双曲线及抛物线(作业及答案)
- 格式:docx
- 大小:232.16 KB
- 文档页数:8
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
椭圆双曲线抛物线训练题一、解答题(共21题;共195分)1.已知椭圆Γ:的左,右焦点分别为F1( ,0),F2( ,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足.(1)求椭圆Γ的标准方程;(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.2.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2,点A(,)在椭圆C上,且△F1AF2的面积为。
(1)求椭圆C的方程。
(2)设直线y=kx+1和椭圆C交于B,D两点,O为坐标原点,判断在y轴上是否存在点E,使∠OEB=∠OED。
若存在,求出点E的坐标;若不存在,请说明理由。
3.已知椭圆的离心率为,点椭圆的右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,直线与直线的斜率和为,求直线l的方程.4.设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.5.设A,B为曲线C:y= 上两点,A与B的横坐标之和为4.(12分)(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.6.设椭圆的右焦点为,过得直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.7.已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.8.设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.9.已知斜率为的直线与椭圆交于两点,线段的中点为(1)证明:(2)设为的右焦点,为上一点,且,证明:10.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.11.设抛物线的焦点为F,过F点且斜率的直线与交于两点,. (1)求的方程。
数学拓展模块第二章椭圆、双曲线、抛物线(试卷A )一、选择题:(本大题有15个小题,每小题3分,共45分。
在每小题所给出的选项中只有一个符合题目要求)1.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ). A .3 B .4 C .5 D .62.椭圆2211625+=x y 的焦距是( ). A .6 B .4 C .10 D .93.已知椭圆方程是224520+=x y ,则它的离心率是( ).A .2B .C .D . 124.长轴是短轴的2倍,且经过点P (-2.0)的椭圆方程是( ).A . 2214+=x yB . 221416+=x yC . 221164+=x y 或2214+=x y D . 221416+=x y 或2214+=x y 5.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A .2211612+=x y B . 2211612-=x y C . 2211216+=x y D . 2211216-=x y6.与椭圆2211625+=x y 有共同的焦点且过点(-的双曲线的方程是( ). A .22154-=y x B . 22153-=y x C . 22154-=x y D . 22153-=x y 7.双曲线的两个焦点坐标是1F (0,-5), 2F (0,5),且2a =8.则双曲线的方程为( ).A .221169-=y x B . 2211625-=y x C . 2211625-=x y D . 2216425-=x y 8.若双曲线焦点在x 轴上,且它的一条渐进线方程为34=y x ,则离心率是( ).A .54B . 4C . 7D . 79.双曲线221169-=x y ,若过右焦点2F ,且在双曲线右半支上的弦AB 长为5,另一焦点为1F 则△AB 1F 的周长为( ).A .16B .11C . 26D .610.设()0,απ∈,方程221sin cos αα+=x y 表示中心在坐标原点,焦点在x 轴上的双曲线,则α的取值范围是( ).A . ()0,π В. [)0,π C . ,2ππ⎛⎫⎪⎝⎭D .,2ππ⎡⎫⎪⎢⎣⎭11.抛物线250-=x y 的准线方程是( ).A . 54=-x B . 52=x C . 54=y D . 54=-y 12.顶点在原点,准线方程为y =4的抛物线标准方程为( ). A . 216=y x B . 216=-y x C . 216=x y D . 216=-x y13.顶点在原点,对称轴是y 轴,顶点与焦点的距离等于2的抛物线方程是( ). A . 24=±x y B . 24=±y x C . 28=±x y D . 28=±y x 14.顶点在原点,以坐标轴为对称轴且过点(2,-3)的抛物线方程是( ). A . 292=y x 或243=-x y B . 292=-y x C . 292=-y x 或243=x y D . 243=-x y 15.顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ). A . 24=x y B . 24=-x y C . 24=-y x D . 24=y x 二、填空题(本在题有15个小空,每空2分,共30分) 16.已知椭圆221625400+=x y ,其离心率为___________.17.已知椭圆的右焦点F (3,0),F 到右顶点距离为3,则椭圆的方程为___________.18.已知曲线的方程22194+=--x y k k为椭圆的标准方程,则k 的取值范围为___________.19.椭圆各22214+=x y a 与双曲线器22212-=x y a 有相同的焦点,则2a =___________. 20如果方程222+=x ky 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是___________.21.已知1F ,2F 是椭圆221259+=x y 的两个焦点,过1F 的直线与椭圆交于M .N 两点,则△MN 2F 的周长是___________.22.双曲线222516400-=x y 的两条渐近线方程是___________.23.双曲线的实轴长为6,离心率2=e ,焦点在x 轴上,则双曲线的标准方程为___________. 24.双曲线2288-=kx ky 的一个焦点是(0,3),那么k =___________.25.与双曲线221916-=x y 有相同的渐近线,且过点(3,-C 的双曲线方程是___________. 26.方程22125-=--x y k k表示双曲线,则k 的取值范围是___________. 27.抛物线214=-y x 的焦点坐标是___________.28.抛物线上24=-y x 上一点M 到焦点的距离是6,则M 到准线的距离是___________. 29.若抛物线22=y px 上到焦点距离为3的点的横坐标为2.则p =___________.30.抛物线218=-y x 的准线方程是___________.三、解答题:(本大题共45分)31.已知椭圆的短轴长是2,中心与抛物线24=y x 的顶点重合,椭圆的一个焦点是此抛物线的焦点,求该椭圆的方程及离心率.32.椭圆的长轴是短轴的3倍,过点P (3,0),求椭圆的标准方程.33.一椭圆的中心在坐标原点,焦点在x 轴上,焦距为 的焦点,且双曲线的实半轴比椭圆的长半轴小4,且双曲线的离心率与椭圆的离心率之比为73,求此椭圆和双曲线的方程。
