算公式此处直线方程用一般式。
如果你细心的话,应该可以发现其中的规律和记忆方法了。
需要说明的是,在考试解题过程中,需要体现必要的思路,但结果不用计算直接写上。
二、联立双曲线与直线方程的相关计算公式三、联立抛物线与直线方程的计算公式联立抛物线与直线方程的计算关键在于避开平方项的计算,反设直线方程可以避开讨论斜率不存在的情况,从而达到简化计算的目的。
由于此处计算并不复杂,因此该公式可以不记,但需要掌握其中的计算技巧。
笔者在教学过程中发现,有些同学将这些公式视若珍宝,也有些同学无动于衷。
视若珍宝的同学,知道该公式的重要性,根据其规律牢牢记住,并且在解题过程中勤加练习,从而能够熟练掌握达到又快有准的计算目的。
而无动于衷的那些学生,虽然知道该公式有用,但是他们觉得难以记忆,怕记不准,宁愿自己计算也不记公式。
孰是孰非,无关紧要,体现的是一种态度,其实态度高考的胜负此刻似乎就有了分晓。
四、学思练。
椭圆与双曲线知识点集合椭圆和双曲线是平面内的两种点的轨迹。
椭圆是指与两个定点F1和F2的距离的和等于常数(大于|F1,F2|)的点的轨迹,这两个点被称为椭圆的焦点。
双曲线是指与两个定点F1和F2的距离的差的绝对值等于常数(大于且小于|F1,F2|)的点的轨迹,这两个点被称为双曲线的焦点。
椭圆和双曲线的定义中,参数2a的范围限制符号不同。
对于椭圆,焦点在x轴上或y轴上,有P={M||MF1|+|MF2|=2a}(2a>|F1F2|);对于双曲线,焦点在x轴上或y轴上,有P={M||MF1|-|MF2|=2a}(0<2a<|F1F2|)。
标准方程是表示椭圆和双曲线的一种方式。
在求标准方程时,一定要考虑焦点位置,即焦距|F1F2|=2c。
椭圆和双曲线的长轴和短轴的长度关系为a2=b2+c2和c2=a2+b2.几何含义是|x|≤a,|y|≤b,或者|x|≤b,|y|≤a,或者|x|≥a,y∈R。
椭圆有4个顶点,双曲线有2个顶点,椭圆没有渐近线,双曲线有两条渐近线。
椭圆和双曲线的顶点和长轴、短轴的长度可以通过求解标准方程得到。
长轴和短轴分别被称为实轴和虚轴,实轴的长度为2a,虚轴的长度为2b。
离心率是描述椭圆和双曲线形状的一个参数,其取值范围为c∈(0,1)和c∈(1,∞)。
离心率越大,椭圆或双曲线越扁,离心率越小,椭圆或双曲线越圆(椭圆)或开口越小(双曲线)。
在平面内,对于一个点到定点F的距离与到定直线l的距离之比为常数e。
这是第一定义。
第二定义是,对于平面内到定点F的距离与到定直线l的距离之比为(<e<1)的点的轨迹是椭圆,其中F在l外。
F是椭圆的一个焦点,而l是焦点F对应的准线。
同样地,当常数(ee1)时,点的轨迹是双曲线。
F是双曲线的一个焦点,而l是焦点F对应的准线。
焦点可以在x轴上或y轴上。
椭圆的准线在两侧,而双曲线的准线在两支之间。
准线方程如下:左准线x a2/c,右准线x a2/c下准线y c2/b,上准线y c2/b左焦半径|PF1|a ex,右焦半径|PF2|a ex下焦半径|PF1|a ey,上焦半径|PF2|a ey左焦半径|PF1||a ex|,右焦半径|PF2||a ex| 下焦半径|PF1||a ey|,上焦半径|PF2||a ey| 焦准距p b2/c焦半径公式是焦半径取值范围[a-c,a+c]左焦点弦|AB|2a e(x1x2),右焦点弦|AB|2a e(x1x2)下焦点弦|AB|2a e(y1y2),上焦点弦|AB|2a e(y1y2)左|AB||2a e(x1x2)|,右|AB||2a e(x1x2)|下|AB||2a e(y1y2)|,上|AB||2a e(y1y2)|焦点弦为长轴时最长,长为2a;焦点弦为通径时最短,长为2b2/a;同侧焦点弦为通径时最短,长为2b2/a;异侧焦点弦为实轴时最短,长为2a。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
圆锥曲线圆锥曲线分三大部分:椭圆,双曲线和抛物线 (一)椭圆椭圆分三大部分:基本量的应用、利用椭圆的基本量解决焦点三角形问题、直线和椭圆的相交问题一、椭圆的知识梳理二、椭圆的标准方程和统一方程三、椭圆的离心率 e= c/a ( 0<e<1)说明:1、同学们要牢记椭圆的定义,这是同学们经常想不到要用的,要记住。
对于求焦点三角形的面积,或者给了焦点弦之差、之积这些情况,第一想到的要用椭圆的定义。
例题:(1)已知△ABC 的三边长|CB|,|AB|,|CA|成等差数列,若点A ,B 的坐标分别为(-1,0),(1,0).求顶点C 的轨迹W 的方程解析:1、等差数列 得到,线段之和为定值,为椭圆方程、利用椭圆的定义来求解方程,确定a 2 、确定焦点在哪个轴3、列出椭圆标准方程,带值整理2、若椭圆两个焦点为12(40)(40)F F -,,,,椭圆的弦的AB 过点1F ,且2ABF △的周长为20,那么该椭圆的方程为 . 出现周长,想到定义。
2、求椭圆的方程,1.、确定焦点在哪个轴,用标准方程、不确定焦点在哪个轴,用统一方程。
