抛物线双曲线椭圆知识点
- 格式:docx
- 大小:37.51 KB
- 文档页数:4
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
对称性:椭圆关于 x 轴、y 轴和原点对称。
顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。
椭圆的标准方程及其几何性质
椭圆的定义:我们把平面内与两个定点斤,冇的距离的和等于常数(大于|/^^|)的点的轨迹叫做椭圆。
符号语言;|M用+|M坊| =加(加>2r)
肝2时,点的轨迹是椭圆
将定义中的常数记为2d,则.①•当2a>
与椭圆务卜快焦点的椭圆系方程可设为:£+£*>»)
双曲线的标准方程及其几何性质
双曲线的定义:我们把平面内与两个定点F F朽的距离的差的绝对值等于常数(小于闪马) 的点的轨迹叫做双曲线。
符号语言;I M歼1 = 2"加<2c)
将定义中的常数记为2d,则:①•当加<川^时,点的轨迹是双曲线
焦点位置不确定的双曲线方程可设为:=1(血“>0) 与双曲线P 討共焦点的双曲线系方程可设为七一冷十宀皿 与双曲线yp 咲渐近线的双曲线系方程可设为:P 討(心
抛物线的标准方程及其几何性质
抛物线的定义:我们把平B 内与一个定点F 和一条定直线/ (/不经过点F )距离相等 的点的轨迹叫做抛物线。
点F 叫做抛物线的焦点,直线/叫做抛物线的准线。
KA
直线与抛物线相交于且直线过抛物线的焦点,则过焦点的弦长公式:
AB =X|
+ p (a 为5纽酗倾斜角) sin a
直线与椭圆(或与双曲线、抛物线)相交于A (Xpy,XB (%.,y,),则椭圆(或双曲线.抛 物线)的弦长公式:
Jl + k? = +尤2)2 —4西天2 Jl + 疋 标准方程
y~ = 2px(p>Q) y~ =-2px(p>Q) X" = 2py(p>0) X" =-2py(p >0}
AB = x^ -Xj。
椭圆方程、双曲线方程、抛物线方程是平面解析几何中常见的曲线方程类型,它们在数学、物理、工程等领域都有着重要的应用。
通过联立这些方程,不仅可以深入理解曲线的特性,还可以解决一些实际问题。
本文将分别介绍椭圆方程、双曲线方程、抛物线方程的基本定义和性质,以及它们的联立解法,帮助读者更好地理解和应用这些数学知识。
一、椭圆方程的定义和性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
椭圆方程的一般形式为:(x-h)²/a² + (y-k)²/b² = 1其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
椭圆有许多重要性质,如对称性、焦点、直径等,这些性质都可以通过椭圆方程的分析得到。
二、双曲线方程的定义和性质双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P 的轨迹。
双曲线方程的一般形式为:(x-h)²/a² - (y-k)²/b² = 1类似椭圆,双曲线也有许多重要性质,如渐近线、焦点、枝等。
通过双曲线方程的分析,可以深入理解这些性质。
三、抛物线方程的定义和性质抛物线是平面上到一个定点F的距离等于到某条直线L的距离的点P 的轨迹。
抛物线方程的一般形式为:y² = 2px其中p为焦点到抛物线顶点的距离,也是抛物线的焦距。
抛物线也有许多重要性质,如焦点、直径、对称轴等,通过抛物线方程的分析可以得到这些性质。
四、联立椭圆、双曲线和抛物线方程的解法在一些实际问题中,我们需要联立椭圆、双曲线和抛物线方程进行求解。
以二元二次方程组为例,我们可以通过联立椭圆、双曲线和抛物线方程进行求解,得到曲线的交点、切点、共焦点等。
这对于一些物理、工程等领域的问题具有重要意义。
结论:椭圆方程、双曲线方程、抛物线方程是平面解析几何中常见的曲线方程类型,通过对它们的定义、性质和联立解法的深入理解,可以帮助我们更好地应用这些数学知识解决实际问题。
椭圆、双曲线、抛物线相关知识点总结一、椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点F, F2的距离的和等于常数大于F1F21的点的轨迹叫做椭圆。
符号语言:|MF,| |MF2| 2a 2a 2c将定义中的常数记为2a,贝①.当2a卩人时,点的轨迹是椭圆_____________双曲线的标准方程及其几何性质双曲线的定义:我们把平面内与两个定点F, F2的距离的差的绝对值等于常数小于F”的点的轨迹叫做双曲线。
符号语言:MF t - MF22a 2a 2c将定义中的常数记为2a,贝①.当2a FE时,点的轨迹是双曲线_____________________ ②•当2a |吋2时,点的轨迹是两条射线③.当2a卩占时,点的轨迹不存在焦点位置不确定的双曲线方程可设为:mn 02 2与双曲线仔笃1共焦点的双曲线系方程可设为:a b2y1 ba kb kx22 2 2 2与双曲线笃 耸1共渐近线的双曲线系方程可设为: $ 爲a ba b三、抛物线的标准方程及其几何性质抛物线的定义:我们把平面内与一个定点 F 和一条定直线I (I 不经过点F )距离相等 的点的轨迹叫做AB x , x 2 p -2^(为弦AB 的倾斜角)sin直线与椭圆(或与双曲线、抛物线)相交于 A (x i ,y i ),B x 2,y 2,则椭圆(或双曲线、抛 物线)的弦长公式:AB x , x 2| —k 2J x , x 2 2 4%卷—k22 2 2 2与椭圆負b 2 1共焦点的椭圆系方程可设为:和冷1 k b 2标准方程2y 2px (p o )图形焦点坐标(p ,0) 2 (匕0) 2 (0月2(0,上) 2准线方程x& 2x E 2 y 舟 yi范围x 0, y R x 0, y Ry 0,x Ry 0,x R对称性 关于x 轴关于y 轴顶点坐标 (0,0)焦半径M X o ,y o|MF | X 。