一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。
$2b^2/a$ B。
$b^2/a$ C。
$b/a$ D。
$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。
椭圆双曲线抛物线大题及答案近年来,越来越多的数学考试和竞赛中出现了椭圆、双曲线和抛物线的大题。
这些大题考查的是对于这些曲线的了解和掌握,以及运用其性质解决数学问题的能力。
下面,我们来一起探讨一下椭圆、双曲线和抛物线的大题及其答案。
一、椭圆的大题及答案椭圆的一般方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a>b>0$。
1.已知椭圆的焦点为$(\pm c,0)$,准线为$x=\pm a$,则椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
证明:由于椭圆的准线为$x=\pm a$,则$a$为椭圆的半长轴,$b=\sqrt{a^2-c^2}$为椭圆的半短轴。
又由于椭圆的焦点为$(\pmc,0)$,则$c=\sqrt{a^2-b^2}$为椭圆的焦距。
代入椭圆的一般方程,得到$\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1$。
2.已知椭圆的离心率为$\frac{1}{3}$,其中一个焦点为$(4,0)$,则椭圆的方程为$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
证明:由于椭圆的离心率为$\frac{1}{3}$,则椭圆的半长轴为$a=9$,焦距为$c=\frac{a}{3}=3$,半短轴为$b=\sqrt{a^2-c^2}=6$。
又由于一个焦点为$(4,0)$,则另一个焦点为$(-4,0)$。
代入椭圆的一般方程,得到$\frac{(x-4)^2}{36}+\frac{y^2}{27}=1$。
二、双曲线的大题及答案双曲线的一般方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>0$,$b>0$。
1.已知双曲线的离心率为2,其中一个焦点为$(5,0)$,则双曲线的方程为$\frac{(x-5)^2}{16}-\frac{y^2}{12}=1$。
椭圆、双曲线、抛物线综合试题学校:___________姓名:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)1.(a>0,b>0)的一条渐近线方程是它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )2.已知焦点在x 轴上的椭圆,则a 的值为 ( ) ABD .123.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x4.椭圆2249144x y +=内的一点(3,2)P ,过点P 的弦恰好以P 为中点,那么这弦所在的直线方程A. 32120x y +-=B. 23120x y +-=C. 491440x y +-=D. 941440x y +-=5k 适合的条件是A .2k <-或25k <<B .22k -<<或5k >C .2k <-或5k > D.25k -<<6.已知P 为抛物线上的动点,点P 在x 轴上的射影为M ,点A的坐标是 ( )(A)8 (B)(C)107 A 、0 B 、1 C 、2 D 、38(0,0>>>b m a )的离心率之积大于1,则以m b a ,,为边长的三角形一定是( )A 等腰三角形B 锐角三角形C 直角三角形D 钝角三角形第II 卷(非选择题)请点击修改第II 卷的文字说明9.已知P上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________;10.如图,双曲线的两顶点为,,虚轴两端点为,,两焦点为,. 若以为直径的圆内切于菱形,切点分别为. 则(Ⅰ)双曲线的离心率 ;(Ⅱ)菱形的面积与矩形的面积的比值 . 11.过点)2,2(p M -作抛物线)0(22>=p py x 的两条切线,切点分别为A 、B ,若 线段AB 中点的纵坐标为6,则抛物线的方程为 .12.对任意实数k ,直线y kx b =+与椭圆,则b 的取值范围是三、解答题(题型注释)13.(本小题满分12分) 抛物线22y px =的焦点与双曲线. (Ⅰ)求抛物线的方程;(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.14.已知1F )0,1(-、2F )0,1(为椭圆的焦点,且直线 (Ⅰ)求椭圆方程;(Ⅱ)过1F 的直线交椭圆于A 、B 两点,求△2ABF 的面积S 的最大值,并求此时直线的方程。
高二数学双曲线试题答案及解析1.已知双曲线的一个焦点与抛物线的焦点相同,则双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】根据题意,由于双曲线的一个焦点与抛物线的焦点相同(),那么可知,则可知双曲线的渐近线方程是,故选C.【考点】双曲线的性质,抛物线点评:解决的关键是对于双曲线和抛物线性质的熟练表示,属于基础题。
2.若双曲线(b>0)的离心率为2,则实数b等于()A.1B.2C.D.3【答案】C【解析】由双曲线方程可知【考点】双曲线的性质离心率点评:本题涉及到的性质:3.过双曲线的左焦点作圆的切线,切点为E,延长FE交抛物线于点P,若E为线段FP的中点,则双曲线的离心率为( )A.B.C.D.【答案】D【解析】画图。
抛物线的焦点,准线。
连接和EO,则,即有,所以点P到准线的距离等于2a,所以点P的横坐标为,由点P在抛物线上,得点。
又OP=OF=c,所以,解得。
故选D。
【考点】抛物线的性质;两点距离公式;双曲线的性质。
点评:本题几何问题,画图是关键。
一向以来,圆锥曲线是个难点,这需要我们平时多做一些题目提高认识、掌握知识。
4.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐进线垂直,那么此双曲线的离心率为()A.B.C.D.【答案】D【解析】设该双曲线方程为=1(a>0,b>0),可得它的渐近线方程为y=±x,焦点为F(c,0),点B(0,b)是虚轴的一个端点∴直线FB的斜率为k=FB∵直线FB与直线y=x互相垂直,∴-×=-1,得b2=ac∵b2=c2-a2,∴c2-a2=ac,两边都除以a2,整理得e2-e-1=0解此方程,得e=,∵双曲线的离心率e>1,∴e=,故选D。