2.一.设方程、二、带点、三、解法方程得解得结论、{}无轨迹时点的轨迹是线段时点得轨迹是椭圆是点椭圆的定义:P a P a a )22(2|)1(212121c F F c P c a c F F a MF MFM P <=><==+=22222222222c b a c 2 b 2 a 2c -0c ,0y )0(10c -0,c x )0(1+====>>=+>>=+焦距短轴长轴),)和(轴上(焦点坐标在),)和(轴上(焦点坐标在椭圆的方程:b a b x a y b a b y a x 轴上时焦点在轴上时焦点在x y ),0,0(122B A B A B A B A By Ax <>≠>>=+1、求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点P 到两焦点距离之和等于10;(2)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点(- 32,52).(3) 焦点在y 轴且经过两个点(0、2)(1、0)(4) 经过p (-23、1)q (3、2)(5) 方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )(A)-16<m<25 (B)-16<m<29 (C)29<m<25 (D)m>29(6) 与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 _______________(7) 椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的( )(A)3倍 (B)2倍 (C)2倍 (D)32倍9)、对于求离心率问题,重要的应用abc 三者的平方关系,导出a 与c 的关系。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
高二数学圆锥曲线试题答案及解析1.已知点,,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,,,则()A.B.C.D.【答案】C【解析】依题意设,的外心为,则有即,又由得即,将代入化简得即,在中,由余弦定理可得即展开整理得即也就是,将、代入可得,整理可得,即的外心轨迹方程为设,则即,而又,所以所以,故选C.【考点】1.动点的轨迹;2.直线的斜率;3.两角和的正切公式.2.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.3.过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为 .【答案】.【解析】如图,由抛物线的定义可知:,∴;根据内错角相等知;同理可证而,∴.【考点】抛物线的定义.4.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.【答案】(Ⅰ) ;(Ⅱ) 2,【解析】(Ⅰ)依题意可得椭圆C的一个焦点为知,在代入点即可得得到一个关于的等式从而可求出的值,即可得椭圆的标准方程.(Ⅱ) 由于,所以直线都过F点,从而又因为所以直线与直线相互垂直.所以四边形的面积为.故关键是求出线段的长度.首先要分类存在垂直于轴的情况,和不垂直于轴的情况两种.前者好求.后者通过假设一条直线联立椭圆方程写出弦长的式子,类似地写出另一条所得到的弦长.通过利用基本不等式即可求得面积的范围.从而再结合垂直于轴的情况,求出最大值与最小值.试题解析:(Ⅰ)由题椭圆C的一个焦点为知故可设椭圆方程为,过焦点且与长轴垂直的直线方程为,设此直线与椭圆交于A,B两点则,又,所以,又,联立求得,,故椭圆方程为.(Ⅱ)由,知,点共线,点共线,即直线经过椭圆焦点。
又知,(i)当斜率为零或不存在时,(ii)当直线存在且不为零时,可设斜率为,则由知,的斜率为所以:直线方程为:。
试析高中数学中椭圆与双曲线交点的问题
椭圆与双曲线交点的分析
一、定义
1、椭圆的定义
椭圆是椭圆形的几何形状,它是特殊的抛物线,是由一组椭圆方程组
成的,可以用于描述从椭圆形轨道运行的元素或行星等。
2、双曲线的定义
双曲线是另一种曲线,它介于圆形和直线之间,它们可以用来解决许
多数学问题,如最小化函数值,寻找最佳路径等。
二、椭圆与双曲线交点
1、椭圆与双曲线的定义
椭圆和双曲线之间的交点是由椭圆和双曲线的几何定义确定的。
椭圆的方程是:A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0;
双曲线的方程是:a*x^2 + b*x*y + c=y^2 + d*x + e*y + f = 0。
2、寻找椭圆与双曲线之间的交点
可以通过分析椭圆和双曲线的方程来确定它们之间的交点,如把双曲
线的方程代入椭圆的方程,然后将两个方程联立起来,得到一组方程,可以解出x和y的值。
三、实例:
椭圆的方程是4x^2+4xy+y^2-8x-4y+3=0;
双曲线的方程是x^2-y^2-2x-4y+4=0,
将双曲线的方程代入椭圆的方程就有:
4x^2+4xy -2x+y^2 -2y+5=0.