1、范围:焦点在x轴上-a≤x≤a -b≤y≤b;焦点在y轴上-b≤x≤b -a≤y≤a[1]2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
3、顶点:(a,0)(-a,0)(0,b)(0,-b)4、离心率:e=c/a 或e=√1-b^2/a^25、离心率范围 0<e<16、离心率越大椭圆就越扁,越小则越接近于圆7.焦点(当中心为原点时)(-c,0),(c,0)或(0,c),(0,-c)切线法线定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。
若直线AB切椭圆C于点P,且A和B在直线上位于P 的两侧,则∠APF1=∠BPF2。
定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。
若直线AB为C在P点的法线,则AB平分∠F1PF2。
上述两定理的证明可以查看参考资料。
方程标准方程高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (a>b>0)其中a>0,b>0。
a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。
即标准方程的统一形式。
椭圆的面积是πab。
椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a^2+yy0/b^2=1。
圆锥曲线知识点一、 椭圆:1、定义:平面内与两个定点1F ,2F 的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。
{}a MF MF M 221=+()212F F a >2、标准方程:(焦点在x 轴))0(12222>>=+b a bya x;(焦点在y 轴):)0(12222>>=+b a b x a y顶点坐标:)0,(a ± (0,)b ± 顶点坐标:),0(a ± (,0)b ±长轴长为a 2,短轴长为b 2焦点坐标:1(,0)F c 2(,0)F c - 焦点坐标:1(0,)F c 2(0,)F c -焦点在长轴上,c = 焦距:122F F c =离 心 率:ac e =(01e <<) ,ab a ac e 22222-==,e 越大椭圆越扁,e 越小椭圆越圆。
二、 双曲线:1、定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。
这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。
{}a MF MF M 221=-()212F F a <2、标准方程:(焦点在x 轴):)0,0(12222>>=-b a by ax ;(焦点在y 轴):)0,0(12222>>=-b a bx ay焦点坐标:1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c 顶点坐标:(a -,0) (a ,0) (0, a -,) (0,a )离心率: e ac e (=>1)准线方程: c a x 2±= ca y 2±=准线垂直于实轴且在两顶点的内侧;两准线间的距离:ca 22渐近线方程:(焦点在x 轴)xab y±= (实虚) (焦点在y 轴)yab x±= (实虚){MFM =点M 到直线l 的距离}1、()022>=p px y, 焦点坐标:(2p ,0), 准线方程:2p x -=2、)0(22>-=p px y , 焦点坐标:(2p -,0),准线方程:2p x =3、)0(22>=p py x ,焦点坐标:(0,2p ),准线方程:2p y -=4、)0(22>-=p py x ,焦点坐标:(0,2p -),准线方程:2p y =三、抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
考点26 椭圆、双曲线与抛物线的方程及几何性质1.基础知识1.椭圆的概念(1)文字形式:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合1212P={M||MF |+|MF |=2a |FF |=2c.} ①若a c >,则集合P 为椭圆;②若a c =,则集合P 为线段;③若a c <,则集合P 为空集. 2.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离. 3.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离)4.重要结论 椭圆:22221x y a b+=(a >b >0)1、24ABF C a ∆=;2、椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(F c 3、焦点12PF F ∆中,12F PF θ∠=, (1)1222sin tan 21cos PF F S b bθθθ∆==+; (2)12max ()PF F S bc ∆=;(3)当点P 位于短轴顶点处时,4、焦点弦中, (1) 通径最短,22b AB a=;(2)2112aAF BF b +=. 