【考点】本题主要考查双曲线的标准方程与简单几何性质等知识。
点评:本题给出双曲线的焦点与虚轴一端的连线与渐近线垂直,求它的离心率,着重考查了双曲线的标准方程与简单几何性质等知识,属于中档题.5.函数的图象与方程的曲线有着密切的联系,如把抛物线的图象绕原点沿逆时针方向旋转就得到函数的图象.若把双曲线绕原点按逆时针方向旋转一定角度后,能得到某一个函数的图象,则旋转角可以是()A.B.C.D.【答案】C【解析】确定双曲线的渐近线方程,求出倾斜角,即可得到结论.双曲线的渐近线方程为y=±x,其倾斜角为30°或150°。
双曲线和抛物线综合练习题一、选择题1.双曲线22143x y -=的虚轴长为( ) A . 2 B . 4 C . 3 D . 232.已知抛物线准线方程为x =-2,则其标准方程为( )A . x 2=8yB . x 2=-8yC . y 2=8xD . y 2=-8x3.已知双曲线2221(0)4x y m m-=>的离心率为3,则m 的值是( ) A . 22 B . 2 C . 3 D . 34.顶点在原点,准线与轴垂直,且经过点的抛物线方程是( )A .B .C .D . 5.经过点P (2,-2)且与双曲线C :有相同渐近线的双曲线方程是( )A .B .C .D .6.已知1F , 2F 分别为双曲线221x y -=的左,右焦点,点P 在双曲线上.若1260F PF ︒∠=,则12PF F ∆的面积为( )A . 32B . 3C . 332D . 23 7.直线l 过点()3,1P 且与双曲线22:12x C y -=交于,M N 两点,若线段MN 的中点恰好为点P ,则直线l 的斜率为( )A . 13B . 54C . 34D . 328.已知双曲线(a >0,b >0)的离心率为3,则其渐近线的方程为( ) A . 2y±x =0 B . 2x±y =0 C . 8x±y =0 D . x±8y =09.抛物线的焦点为,是上一点,若到的距离是到轴距离的两倍,且三角形的面积为(为坐标原点),则的值为( )A .B .C .D .10.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心率为2.若经过F 和()0,4P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A . 22144x y -= B . 22188x y -= C . 22148x y -= D . 22184x y -= 11.设斜率为 的直线 过抛物线的焦点 ,且与 轴交于点 ,若 ( 为坐标原点)的面积为 ,则抛物线方程为( )A .B .C .D . 12.已知 , 为抛物线 上的动点,若 到抛物线的准线 的距离为 ,记抛物线的焦点为 ,则 的最小值是( )A .B .C .D .二、填空题13.双曲线8kx 2-ky 2=8的一个焦点为(0,3),那么k 的值是___________.14.双曲线4x 2-y 2+64=0上一点P 到它的一个焦点的距离等于1,则点P 到另一个焦点的距离等于__________________.15.设为抛物线的焦点,过且倾斜角为的直线交于,两点,则__________.16.过双曲线22a x -22by =1(a>0,b>0)的左焦点且垂直于x 轴的直线与双曲线交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于___________.三、解答题17.已知双曲线方程为22169144x y -=.(1)求该双曲线的实轴长、虚轴长、离心率;(2)若抛物线C 的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C 的方程.18.在ABC ∆, ()4,0A -, ()4,0B ,点C 运动时内角满足2sin sin 2sin A C B +=,求顶点C 的轨迹方程。
高三数学双曲线试题答案及解析1.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为________.【答案】-2【解析】由题可知A1(-1,0),F2(2,0),设P(x,y)(x≥1),则=(-1-x,-y),=(2-x,-y),·=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5.∵x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,∴当x=1时,·取得最小值-2.2.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.B.C.D.【答案】D【解析】取,则,直线为,,即,∴,∴,∴,由,∴.【考点】双曲线的标准方程、两直线垂直的充要条件.3. [2014·大同模拟]设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为() A.4B.3C.2D.1【答案】C【解析】双曲线的渐近线y=±x,所以a=2,选C项.4.双曲线-y2=1的顶点到其渐近线的距离等于________.【答案】【解析】由-y2=1知顶点(2,0),渐近线x±2y=0,∴顶点到渐近线的距离d==.5.若抛物线的焦点是双曲线的一个焦点,则实数等于()A.B.C.D.【答案】C【解析】双曲线的焦点坐标是,,抛物线的焦点坐标是所以,或得故选【考点】抛物线和双曲线的焦点.6.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()A.B.C.D.【答案】C【解析】设等轴双曲线方程为,抛物线的准线为,由|AB|=,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以a2=4,a=2,所以实轴长2a=4,选C.7.已知双曲线(),与抛物线的准线交于两点,为坐标原点,若的面积等于,则A.B.C.D.【答案】C【解析】抛物线的准线是,代入双曲线方程得,,所以,解得.【考点】曲线的交点,三角形的面积.8.已知圆:和圆:,动圆M同时与圆及圆相外切,则动圆圆心M的轨迹方程是().A.B.C.D.【答案】A【解析】如图所示,设动圆M与圆及圆分别外切于点A和点B,根据两圆外切的充要条件,得,.因为,所以.这表明动点M到两定点、的距离的差是常数2,且小于.根据双曲线的定义,动点M的轨迹为双曲线的左支(点M到的距离大,到的距离小),这里a=1,c=3,则,设点M的坐标为(x,y),其轨迹方程为.9.已知,则双曲线的离心率为()A.B.2C.D.【答案】C【解析】双曲线方程可化为,即,因此双曲线的半实轴长为2,半虚轴长为1,所以半焦距为,所以离心率为.【考点】双曲线的标准方程及几何性质.10.的右焦点到直线的距离是()A.B.C.D.