将该方程变形后,得到x的表达式:
X=(2y-5)/(4-2y)
根据x的值,可以解出坐标点(1,2)和(-2,-1),即椭圆4x^2+4xy+y^2-8x-4y+3=0与双曲线x^2-y^2-2x-4y+4=0之间的交点。
四、结论
从上面的分析可知,椭圆与双曲线之间的交点是可以通过椭圆几何定义和双曲线方程联立求解出的,通过分析可以非常方便的找到椭圆与双曲线之间的交点。
高二数学解析几何试题答案及解析1.双曲线的虚轴长等于( )A.B.C.D.4【答案】C【解析】双曲线方程化为因为是双曲线方程,所以则标准方程为所以虚轴长故选C2.若直线的参数方程为,则直线的斜率为().A.B.C.D.【答案】D.【解析】消去参数,得直线的普通方程为,则直线的斜率为.【考点】直线的参数方程;2.直线的斜率.3.圆与的圆心距与曲线的长度的大小关系是().A.B.C.D.无法比较【答案】A.【解析】两圆的圆心分别为,则圆心距,曲线表示半径为2的圆心角为的圆弧,弧长为.;则【考点】圆的参数方程;2.弧长公式.4.已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.(Ⅰ)求椭圆的标准方程;(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)此问是待定系数法求椭圆的标准方程第一步先设椭圆的标准方程是,根据已知条件列3个关于的方程,求解;(Ⅱ)此题考查直线与椭圆相交的综合问题,总体思路是第一步,先将直线与椭圆联立,利用韦达定理得到和,,第二步,利用,表示点的坐标,第三步,将点的坐标代入椭圆方程,得到,第四步,根据直线与圆相切,得到与的关系,消参后求的范围.试题解析:解:(Ⅰ)设椭圆的标准方程为由已知得:解得所以椭圆的标准方程为:(Ⅱ)因为直线:与圆相切所以,把代入并整理得:设,则有因为,,所以,又因为点在椭圆上,所以,因为,所以所以,所以的取值范围为【考点】1.椭圆的标准方程;2.直线与椭圆相交的综合问题.5.如图,是圆的切线,切点为交圆于两点,,则()A.B.C.D.【答案】B【解析】连接,∵是圆的切线,切点为交圆于两点,,∴,∴,解得,∴,∴,故选B.【考点】1.与圆有关的比例线段的应用;2.计算.6.(本小题满分12分)已知椭圆经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【答案】(1)(2)【解析】(1)待定系数法求椭圆方程;(20先求出直线方程代入椭圆方程,然后由韦达定理求出两根之和,再求出中点横坐标,最后代入直线方程求出中点纵坐标即得结果.试题解析:(1)因为椭圆经过点A,所以b=4.又因离心率为,所以所以椭圆方程为:依题意可得,直线方程为,并将其代入椭圆方程,得.(2)设直线与椭圆的两个交点坐标为,则由韦达定理得,,所以中点横坐标为,并将其代入直线方程得,故所求中点坐标为.【考点】求椭圆方程、直线与椭圆相交求弦的中点坐标.7.(本小题满分12分)已知一条光线从点射出,经过轴反射后,反射光线与圆相切,求反射光线所在直线的方程.【答案】或【解析】根据对称性先求出点A关于x轴的对称点,然后设出反射光线所在的直线方程,利用直线与圆相切求出反射光线所在的直线的斜率,从而求出反射光线所在的直线方程.试题解析:A关于x轴的对称点.反射光线相当于是从点射出的光线.因为反射光线的斜率存在,所以反射光线所在的直线可设为即因为该直线与圆相切,所以…10分所以反射光线所在直线方程为或.【考点】求直线方程.8.已知是椭圆的左右焦点,P是椭圆上任意一点,过作的外角平分线的垂线,垂足为Q,则点Q的轨迹为()A.直线B.圆C.椭圆D.四条线段【答案】B【解析】连接并延长交于M点,是外角的角平分线,所以是等腰三角形,所以,Q为中点,连接OQ,则OQ===,所以M表示以O为圆心为半径的圆,故选B【考点】椭圆定义及动点轨迹方程【方法点睛】求动点的轨迹方程的一般步骤:建立合适的坐标系,设出所求点及相关点坐标,代入动点满足的关系式并将其坐标化,整理化简并检验是否有不满足要求的点;本题中要充分结合等腰三角形的性质及椭圆定义得到动点到定点的距离为定值,结合三角形中位线的性质得到点到原点的距离为定值,因此得到其轨迹为圆9.(本题满分10分)已知椭圆,经过点,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆方程;(2)过椭圆右顶点的两条斜率乘积为的直线分别交椭圆于,两点,试问:直线是否过定点?若过定点,请求出此定点,若不过,请说明理由.【答案】(1);(2)详见解析.【解析】(1)根据椭圆经过点以及两焦点与短轴的一个端点构成等腰直角三角形可列得方程组,从而求解;(2)若直线斜率存在时,可设,再利用韦达定理以及条件斜率乘积为,可得到,满足的关系式,即可得证,再验证当斜率不存在也符合即可.试题解析:(1)根据题意;(2)当的斜率存在时,设,,∴,∴或(舍)∴过定点,当斜率不存在时也符合,即直线恒过定点.【考点】1.椭圆的标准方程;2.椭圆中定点问题.【思路点睛】定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;(2)从特殊位置入手,找出定点,再证明该点适合题意.10.已知直线与直线平行,则的值是()A.B.C.-D.或0【答案】A【解析】由题意,解得,经检验时,两直线重合,时,两直线平行,故选A.【考点】11.