5、AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ,(00x 2OM AB a 6、(1)与椭圆22221x y a b +=(a>b>0)共焦点的椭圆方程可设为:22221x y a k b k+=++; (2)中心在原点,坐标轴为对称轴的椭圆方程可设为221(0,0,)mx ny m n m n +=>>≠.双曲线22221x y a b-=(a >0,b >o )1、等轴双曲线 (1)22a b =;(2)渐近线为 y x =±;(3)离心率e =2、双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-; 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--. 3、焦点到渐近线的距离为b .4、焦点12PF F ∆中,12F PF θ∠=,12221cos cot2sin PF F S b b θθθ∆+==;5、AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b K K a ⋅=,即0202y a x b K AB=. 6、(1)与22221x y a b -=共渐近线的双曲线方程22ax -22y b λ=(0λ≠).(2)与22221x y a b-=有相同焦点的双曲线方程22x a k --221y b=(2k a <且2k b ≠-).抛物线22(0)y p x p =>,11(,)A x y ,22(,)B x y1、212y y p =-,2124p x x =;2、焦半径公式:12pAF x =+;3、焦点弦长公式: (1)121222p pAB x x x x p =+++=++(2)min 2AB p =(即焦点弦中,通径最短).(3)AF BF p +=; (4)以AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;【考点分类】考点一 椭圆的标准方程及其几何性质例1.【2015浙江文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .例2.【2015江苏18】如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>,右焦点F 到左准线2:a l x c=-的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和A B 于点P ,C ,若PC =2AB ,求直线AB 的方程.【方法总结】1.椭圆的几何性质常涉及一些不等关系,例如对椭圆2222=1x y a b+,有-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求与椭圆有关的一些量的范围,或者求这些量的最大值或最小值时,经常用到这些不等关系.2.求解与椭圆几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.3.求椭圆离心率问题,应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的等式或不等式,从而求出e 的值或范围.离心率e 与a 、b 的关系:22222222e =1-c a b b ba a a a-==⇔= 巩固练习1. 【2015广东文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .22.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,6,cos ABF ,5AF BF AB AF C e ==∠=连接若则的离心率= .3.三个顶点均在椭圆上的三角形称为椭圆的内接三角形......已知点A 是椭圆的一个短轴端点,如果以A .为直.. 角顶点...的椭圆内接等腰直角三角形有且仅有三个,则椭圆的离心率的取值范围是( )(A ) (B ) (C ) (D )4.【2015天津文19】已知椭圆22221(a b 0)x y a b+=>>的上顶点为B ,左焦点为F ,(I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ l .(i )求l 的值;(ii )若||sin PM BQP Ð,求椭圆的方程.5.【2015四川文20】如图,椭圆E :22221x y a b+=(a >b >0)的离心率是2,点P (0,1)在短轴CD 上,且PC PD⋅=-1.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.考点二 双曲线的标准方程及其几何性质 例3.【2015湖北文9】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【方法总结】1.双曲线方程的求法(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx 2+ny 2=1(mn <0);(2)与双曲线2222=1x y a b -有共同渐近线的双曲线方程可设为2222=x y a bλλ-≠(0).(3)若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).2.已知渐近线方程y =mx ,求离心率时若焦点不确定时,m =b a (m >0)或m =ba,故离心率有两种可能. 