【答案】D【解析】双曲线的右焦点为,由点到直线的距离公式得右焦点到直线的距离为.【考点】双曲线的焦点及点到直线的距离.11.已知双曲线上一点,过双曲线中心的直线交双曲线于两点,记直线的斜率分别为,当最小时,双曲线离心率为( )A. B. C D【答案】B【解析】由题得,设点,由于点A,B为过原点的直线与双曲线的焦点,所以根据双曲线的对称性可得A,B关于原点对称,即.则,由于点A,C都在双曲线上,故有,两式相减得.则,对于函数利用导数法可以得到当时,函数取得最小值.故当取得最小值时, ,所以,故选B【考点】导数最值双曲线离心率12.过双曲线上任意一点P,作与实轴平行的直线,交两渐近线M,N两点,若,则该双曲线的离心率为____.【答案】【解析】依题意设,则.所以由.可得.即.所以离心率.【考点】1.圆锥曲线的性质.2.向量的数量积.3.方程的思想.13.已知抛物线的准线过双曲线的左焦点且与双曲线交于A、B两点,O 为坐标原点,且△AOB的面积为,则双曲线的离心率为()A.B.4C.3D.2【答案】D【解析】解:抛物线的准线方程为:,由题意知,双曲线的左焦点坐标为,即且,因为△AOB的面积为,所以,,即:所以,,解得:,故应选D.【考点】1、抛物线的标准方程;2、双曲线的标准方程及简单几何性质.14.双曲线=1上一点P到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P点到左焦点的距离为________.【答案】13【解析】由a=4,b=3,得c=5.设左焦点为F1,右焦点为F2,则|PF2|=(a+c+c-a)=c=5,由双曲线的定义,得|PF1|=2a+|PF2|=8+5=1315.已知双曲线的一个焦点与抛物线的焦点重合,且其渐近线的方程为,则该双曲线的标准方程为A.B.C.D.【答案】C【解析】由题可知双曲线的一个焦点坐标是(0,5),可设双曲线方程为,利用表示坐标,建立方程,解方程即可.【考点】(1)共渐近线的双曲线方程;(2)抛物线的几何性质.16.设F是双曲线的右焦点,双曲线两渐近线分另。
双曲线及抛物线测试(人教A版)一、单选题(共10道,每道10分)1.以椭圆的焦点为顶点,顶点为焦点的双曲线方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:双曲线的标准方程2.已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:双曲线的标准方程3.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:双曲线的标准方程4.以双曲线的左焦点为焦点,顶点在原点的抛物线方程是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:双曲线的标准方程5.已知抛物线的准线与双曲线相交于两点,点是抛物线的焦点,若双曲线的一条渐近线方程是,且△是直角三角形,则双曲线的标准方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:双曲线的标准方程6.抛物线的准线与双曲线的两条渐近线所围成的三角形的面积等于( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:双曲线的标准方程7.已知是双曲线和椭圆共同的焦点,若是两条曲线的一个交点,则( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:双曲线的定义8.抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,当△为等边三角形时,其面积为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:抛物线的标准方程9.顶点在原点,焦点在轴上的抛物线被直线截得的弦长是,则抛物线的方程是( )A.或B.C.或D.答案:A解题思路:试题难度:三颗星知识点:直线与圆锥曲线的综合问题10.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若,且,则抛物线的方程为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:直线与圆锥曲线的综合问题。
三:双曲线、抛物线精选题型一 双曲线的定义 1;设P 是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线的左、右焦点.若,则( )A .或B .6C .7D .9 1解析:双曲线渐近线方程为y =,由已知渐近线为, ,.,.故选C .2.设P 为双曲线上的一点12F F 、是该双曲线的两个焦点,若12:3:2PF PF =,则△12P F F 的面积为( ) A .B .12C .D .242解析: ① 又② 由①、②解得直角三角形,故选B .题型二 双曲线的标准方程 3;已知双曲线C 与双曲线-=1有公共焦点,且过点(3,2).求双曲线C 的方程.3解法一:设双曲线方程为-=1.由题意易求c =2.19222=-yax 023=-y x 1F 2F 3||1=PF =||2PF 15 19222=-yax x a3±023=-y x 122,||||||4a PF PF ∴=±∴-=||4||12PF PF +±=∴12||3,||0PF PF => 7||2=∴PF 11222=-yx 363122:3||:||,13,12,121====PF PF c b a 由,22||||21==-a PF PF .4||,6||21==PF PF ,52||,52||||2212221==+F F PF PF 为21F PF ∴.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 162x42y222ax 22by 5又双曲线过点(3,2),∴-=1.又∵a 2+b 2=(2)2,∴a 2=12,b 2=8.故所求双曲线的方程为-=1. 解法二:设双曲线方程为-=1,将点(3,2)代入得k =4,所以双曲线方程为-=1.4.已知点(34)P -,是双曲线22221(00)x y a b ab-=>>,渐近线上的一点,E F,是左、右两个焦 点,若0EP FP ⋅=,则双曲线方程为( ) A .22134xy-=B .22143xy-=C .221916xy-=D .221169xy-=4.C解析:不妨设,于是有.于是.排除A ,B .又由D 中双曲线的渐近线方程为,点不在其上,排除D .故选C . 5.已知双曲线,右准线方程为.(1)求双曲线C 的方程;(2)已知直线与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆上,求m 的值.5.解:(1)由题意,得,解得.∴,∴所求双曲线的方程为.222)23(a24b5122x82yk x-162ky+422122x82y()(),0,,0E c F c -()()23,43,49160EP FP c c c ⋅=+-⋅--=-+=225c =34y x=±P 2222:1(0,0)x y C a b ab-=>>3x =0x y m -+=225x y +=2333a c c a⎧=⎪⎪⎨⎪=⎪⎩1,3a c ==2222b c a =-=C 2212yx -=(2)设A 、B 两点的坐标分别为,线段AB 的中点为.