过点的椭圆()的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.(1)当直线过椭圆右焦点时,求线段的长;(2)当点异于点时,求证:为定值.【答案】(1);(2)见解析.【解析】(1)将点代入椭圆方程可求得,再由离心率求得,从而得到椭圆的方程,再将直线的方程供稿椭圆,求得交点坐标即可求得线段的长;(2)设直线的方程为(且),代入椭圆方程,求得点坐标,再联立直线的方程求得点坐标,然后结合点坐标,利用向量的数量积公式即可得出结论.试题解析:(1)由已知得,,解得,所以椭圆方程为.椭圆的右焦点为,此时直线的方程为,代入椭圆方程得,解得,,代入直线的方程得,,所以,故.(2)当直线与轴垂直时与题意不符.设直线的方程为(且).代入椭圆方程得.解得,,代入直线的方程得,,所以点的坐标为.又直线的方程为,又直线的方程为,联立得.因此,又.所以.故为定值.【考点】1、椭圆的几何性质;2、直线与椭圆的位置关系;3、平面向量的数量积.12.以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆的焦点为、双曲线顶点为,因此双曲线焦点为,双曲线方程是,选C.【考点】椭圆与双曲线方程【名师】用待定系数法求双曲线标准方程的四个步骤(1)作判断:根据条件判断双曲线的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设出方程.(3)找关系:根据已知条件,建立关于a,b,c的方程组.(4)得方程:解方程组,将解代入所设方程,即为所求.13.如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降2米后,水面宽________米.【答案】.【解析】如下图所示,建立直角坐标系,设抛物线的方程为,将代入可得,,所以抛物线的方程为,于是将可得,,所以水面宽为,故应填.【考点】1、抛物线的实际应用.【思路点睛】本题主要考查了抛物线的应用,考查了学生利用抛物线的解决实际问题的能力,属中档题.其解题的一般思路为:首先根据已知条件建立适当的直角坐标系,并写出点的坐标,然后设出所求的抛物线的方程,将点的坐标代入抛物线的方程可求得,得到抛物线的方程,最后把代入抛物线的方程即可得出点的坐标,进而得出所求的答案.14.已知命题:点不在圆的内部,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”.(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围.【答案】(1)或;(2)或.【解析】(1)“且”是真命题,所以,得不等式组;(2)是的必要不充分条件得:或,从而求解.试题解析:(1)若为真:,解得或若为真:则,解得或,若“且”是真命题,则,解得或(2)若为真,则,即,由是的必要不充分条件,则可得或即或,解得或.【考点】1、复合命题的真假;2、充分条件、必要条件;3、不等式组.15.设是椭圆的左右焦点,为直线上一点,是底角为的等腰三角形,则椭圆的离心率为()A.B.C.D.【答案】C【解析】因为是底角为的等腰三角形,所以,因为P在直线上一点,所以,所以椭圆的离心率为,故选C.【考点】椭圆简单的几何性质.16.直线的倾斜角为( )A.B.C.D.【答案】D【解析】设直线的倾斜角为,由直线方程可知直线的斜率,即,,.故D正确.【考点】直线的斜率,倾斜角.17.如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.【答案】【解析】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式,其中a可通过代入A点坐标(-2,0),到抛物线解析式得出:a=-0.5,所以抛物线解析式为,当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1代入抛物线解析式得出:,解得:,所以水面宽度增加到米,【考点】二次函数的应用18.已知椭圆:的右焦点,过的直线交椭圆于两点,且是线段的中点.(1)求椭圆的离心率;(2)已知是椭圆的左焦点,求的面积.【答案】(1);(2).【解析】(1)设,,代入椭圆方程并作差,由中点坐标公式与直线的斜率得到的关系,从而求得椭圆的离心率;(2)联立直线与椭圆的方程,消去,利用韦达定理求得,从而求得求的面积.试题解析:(1)设,,则,,两式相减,得.∵线段的中点坐标为,∴.∵直线的斜率为,∴.∴,∴.(2)由(1)可知直线:,由,得,.又,所以.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.19.抛物线的准线方程为()A.B.C.D.【答案】B【解析】把抛物线转化为标准式方程为所以抛物线焦点在轴上,且即其准线方程为故选B.【考点】1、抛物线的简单性质;2、抛物线的标准式方程.20.已知抛物线上的任意一点P,记点P到轴的距离为,对于给定点,则的最小值为.【答案】【解析】过P作PB垂直于直线x=-1,垂足为B∵抛物线方程为y2=4x,∴2p=4,得可得焦点F(1,0),且直线x=-1是抛物线的准线,因此,|PA|+d+1=|PA|+|PB|=|PA|+|PF|,∵|PA|+|PF|≥|AF|∴当且仅当P、A、F三点共线时,|PA|+|PF|达到最小值,因此,|PA|+d+1的最小值为|AF|=,所以|PA|+d的最小值为.