巩固练习1. 【2015天津文5】已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为( )(A)221913x y -= (B) 221139x y -= (C) 2213x y -= (D) 2213y x -= 2. 如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2 B .3 C .23 D .26 3. 已知直线x=2与双曲线22:14x C y -=的渐近线交于E 1、E 2两点,记2211,e OE e OE ==,任取双曲线C 上的点P ,若),(21R b a be ae OP ∈+=,则( )A .1022<+<b aB .21022<+<b a C .122≥+b a D .2122≥+b a 4.【2015山东文15】过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .5.【2015江苏12】在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 . 考点三 抛物线的标准方程及其几何性质例4.【2015新课标1文5】已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12例5.【2015福建文19】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【方法总结】1.抛物线上点到准线距离转化到点到焦点距离起到化繁为简的作用.注意定义在解题中的应用.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用. 巩固练习1.已知F 是抛物线2yx =的焦点,,A B 是该抛物线上的两点.若线段AB 的中点到y 轴的距离为54,则||||AF BF += ( ) A .2 B .52C .3D .4 2.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆面积最小值是( ) A .2 B .8 C .8D 3.抛物线22y px =(0>p )的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最大值为( )A B .1 C D .2 4.已知点A(3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM|+|MF|最小时,M 点坐标是( )A .(0,0)B .)C .(2,4)D .(3,-)5.已知圆P :x 2+y 2=4y 及抛物线S :x 2=8y ,过圆心P 作直线l ,此直线与上述两曲线的四个交点,自左向右顺次记为A ,B ,C ,D ,如果线段AB ,BC ,CD 的长按此顺序构成一个等差数列,则直线l 的斜率为( ) A .22±B .22 C .2± D .2 6. 【2015新课标1,理20】在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数〔大于12F F 〕的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,那么动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①假设常数2a 等于2c ,那么动点轨迹是线段12F F 。
②假设常数2a 小于2c ,那么动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ; 焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
课程星级:★★★★★【椭圆】 一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程1、椭圆的标准方程(端点为a 、b ,焦点为c )(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;2、两种标准方程可用一般形式表示:221x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以12222=+by a x )0(>>b a 为例)知能梳理1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII2椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b xa y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e ace )10(<<=e ace33. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
椭圆抛物线双曲线公式大全一、椭圆。
(一)椭圆的标准方程。
1. 焦点在x轴上。
设椭圆的标准方程为frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),其中a为长半轴长,b为短半轴长,c为半焦距,且c^2=a^2-b^2,焦点坐标为(± c,0)。
2. 焦点在y轴上。
方程为frac{y^2}{a^2}+frac{x^2}{b^2}=1(a > b>0),焦点坐标为(0,± c),同样c^2=a^2-b^2。