由得(判别式),∴.∵点在圆上,∴,∴. 题型三 双曲线的几何性质 6;设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为( ) A .B .5C .D .6解析:双曲线的一条渐近线为,由方程组,消去y ,得, 因为该方程有唯一解,所以△=.所以,.故选D .7;已知双曲线的右焦点为,过且斜率为的直线交于两点,若4AF FB =,则的离心率为( )A.B .C .D .7 解析:设双曲线的右准线为,过分 别作于,于, ,由直线AB,知直线AB的倾斜角为 . 由双曲线的第二定义有.()()1122,,,x y x y ()00,M x y 22120y x x y m ⎧-=⎪⎨⎪++=⎩22220x mx m ---=0∆>12000,22x x x m y x m m+===+=()00,M x y 225x y +=()2225m m +=1m =±12222=-by ax 21y x =+4525512222=-by ax x a b y =21b y x ay x ⎧=⎪⎨⎪=+⎩210b x x a-+=2()40ba-=2b a=2221()5c a b b e aaa+===+=()222210,0x yC a b a b-=>>:F F C A B 、C 6575589522221x yC a b-=:l A B 、A M l ⊥M B N l ⊥N BD AM D ⊥于16060,||||2B A D A D A B ︒∴∠=︒=1||||||(||||)A M B N A D A F F B e-==-11||(||||)22A B A F F B ==+又.故选A .8;已知双曲线的左,右焦点分别为,点P 在双曲线的右支上,且,则此双曲线的离心率e 的最大值为___________.解法一:由定义,知,又已知,解得,.在中,由余弦定理,得.要求的最大值,即求的最小值,当时,解得.即的最大值为.解法二:,双曲线上存在一点P 使,等价于.解法三:设,由焦半径公式得. ∵,∴,∴,∵,∴,∴的最大值为.9.若双曲线的焦点到渐近线的距离等于实轴长,则双曲线的离 心率为( ) A . B . C .D .选c15643||||25AF FB FB FB e e =∴⋅=∴=22221,(0,0)x y a b ab-=>>12,F F 12||4||PF PF =12||||2PF PF a -=12||4||PF PF =183PF a =223PF a =12P F F ∆2222218981732382494964cos eaa c aa PF F -=⋅⋅-+=∠e 21cos PF F ∠1cos 21-=∠PF F 53e =e 53ac a PF a PF PF a PF PF -+≤+=+=21||21||||2||||2222112||4||PF PF =35,421≤∴≥-+e ac a ),(y x P a ex PF a ex PF -=+=21,214PF PF =)(4)(a ex a ex -=+xa e 35=ax≥35≤e e 53)0,0(12222>>=-b a by ax 235210.过双曲线22221(00),x y a b ab-=>>的左焦点且垂直于x 轴的直线与双曲线相交于 ,M N 两点,以M N 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率 为 .211.已知双曲线2213yx-=的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则12PA PF ⋅最小值为 .-212(2010浙江)设F 1,F 2分别为双曲线22221(00),x y a b ab-=>>的左右焦点,若在双曲线的右支上存在点P ,满足PF 2=F 1F 2,且F 2到直线PF 1的距离等于双曲线的实轴长,则双曲线的渐进线方程为( )A.3x ±4y=0B.3x ±5y=0C.4x ±3y=0D.5x ±4y=013(2009辽宁)F 是双曲线112422=-yx的左焦点,A (1,4),P 是双曲线右支上的动点,则PA+PF 的最小值是 。
双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。
高三数学双曲线试题答案及解析1.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A.B.2C.4D.8【答案】C【解析】设C:-=1.∵抛物线y2=16x的准线为x=-4,联立-=1和x=-4得A(-4,),B(-4,-),∴|AB|=2=4,∴a=2,∴2a=4.∴C的实轴长为4.2.已知双曲线左、右焦点分别为,若双曲线右支上存在点P 使得,则该双曲线离心率的取值范围为()A.(0,)B.(,1)C.D.(,)【答案】【解析】由已知及正弦定理知,即.设点的横坐标为,则,所以,,,即,解得,选.【考点】双曲线的几何性质,正弦定理,双曲线的第二定义.3.如图,已知双曲线的左、右焦点分别为,P是双曲线右支上的一点,轴交于点A,的内切圆在上的切点为Q,若,则双曲线的离心率是A.3B.2C.D.【答案】B【解析】设,由图形的对称性及圆的切线的性质得,因为,所以,所以,所以又,所以,,所以故选B.【考点】1、双曲线的标准方程;2、双曲线的简单几何性质;3、圆的切线的性质.4. (2014·咸宁模拟)双曲线-=1的渐近线与圆x2+(y-2)2=1相切,则双曲线离心率为() A.B.C.2D.3【答案】C【解析】因为双曲线-=1(a>0,b>0)的渐近线为bx±ay=0,依题意,直线bx±ay=0与圆x2+(y-2)2=1相切,设圆心(0,2)到直线bx±ay=0的距离为d,则d===1,所以双曲线离心率e==2.5.双曲线-y2=1的顶点到其渐近线的距离等于________.【答案】【解析】由-y2=1知顶点(2,0),渐近线x±2y=0,∴顶点到渐近线的距离d==.6.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的离心率为( )A.2B.C.D.【答案】D【解析】双曲线焦点到渐近线的距离为,即,又,代入得,解得,即,故选.【考点】双曲线的标准方程与几何性质.7.已知,则双曲线:与:的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【答案】D【解析】双曲线的离心率是,双曲线的离心率是,故选D8.已知双曲线的两个焦点分别为,以线段直径的圆与双曲线渐近线的一个交点为.则此双曲线的方程为A.B.C.D.【答案】A【解析】由题意,,∴①,又双曲线的渐近线为,因此②,则①②解得,∴双曲线方程为,选A.【考点】双曲线的标准方程与性质.9.在平面直角坐标系中,定点,两动点在双曲线的右支上,则的最小值是()A.B.C.D.