故答案为:.【考点】抛物线的几何性质和两点之间的距离公式等知识.【易错点睛】过P作PB垂直于直线x=-1,垂足为B,根据抛物线的定义得:|PA|+d+1=|PA|+|PB|=|PA|+|PF|.利用三角形两边之和大于第三边,可得当且仅当P、A、F三点共线时,|PA|+d+1达到最小值,因此可用两点的距离公式求出|PA|+d+1的最小值.本题给出定点A和抛物线上动点P,求P到A点与P到抛物线准线距离之和的最小值,学生易在P到轴的距离为,当成P到准线的距离为,忘记减1,造成失误.21.如图,直线与抛物线交于A、B两点,线段AB的垂直平分线与直线交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求面积的最大值.【答案】(1);(2).【解析】(1)把直线方程抛物线方程联立求得焦点的坐标,则中点的坐标可得,利用的斜率推断出垂直平分线的斜率,进而求得垂直平分线的方程,把代入求得的坐标.(2)设出的坐标,利用到直线的距离求得三角形的高,利用两点间的距离公式求得的长,最后利用三角形面积公式表示出三角形,利用的范围和二次函数的单调性求得三角形面积的最大值.试题解析:(1)解方程组得或即,从而AB的中点为.由,直线AB的垂直平分线方程令,得(2)直线OQ的方程为,设.∵点P到直线OQ的距离=,,∴==∵P为抛物线上位于线段AB下方的点,且P不在直线OQ上,∴或.∵函数在区间上单调递增,∴当时,的面积取到最大值.【考点】抛物线的应用;直线与圆锥曲线的综合问题.【方法点晴】本题主要考查了抛物线的标准方程及其应用及直线与圆锥曲线的综合应用和点直线的距离公式,着重考查了解析几何基础知识的灵活运用.本题解答中,设出的坐标,利用到直线的距离求得三角形的高,利用两点间的距离公式求得的长,最后利用三角形面积公式表示出三角形,利用的范围和二次函数的单调性求得三角形面积的最大值.22.已知圆经过椭圆的一个顶点和一个焦点,则此椭圆的离心率.【答案】【解析】由可知过点【考点】圆与椭圆的方程及性质23.已知:,不等式恒成立,:椭圆的焦点在轴上.若命题p∧q为真命题,求实数m的取值范围.【答案】【解析】首先由不等式恒成立和椭圆性质分别得到两命题中m的取值范围,由复合命题p∧q为真命题可知两命题都是真命题,由此求交集可得到m的取值范围试题解析:∵p:∀x∈R,不等式恒成立,即解得:;-q:椭圆的焦点在x轴上,∴m﹣1>3﹣m>0,解得:2<m<3,由p∧q为真可知,p,q都为真,解得.【考点】1.不等式,椭圆的性质;2.复合命题24.如图,抛物线和圆,其中,直线经过的焦点,依次交于四点,则的值为()A.B.C.D.【答案】B【解析】设,由题意知抛物线的焦点,则设直线的方程为:,联立,消去,得:,根据抛物线的定义,得:,故选B.【考点】圆与圆锥曲线的综合.25.已知焦点在x轴上的椭圆过点A(﹣3,0),且离心率e=,则椭圆的标准方程是()A.=1B.=1C.=1D.=1【答案】D【解析】设椭圆的方程为+=1(a>b>0),由题意可得a=3,由离心率公式和a,b,c的关系,可得b,进而得到椭圆方程.解:设椭圆的方程为+=1(a>b>0),由题意可得a=3,e==,可得c=,b===2,则椭圆方程为+=1.故选:D.【考点】椭圆的简单性质.26.(2012•赤坎区校级模拟)抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x﹣y+2=0上,则此抛物线方程为.【答案】y2=﹣8x或x2=8y【解析】求出已知直线与坐标轴的交点A和B,在焦点分别为A和B的情况下设出抛物线标准方程,对照抛物线焦点坐标的公式求待定系数,即可得到相应抛物线的方程.解:直线x﹣y+2=0交x轴于点A(﹣2,0),与y轴交于点B(2,0)①当抛物线的焦点在A点时,设方程为y2=﹣2px,(p>0),可得=2,所以2p=8,∴抛物线方程为y2=﹣8x②当抛物线的焦点在B点时,设方程为x2=2p'y,(p'>0),可得=2,所以2p'=8,∴抛物线方程为x2=8y综上所述,得此抛物线方程为y2=﹣8x或x2=8y故答案为:y2=﹣8x或x2=8y【考点】抛物线的简单性质;抛物线的标准方程.27.设A(x1,y1).B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.【答案】(1)见解析;(2)(,+∞).【解析】(1)先把抛物线方程整理成标准方程,进而求得抛物线的焦点坐标.先看直线l的斜率不存在时,显然x1+x2=0;看直线斜率存在时设斜率为k,截距为b,进而用A,B的坐标表示出线段AB的中点代入设的直线方程,及用A,B的坐标表示出直线的斜率,联立方程可分别求得x 1+x2和x21+x22的表达式进而求得b的范围,判断即l的斜率存在时,不可能经过焦点F.最后综合可得结论.(2)设直线l的方程为:y=2x+b,进而可得过直线AB的方程,代入抛物线方程,根据判别式大于0求得m的范围,进而根据AB的中点的坐标及b和m的关系求得b的范围.解:(1)∵抛物线y=2x2,即x2=,∴p=,∴焦点为F(0,)①直线l的斜率不存在时,显然有x1+x2=0②直线l的斜率存在时,设为k,截距为b 即直线l:y=kx+b由已知得:⇒⇒⇒x12+x22=﹣+b≥0⇒b≥.