(二)椭圆的离心率。
e=(c)/(a)(0 < e<1),离心率反映了椭圆的扁平程度。
(三)椭圆的参数方程。
<=ft{begin{array}{l}x = acosθ y=bsinθend{array}right.(θ为参数)二、抛物线。
(一)抛物线的标准方程。
1. 焦点在x轴正半轴上。
方程为y^2=2px(p>0),焦点坐标为((p)/(2),0),准线方程为x =-(p)/(2)。
2. 焦点在x轴负半轴上。
y^2=-2px(p > 0),焦点(-(p)/(2),0),准线x=(p)/(2)。
3. 焦点在y轴正半轴上。
x^2=2py(p>0),焦点(0,(p)/(2)),准线y =-(p)/(2)。
4. 焦点在y轴负半轴上。
x^2=-2py(p>0),焦点(0,-(p)/(2)),准线y=(p)/(2)。
(二)抛物线的离心率。
e = 1三、双曲线。
(一)双曲线的标准方程。
1. 焦点在x轴上。
方程为frac{x^2}{a^2}-frac{y^2}{b^2}=1(a>0,b>0),其中a为实半轴长,b为虚半轴长,c为半焦距,且c^2=a^2+b^2,焦点坐标为(± c,0)。
2. 焦点在y轴上。
frac{y^2}{a^2}-frac{x^2}{b^2} = 1(a>0,b>0),焦点坐标为(0,± c),c^2=a^2+b^2。
椭圆双曲线抛物线知识点汇总一、椭圆1、定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。
(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
3、椭圆的性质(1)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(2)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(3)顶点:焦点在$x$轴上时,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上时,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),反映了椭圆的扁平程度。
4、椭圆中的重要结论(1)过椭圆焦点的弦长:若弦过焦点$F_1$,则弦长$|AB| = 2a e(x_1 + x_2)$。
(2)椭圆上一点到焦点的距离:设椭圆上一点$P(x_0, y_0)$,两焦点为$F_1$,$F_2$,则$|PF_1| = a + ex_0$,$|PF_2| = aex_0$。
二、双曲线1、定义平面内与两个定点$F_1$,$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$c^2 = a^2 + b^2$。
抛物线双曲线椭圆知识点
抛物线、双曲线、椭圆,这三个名词似乎很陌生的样子,但它们实际上是我们经常在生活中接触到的数学概念。
高中数学中,关于这三个曲线的内容是必修的。
虽然它们各有不同的性质,但它们都有一个共同的特征,那就是它们是二次函数图像。
本文将详细介绍抛物线、双曲线与椭圆的知识点,并探讨它们的性质和应用。
1. 抛物线
抛物线是平面内的一条曲线,其形状类似于一个开口朝下或开口朝上的 U 形。
在数学中,抛物线是由一条直线(半轴)和一个固定点(焦点)构成的图形。
在图像上,焦点位于抛物线的顶点处,而半轴则与抛物线相切。
根据它的方程式,我们可以将抛物线分为两种类型:开口朝上的抛物线和开口朝下的抛物线。
开口朝上的抛物线方程式为:y = ax² + bx + c,其中a > 0 。
开口朝下的抛物线方程式为:y = ax² + bx + c,其中a < 0 。
在现实生活中,抛物线通常用来描述物体的运动轨迹。
例如,抛体在空气中的运动轨迹就是一个抛物线。
此外,抛物线也广泛用于建筑设计、工程、电信和电子等领域。
2. 双曲线
双曲线是平面内一种曲线,以其非对称的形状而著称。
它看上去像两个并排的抛物线,我们也可以将两条抛物线相减得到双曲线的方程。
不同于抛物线的开口朝上或开口朝下的 U 形,双曲线的形状可以在横轴和纵轴两个方向都无限延伸。
双曲线方程式为:y²/a² − x²/b² = 1,其中a和b是该双曲线长度的参数。
当 a 和 b 相等,即a = b时,双曲线便可以转化为下面要介绍的椭圆。
双曲线在现代科学中有着广泛的应用,例如,它们可以被用于描述电磁波传播的方式、质能传播、黑洞引力等一系列现象。
此外,双曲线也被广泛应用到天文学、航空航天、电磁学和通讯领域等。
3. 椭圆
椭圆是平面内一种闭合曲线,以其对称的 U 形或胎心形状而著称。
它看上去像两个抛物线,其一侧延伸,形成一个“尖角”,而
另一侧则弯曲的更严密、圆润。
椭圆是平面上离心率小于 1 的点
形成的轨迹,该轨迹的参数是长轴和短轴。
椭圆方程式为:(x²/a²) + (y²/b²) =1,其中a 和 b 是椭圆长度的参数。
当 a 和 b 相等,即a = b 时,椭圆则变成了一个圆。
椭圆在现实生活中也有着广泛的应用,在许多领域中都有一席
之地。
例如,它们被用于描述轨道,例如行星、彗星、卫星和其
他宇宙物体在宇宙空间的运行轨迹。
此外,在数学、工程、架构
设计、计算机图形等领域,椭圆也被广泛应用。
总结
抛物线、双曲线和椭圆都是平面内的二次函数图像,它们在现
实生活和科学研究中的应用非常广泛。
了解和掌握这些曲线的性
质和应用,对于帮助我们更好的理解和解决复杂的问题非常重要。
通过本文的介绍,相信读者已经对抛物线、双曲线和椭圆有了更深入的了解。