【答案】D【解析】由图可知,当直线MA、MB与双曲线相切时,∠AMB最大,此时最小,设过点M的双曲线切线方程为:代入整理得,,则△==0,解得=,即=,∴==,故选D.【考点】1.直线与双曲线的位置关系;2.二倍角公式;3.数形结合思想;4.转化与化归思想10.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )A.B.C.D.【答案】A【解析】在直角三角形中,设则,因此离心率为【考点】双曲线定义11.已知双曲线C1:=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为________.【答案】x2=16y【解析】∵双曲线C1:=1(a>0,b>0)的离心率为2,∴=2,∴b=a,∴双曲线的渐近线方程为x±y=0,∴抛物线C2:x2=2py(p>0)的焦点到双曲线的渐近线的距离为=2,∴p=8.∴所求的抛物线方程为x2=16y.12.已知双曲线C:=1的焦距为10,P(2,1)在C的渐近线上,则C的方程为________.【答案】=1【解析】∵=1的焦距为10,∴c=5=.①又双曲线渐近线方程为y=±x,且P(2,1)在渐近线上,∴=1,即a=2b.②由①②解得a=2,b=.=113.根据下列条件,求双曲线方程.(1)与双曲线=1有共同的渐近线,且过点(-3,2);(2)与双曲线=1有公共焦点,且过点(3,2).【答案】(1)=1.(2)=1【解析】解法1:(1)设双曲线的方程为=1,由题意,得解得a2=,b2=4.所以双曲线的方程为=1.(2)设双曲线方程为=1.由题意易求得c=2.又双曲线过点(3,2),∴=1.又∵a2+b2=(2)2,∴a2=12,b2=8.故所求双曲线的方程为=1.解法2:(1)设所求双曲线方程为=λ(λ≠0),将点(-3,2)代入得λ=,所以双曲线方程为=.(2)设双曲线方程为=1,将点(3,2)代入得k=4,所以双曲线方程为=1.14.已知双曲线-=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为()A.2B.2C.4D.4【答案】B【解析】双曲线左顶点为A(-a,0),1渐近线为y=±x,抛物线y2=2px(p>0)焦点为F(,0),准线为直线x=-.由题意知-=-2,∴p=4,由题意知2+a=4,∴a=2.∴双曲线渐近线y=±x中与准线x=-交于(-2,-1)的渐近线为y=x,∴-1=×(-2),∴b=1.∴c2=a2+b2=5,∴c=,∴2c=2.故选B.15.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为 .【答案】 -=1【解析】由双曲线-=1(a>0,b>0)的一条渐近线方程为y=x得=,∴b= a.∵抛物线y2=16x的焦点为F(4,0),∴c=4.又∵c2=a2+b2,∴16=a2+(a)2,∴a2=4,b2=12.∴所求双曲线的方程为-=1.16.已知抛物线y2=8x的准线过双曲线-=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.【答案】x2-=1【解析】由y2=8x准线为x=-2.则双曲线中c=2,==2,a=1,b=.所以双曲线方程为x2-=1.17.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为()(A)-=1 (B)-=1(C)-=1 (D)-=1【答案】B==1,【解析】∵kAB∴直线AB的方程为y=x-3.由于双曲线的焦点为F(3,0),∴c=3,c2=9.设双曲线的标准方程为-=1(a>0,b>0), 则-=1.整理,得(b2-a2)x2+6a2x-9a2-a2b2=0.设A(x1,y1),B(x2,y2),则x1+x2==2×(-12),∴a2=-4a2+4b2,∴5a2=4b2.又a2+b2=9,∴a2=4,b2=5.∴双曲线E的方程为-=1.故选B.18.若双曲线-=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线x=y2的焦点分成3∶2的两段,则此双曲线的离心率为()A.B.C.D.【答案】D【解析】由已知得F1(-c,0),F2(c,0),抛物线x=y2,即y2=2bx的焦点F(,0),依题意=.即=,得:5b=2c⇒25b2=4c2,又b2=c2-a2,∴25(c2-a2)=4c2,解得c= a.故双曲线的离心率为=.19.若双曲线-=1的左焦点与抛物线y2=-8x的焦点重合,则m的值为()A.3B.4C.5D.6【答案】A【解析】【思路点拨】实数m(m-2)>0还不足以确定m的值,还要确定抛物线的焦点(双曲线的左焦点).解:抛物线y2=-8x的焦点(-2,0)也是双曲线-=1的左焦点,则c=2,a2=m,b2=m-2,m+m-2=4即m=3.20.如图,中心均为原点O的双曲线与椭圆有公共焦点,M, N是双曲线的两顶点,若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.【答案】B【解析】设双曲线的方程为-=1(a1>0,b1>0),椭圆的方程为+=1(a2>0,b2>0),由于M,O,N将椭圆长轴四等分,所以a2=2a1,又e1=,e2=,所以==2.21.P(x0,y)(x≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率.(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.【答案】(1)(2) λ=0或λ=-4【解析】【思路点拨】(1)代入P点坐标,利用斜率之积为列方程求解.(2)联立方程,设出A,B,的坐标,代入=λ+求解.解:(1)由点P(x0,y)(x≠±a)在双曲线-=1上,有-=1.由题意又有·=,可得a2=5b2,c2=a2+b2=6b2,则e==.(2)联立方程得得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2),则设=(x3,y3),=λ+,即又C为双曲线E上一点,即-5=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2,化简得:λ2(-5)+(-5)+2λ(x1x2-5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线E上,所以-5=5b2,-5=5b2.又x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,得:λ2+4λ=0,解出λ=0或λ=-4.22.双曲线的离心率为()A.B.C.D.【答案】B.【解析】把双曲线的方程化为标准形式:.故选B.【考点】双曲线的简单的几何性质.23.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为________.