即l的斜率存在时,不可能经过焦点F(0,)所以当且仅当x1+x2=0时,直线l经过抛物线的焦点F(2)解:设直线l的方程为:y=2x+b′,故有过AB的直线的方程为y=﹣x+m,代入抛物线方程有2x2+x﹣m=0,得x1+x2=﹣.由A、B是抛物线上不同的两点,于是上述方程的判别式△=+8m>0,也就是:m>﹣.由直线AB的中点为(,)=(﹣,+m),则+m=﹣+b′,于是:b′=+m>﹣=.即得l在y轴上的截距的取值范围是(,+∞).【考点】抛物线的应用;直线的斜率;恒过定点的直线.28.已知双曲线的左、右焦点分别为,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A.B.C.D.【答案】D【解析】设,则,因此,从而选D.【考点】双曲线定义,双曲线离心率29.已知双曲线的左、右焦点分别为,,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A.B.C.D.【答案】A【解析】由题意,由余弦定理,可得【考点】双曲线方程及性质30.焦点在y轴的椭圆x2+ky2=1的长轴长是短轴长的2倍,那么k等于()A.-4B.C.4D.【答案】D【解析】椭圆方程变形为【考点】椭圆方程及性质31.若直线被圆所截的的弦长为,则实数的值()A.-2或6B.0或4C.-1 或D.-1或3【答案】D【解析】由圆的方程可知圆心为,半径为2.圆心到直线的距离.由题意可得,解得或.故D正确.【考点】圆的弦长问题.32.已知双曲线C1:(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线过双曲线C1的焦点,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,则双曲线C1的离心率为.【答案】+1【解析】先设出抛物线方程,进而根据题意可得p与a和c的关系,把抛物线方程与双曲线方程联立,把x=c,y2=4cx,代入整理可得答案.解:设抛物线方程为y2=2px,依题意可知=c,∴p=2c,抛物线方程与双曲线方程联立得﹣=1,把x=c,代入整理得e4﹣6e2+1=0解得e=+1,故答案为:+1.【考点】双曲线的简单性质.33.如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是椭圆,那么这个椭圆的离心率是()A.B.C.D.【答案】D【解析】利用已知条件求出椭圆的方程,然后利用椭圆的离心率即可.解:设M(x,y),则P(x,2y),代入圆的方程并化简得:,解得a=2,b=1,c=.椭圆的离心率为:.故选:D.【考点】椭圆的简单性质;轨迹方程.34.椭圆上一点P到它的一个焦点的距离等于3,那么点P到另一个焦点的距离等于 .【答案】5【解析】由椭圆的方程可知,.由椭圆的定义可得点到另一个焦点的距离等于.【考点】椭圆的定义.35.若直线与直线平行,则的值为A.B.C.D.【答案】C【解析】由两直线平行可知系数满足【考点】两直线平行的判定36.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线的焦点距离为3,则()A.B.C.3D. 4【答案】C【解析】根据题意,可设抛物线的标准方程为,由于点到该抛物线的焦点距离为3,故,解得,抛物线标准方程为,将点代入抛物线方程可得,因此;【考点】抛物线的焦半径;37.已知抛物线与直线相交于两点.(1)求证:;(2)当的面积等于时,求的值.【答案】(1)证明见解析;(2);【解析】(1)要证,即证,联立直线与抛物线方程消去,得ky2+y-k=0,利用韦达定理可以证得;(2)设直线l与x轴的交点为N,求出点N的坐标为(-1,0),则,把(1)中的韦达定理代入可得的值;试题解析:(1)证明:联立,消去,得ky2+y-k=0.设A(x1,y1),B(x2,y2),则,,.因为,所以,所以,所以,即,所以.(2)设直线l与x轴的交点为N,则N的坐标为(-1,0),所以,解得,所以【考点】直线与抛物线位置关系;38.直线与抛物线交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()A. B. C. D.【答案】A【解析】由题如图所示:,代入得:,解得:。
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
抛物线到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
圆锥曲线的参数方程和直角坐标方程1)椭圆参数方程:X=acosθ Y=bsinθ (θ为参数)直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 12)双曲线参数方程:x=asecθ y=btanθ (θ为参数)直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴)y^2/a^ 2 - x^2/b^2 = 1 (开口方向为y轴)3)抛物线参数方程:x=2pt^2 y=2pt (t为参数)直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 )x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
焦点到最近的准线的距离等于ex±a圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。