【答案】-2【解析】由题可知A1(-1,0),F2(2,0),设P(x,y)(x≥1),则=(-1-x,-y),=(2-x,-y),=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5,∵x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,∴当x=1时,取最小值-2.24.点到双曲线的渐近线的距离为______________.【答案】【解析】双曲线的渐近线方程为:,点到渐近线的距离.【考点】双曲线的标准方程.25.已知双曲线=1(a>0,b>0)的渐近线方程为y=±x,则它的离心率为________.【答案】2【解析】由题意,得e====226.若双曲线=1(a>0,b>0)与直线y=x无交点,则离心率e的取值范围是________.【答案】(1,2]【解析】因为双曲线的渐近线为y=±x,要使直线y=x与双曲线无交点,则直线y=x应在两渐近线之间,所以有≤,即b≤a,所以b2≤3a2,c2-a2≤3a2,即c2≤4a2,e2≤4,所以1<e≤2.27.P为双曲线=1的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则PM-PN的最大值为________.【答案】9【解析】设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时PM-PN=(PF1+2)-(PF2-1)=6+3=928.双曲线=1(a>0,b>0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e的取值范围是________.【答案】(1,)【解析】双曲线=1的一条渐近线为y=x,点(1,2)在该直线的上方,由线性规划知识,知:2>,所以e2=1+2<5,故e∈(1,).29.已知双曲线C:=1(a>0,b>0)的右顶点、右焦点分别为A、F,它的左准线与x轴的交点为B,若A是线段BF的中点,则双曲线C的离心率为________.【答案】+1【解析】由题意知:B,A(a,0),F(c,0),则2a=c-,即e2-2e-1=0,解得e=+1.30.若双曲线=1(a>0,b>0)与直线y=x无交点,则离心率e的取值范围是().A.(1,2)B.(1,2]C.(1,)D.(1,]【答案】B【解析】因为双曲线的渐近线为y=±x,要使直线y=x与双曲线无交点,则直线y=x应在两渐近线之间,所以有≤,即b≤a,所以b2≤3a2,c2-a2≤3a2,即c2≤4a2,e2≤4,所以1<e≤2.31.已知双曲线=1(a>0,b>0)的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为().A.5x2-y2=1B.=1C.=1D.5x2-y2=1【答案】D【解析】由于抛物线y2=4x的焦点为F(1,0),即c=1,又e==,可得a=,结合条件有a2+b2=c2=1,可得b2=,又焦点在x轴上,则所求的双曲线的方程为5x2-y2=132.抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=().A.B.C.D.【答案】D【解析】抛物线C1:y=x2的标准方程为x2=2py,其焦点为F;双曲线C2:-y2=1的右焦点F′为(2,0),其渐近线方程为y=±x.由y′=x,所以x=,得x=p,所以点M的坐标为.由点F,F′,M三点共线可求p=.33.双曲线=1(m>0)的离心率为,则m等于________.【答案】9【解析】由题意得c=,所以=,解得m=9.34.分别是双曲线的左右焦点,是虚轴的端点,直线与双曲线的两条渐近线分别交于两点,线段的垂直平分线与轴交于点,若,则双曲线的离心率为_________.【答案】【解析】直线的方程为,由得:;由得:,的中点为.据题意得,所以.【考点】直线与圆锥曲线.35.已知双曲线的渐近线方程为y=±x,焦点坐标为(-4,0),(4,0),则双曲线方程为().A.=1B.=1C.=1D.=1【答案】D【解析】双曲线的渐近线方程为y=±x,焦点在x轴上.设双曲线方程为x2-=λ(λ≠0),即=1,则a2=λ,b2=3λ,∵焦点坐标为(-4,0),(4,0),∴c=4,∴c2=a2+b2=4λ=16,解得λ=4,∴双曲线方程为=136.已知双曲线的一条渐近线方程为,则该双曲线的离心率为.【答案】【解析】根据双曲线的渐近线的方程知即,所以此双曲线的离心率.【考点】双曲线的标准方程、渐近线方程和离心率.37.已知双曲线,过其右焦点作圆的两条切线,切点记作,双曲线的右顶点为,,则双曲线的离心率为 .【答案】【解析】∵,∴,而∵,∴,∴,∴,∴,在中,,,,即.【考点】1.平面几何中角度的换算;2.双曲线的离心率.38.点P是双曲线左支上的一点,其右焦点为,若为线段的中点, 且到坐标原点的距离为,则双曲线的离心率的取值范围是 ( )A.B.C.D.【答案】B【解析】设左焦点为,则,设,则有,即,由定义有:,∴,由得.【考点】1.双曲线的定义;2.焦点三角形求离心率的方法.39.设双曲线的左、右焦点分别为是双曲线渐近线上的一点,,原点到直线的距离为,则渐近线的斜率为()A.或B.或C.1或D.或【答案】D【解析】如图所示,,又即,即,所以渐近线的斜率为或.【考点】双曲线的定义、渐近线等基础知识.40.若抛物线的焦点与双曲线的右焦点重合,则的值为.【答案】6【解析】双曲线的右焦点是抛物线的焦点,所以,,.【考点】双曲线的焦点.41.已知实数,,构成一个等比数列,则圆锥曲线的离心率为( ) A.B.C.D.【答案】B【解析】,,构成一个等比数列,双曲线为,【考点】等比数列及双曲线性质点评:若成等比数列,则,在双曲线中有,离心率42.设双曲线的焦点为,则该双曲线的渐近线方程是()A.B.C.D.【答案】A【解析】因为双曲线双曲线的焦点为,所以,又,所以,由得所求选A.【考点】双曲线的性质点评:主要是考查了双曲线的渐近线方程的求解,属于基础题。
1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。
5 5 13
双曲线及抛物线(作业)
例 1: 已知双曲线 x 4 y 2 - = 1 的右焦点与抛物线 y 2
b
2 = 12x 的焦点
重合,则该双曲线的焦点到其渐近线的距离等于( )
A . 【思路分析】
B . 4 C.3
D .5
先求出抛物线的焦点坐标,代入求出双曲线的渐近线方程,然后利用点到直线的距离公式求解. 【过程示范】
∵抛物线 y 2 = 12x 的焦点坐标为(3,0) ,
∴双曲线 x 4 y 2 - = 1的右焦点坐标为(3,0) ,即 c =3, b
2
∴ 4 + b 2 = 9 ,即b = ,
∴双曲线的渐近线方程为 y = ±
5
x ,即 5x ± 2 y = 0 ,
2
∴双曲线的焦点到其渐近线的距离d =
| 3⨯ 3
5 |
= .故选 A .
x 2 y 2
例 2: 如图, F 1 , F 2 是双曲线 C : a 2 - b
2 = 1(a > 0,b > 0) 的左、
右焦点,过点 F 1 的直线与C 的左、右两支分别交于A ,B 两点.若
| AB |:| BF 2 |:| AF 2 |= 3 : 4 : 5 ,则双曲线的离心率为(
)
A. B . 【思路分析】
C .2
D .
利用三角形的边长比例关系,研究三角形的性质,再结合双曲线的定义,求出实轴长与焦距的比例关系.
设| AB |= 3t ,则| BF 2 |= 4t ,| AF 2 |= 5t ,可得△ ABF 2 是以 B 为直角顶点的直角三角形;
5 2
15 3
2 2
13 根据双曲线的定义,得| AF 2 | - | AF 1 |=| BF 1 | - | BF 2 | , 根据| BF 1 |=| AB | + | AF 1 | ,得
5t - | AF 1 |=| AF 1 | +3t - 4t ,解得| AF 1 |= 3t , ∴| AF 2 | - | AF 1 |= 2t = 2a ,即a = t , ∵∠ F 1BF 2 = 90︒ ,
∴| F 1F 2 |
= = 2 13t ,即c = 13t , ∴离心率e = c
= .故选 A .
a
例 3: 过抛物线 y 2 = 2 px ( p > 0) 的焦点 F 且垂直于对称轴的直线
交抛物线于 A ,B 两点,若线段 AB 的长为 8,则 p 的值为
.
【思路分析】
利用抛物线的几何定义,将抛物线上的点到焦点的距离转化为到准线的距离. 【过程示范】如图所示:
∵AB ⊥OF ,| AB |= 8 , ∴| AF |= 4 ,
∴点 A 到准线 x = - p
的距离d = 4 ,
2 ∵点 A 到准线 x = - p
的距离为 p ,
2
∴ p = 4 .
| BF |2 + | BF |2 1 2
5 13 y - = - = - =
- =
- = - = - =
- =
y 1. 求适合下列条件的双曲线的标准方程:
(1) 焦点在 x 轴上, a = 2 ,经过点 A (-5,2) ; (2) 焦距为2 ,渐近线为2x ± 3y = 0 .
2. 双曲线的实轴长与虚轴长之和等于其焦距的 倍,且一个顶
点的坐标为(0,2) ,则双曲线的标准方程为(
)
x 2 y 2 A . y 2 x 2 B . 4 4
y 2 x 2
C. 1 4 8 4 4
x 2 y 2
D. 1 8 4
3. 过点(2,- 2) 且与 ( )
x 2 - 2
2
= 1 有公共渐近线的双曲线的方程是
y 2 x 2 A . x 2 y 2 B . 2 4 y 2 x 2
C. 1 4 2 4 2
x 2 y 2
D. 1 2 4
4. 双曲线
x 2 - 2
4
= 1的顶点到其渐近线的距离为( )
A. 2 5
B. 4 5
C. 2 5 5
D. 4 5 5
2 1 1 1 1
2
x 2 y 2
5. 设 F 1 , F 2 是双曲线 C : a 2 - b
2 = 1(a > 0,b > 0) 的左、右焦点,
若在 C 上存在一点 P ,使 PF 2 ⊥ F 1F 2 ,且∠PF 1F 2 = 30︒ ,则
C 的离心率为
.
2
6. 已知点 P 为双曲线 x - y = 1右支上的一点,M ,N 分别是圆
9 16
(x + 5)2 + y 2 = 4 和(x - 5)2 + y 2 = 1 上的点,则| PM | - | PN | 的最大值为
.
x 2 y 2
7. 如图,F 1 ,F 2 是双曲线 C : a 2 - b
2 = 1(a > 0,b > 0) 的左、右焦
点,过 F 1 的直线与 C 的左、右两支分别交于 A ,B 两点.若
△ ABF 2 是等边三角形,则双曲线 C 的离心率为
.
8.若直线y =kx -1 与双曲线x2 -y2 = 4 没有公共点,则k 的取值
范围是.
9.点M(5,3)到抛物线y=ax2的准线的距离为6,那么抛物线的
标准方程是()
A.x2 =12 y
B.x2 =1
12
y 或x2 =-
1
y
36
C.x2 =-36 y D.x2 =12 y或x2 =-36 y
10.已知抛物线y2 = 2 px( p > 0) 的准线与圆x2 +y2 - 6x - 7 = 0 相
切,则p 的值为()
A.1
2
A.1C.2 D.4
11.已知点M 为抛物线y2=2x上的一个动点,则点M 到点(0,2)的
距离与点M 到该抛物线准线的距离之和的最小值为()
A.17
2 B.
3 C.D.9 2
12.已知直线l 与抛物线y2 = 8x 交于A,B 两点,且直线l 经过抛
物线的焦点F,A 点的坐标为(8,8),求线段AB 的中点到准线的距离.
5
13.如图,过抛物线y2 = 2 px( p > 0) 的焦点F 的直线l 交抛物线于
点A,B,交其准线于点C,若| BC |= 2 | BF | ,| AF |= 3 ,求此抛物线的方程.
3y y
x y
【参考答案】
1.(1)x 2 2
-=1;(2) 2 2
-=1或-
x2
= 20 16 9 4 9 4
2.B 3.A 4.C
5.6.9 7.8.k <-
5
或k >
5 2 2
9.D 10.C 11.A
12.25 4
13.y2 = 3x 7
1
2。