|PF1|=a+ex |PF2|=a-ex双曲线:P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+exP在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x) 椭圆公式椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL 椭圆的准线方程x=±a^2/C椭圆的离心率公式e=c/a(e<1,因为2a>2c)椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c椭圆焦半径公式|PF1|=a+ex0 |PF2|=a-ex0椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a点与椭圆位置关系点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1点在圆内:x0^2/a^2+y0^2/b^2<1 点在圆上:x0^2/a^2+y0^2/b^2=1点在圆外:x0^2/a^2+y0^2/b^2>1直线与椭圆位置关系y=kx+m ①x^2/a^2+y^2/b^2=1 ②由①②可推出x^2/a^2+(kx+m)^2/b^2=1相切△=0 相离△<0无交点相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)|AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+ 1/k^2)(y1-y2)^2椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a 椭圆的斜率公式过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为-(b^2)X/(a^2)y例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.(1)求椭圆C的方程.(2)直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值. (3)在(2)的基础上求△AOB的面积.一分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^ 2/1=1,二要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形得m=-2.x=1.5,y=-0.5,p(1.5,-0.5),三直线方程x-y+1=0,利用点到直线的距离公式求的3√2/2,面积1/2*3√2/2* 3√2/2=9/4,双曲线的简单几何性质1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y 轴上)。
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的f(x)=0。
利用判别式b^2-4ac 的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
椭圆双曲线抛物线公式汇总椭圆双曲线抛物线公式双曲线的标准公式为: X /a - Y /b = 1(a>0,b>0) 而反比例函数的标准型是xy = c (c ≠ 0) 但是反比例函数确实是双曲线函数经过旋转得到的因为xy = c的对称轴是y=x, y=-x 而X /a - Y /b = 1的对称轴是x轴,y轴所以应该旋转45度设旋转的角度为a (a≠0,顺时针) (a为双曲线渐进线的倾斜角) 则有X = xcosa ysina Y = - xsina ycosa 取a = π/4 则X - Y = (xcos(π/4) ysin(π/4)) -(xsin(π/4) - ycos(π/4)) = (√2/2 x √2/2 y) -(√2/2 x - √2/2 y) = 4 (√2/2 x) (√2/2 y) = 2xy. 而xy=c 所以X /(2c) - Y /(2c) = 1 (c>0) Y /(-2c) - X /(-2c) = 1 (c 由此证得,反比例函数其实就是双曲线函数椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。
如L = ∫[0,π/2]4a * sqrt(1-(e*cost) )dt≈2π√((a b )/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL椭圆的准线方程x=±a /C椭圆的离心率公式e=c/a(e2c)椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x= a /C)的距离,数值=b /c椭圆焦半径公式|PF1|=a ex0 |PF2|=a-ex0椭圆过右焦点的半径r=a-ex过左焦点的半径r=a ex椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b /a点与椭圆位置关系点M(x0,y0) 椭圆x /a y /b =1点在圆内: x0 /a y0 /b点在圆上: x0 /a y0 /b =1点在圆外: x0 /a y0 /b >1直线与椭圆位置关系y=kx m ①x /a y /b =1 ②由①②可推出x /a (kx m) /b =1相切△=0相离△相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)|AB|=d = √(1 k )|x1-x2| = √(1 k )(x1-x2) = √(1 1/k )|y1-y2| = √(1 1/k )(y1-y2)椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b /a椭圆的斜率公式过椭圆上x /a y /b 上一点(x,y)的切线斜率为b *X/a y 抛物线的标准方程右开口抛物线:y =2px左开口抛物线:y =-2px上开口抛物线:x =2py下开口抛物线:x =-2pyp为焦准距(p>0)[编辑本段]3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P [编辑本段]4.它的解析式求法:以焦点在X轴上为例知道P(x0,y0)令所求为y =2px则有y0 =2px0∴2p=y0 /x0∴抛物线为y =(y0 /x0)x [编辑本段]5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴。
椭圆方程、双曲线方程、抛物线方程是平面解析几何中常见的曲线方程类型,它们在数学、物理、工程等领域都有着重要的应用。
通过联立这些方程,不仅可以深入理解曲线的特性,还可以解决一些实际问题。
本文将分别介绍椭圆方程、双曲线方程、抛物线方程的基本定义和性质,以及它们的联立解法,帮助读者更好地理解和应用这些数学知识。
一、椭圆方程的定义和性质
椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
椭圆方程的一般形式为:
(x-h)²/a² + (y-k)²/b² = 1
其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
椭圆有许多重要性质,如对称性、焦点、直径等,这些性质都可以通过椭圆方程的分析得到。
二、双曲线方程的定义和性质
双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P 的轨迹。
双曲线方程的一般形式为:
(x-h)²/a² - (y-k)²/b² = 1
类似椭圆,双曲线也有许多重要性质,如渐近线、焦点、枝等。
通过双曲线方程的分析,可以深入理解这些性质。
三、抛物线方程的定义和性质
抛物线是平面上到一个定点F的距离等于到某条直线L的距离的点P 的轨迹。
抛物线方程的一般形式为:
y² = 2px
其中p为焦点到抛物线顶点的距离,也是抛物线的焦距。
抛物线也有许多重要性质,如焦点、直径、对称轴等,通过抛物线方程的分析可以得到这些性质。
四、联立椭圆、双曲线和抛物线方程的解法
在一些实际问题中,我们需要联立椭圆、双曲线和抛物线方程进行求解。
以二元二次方程组为例,我们可以通过联立椭圆、双曲线和抛物线方程进行求解,得到曲线的交点、切点、共焦点等。
这对于一些物理、工程等领域的问题具有重要意义。
结论:
椭圆方程、双曲线方程、抛物线方程是平面解析几何中常见的曲线方
程类型,通过对它们的定义、性质和联立解法的深入理解,可以帮助
我们更好地应用这些数学知识解决实际问题。
掌握这些知识也有助于
提高数学建模和问题求解的能力。
希望本文能够帮助读者更好地理解
和应用椭圆、双曲线、抛物线方程。
在实际问题中,椭圆、双曲线和
抛物线方程的联立解法有着多种应用。
在工程领域,比如在设计椭圆
形轨道的高速列车运行路径时,需要考虑椭圆轨道与水平面和垂直面
的夹角,这时就需要联立椭圆方程和直线方程作出合理的设计。
另外,在天文学中,描述天体运动轨迹时,常常需要使用双曲线方程来建模,通过联立多个双曲线方程,可以得到天体的轨迹交点等信息;抛物线
方程则常用于描述抛物运动的轨迹,如炮弹、导弹等的运动轨迹。
联
立椭圆、双曲线和抛物线方程的应用也涉及到了多个学科领域。
当我们需要研究曲线的交点、切点等特性时,也经常会用到椭圆、双
曲线和抛物线方程的联立解法。
通过联立这些方程,可以得到曲线的
交点的坐标,从而更好地理解曲线的位置关系,并能够应用在实际问
题中,比如在工程设计、地理测绘、天文研究等方面。
对于求解椭圆、双曲线和抛物线方程组的方法,通常可以采用代数、
几何、解析几何等不同的角度展开求解。
通过数学分析和求解,我们
可以得到曲线的特性参数、交点、切点等信息,这些信息可以为实际
问题的解决提供重要的参考和支持。
在数学研究和教学中,椭圆、双曲线和抛物线方程的联立解法也有着重要的意义。
教学上,通过联立这些方程进行求解可以帮助学生更好地理解和掌握这些曲线的性质和特性,提高他们的数学建模和问题求解能力。
而在数学研究中,联立解法也为探讨更复杂的曲线方程提供了一定的思路和方法。
椭圆、双曲线和抛物线方程的联立解法是解析几何中的重要内容,在数学研究、教学以及实际问题求解中都有着广泛的应用。
通过深入理解和掌握椭圆、双曲线和抛物线方程的联立解法,可以更好地理解这些曲线的特性和相互之间的关系,为实际问题的解决提供有力的数学工具和支持。
希望通过本文的介绍,读者能够对椭圆、双曲线和抛物线方程的联立解法有更清晰的认识,并能够在实际问题中灵活应用这些数学知识。