高三阶段性考试
- 格式:doc
- 大小:74.50 KB
- 文档页数:8
山东名校考试联盟2023年12月高三年级阶段性检测数学试题参考答案与评分细则一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。
三、填空题:本题共4小题,每小题5分,共20分。
13.35; 14.3281; 15.6−; 16.2a . 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
17.【解析】(1)方法一:因为等差数列{}n a 中,2616a a +=,所以48a =, …………………………………2分 又因为15355()5(2)3022a a a S +===,所以36a =, …………………………………4分 所以122a d ==,,2n a n =. …………………………………5分 方法二:由,,得 …………………………………2分 解得 …………………………………4分 所以 ………………………………5分 (2)由(1)得2n S n n =+, ………………………………7分所以ABC △. ……………………… 12分 【评分说明】 1.方法一中没有标注t 的取值范围,不扣分;2.方法二中没有指出等号成立的条件扣一分.20.【解析】(1)连接1AB ,设11A B AB M =,则1A B 中点为M ,且1AM A B ⊥,………………1分 因为平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,AM ⊂平面11ABB A ,所以AM ⊥平面1A BC ,因为BC ⊂平面1A BC ,AM BC ⊥,…………………2分又在直三棱柱111ABC A B C −,1BB ⊥面ABC ,BC ⊂平面ABC ,所以1BB BC ⊥, …………………………………3分因为11AM BB B =,AM ,1BB ⊂平面11ABB A , 所以BC ⊥平面11ABB A ,………………………………4分又因为AB ⊂平面11ABB A ,所以AB BC ⊥; …………………………………5分(2)由(1)得AM ⊥平面1A BC ,则直线AC 与平面1A BC 所成的角为6ACM π∠=,在正方形11ABB A 中,2,2AB AM AC BC =====,…………… 7分建立以B 为原点的空间直角坐标系B xyz −,如图所示:(0,2,0)A ,(2,0,0)C ,(0,1,1)M , ………………………8分 设11(2,2,2)A E A C λλλλ==−−,[0,1]λ∈,则11(2,22,22)BE BA A E λλλ=+=−−,又(0,2,0)BA =设平面ABE 的法向量为(,,)n x y z =,则20(1)(1)0n BA y n BE x y z λλλ⎧⋅==⎪⎨⋅=+−+−=⎪⎩,取1x =,则0y =,1z λλ=−,故曲线()n y f x =在2x =−处的切线斜率为12n −.………………………………………2分(2)因为()22e −x f x k 对任意x ∈R 恒成立,则()22122e e −−+−=x x x x f x k对任意x ∈R 恒成立. ……………………………………3分 令212()e −−+=x x x g x ,则()()42e −'=xx x g x , 故()g x 在(,0]−∞上单调递减,在(0,4)上单调递增,在[4,)+∞上单调递减 …………4分 又(0)1g =−,且当4x >时, ()0g x >, ………………………………………5分 故()g x 的最小值为(0)1g =−,故1k −,即k 的取值范围是(,1]−∞−. ………………………………………6分(3) ()1111n f n '−=−−−−=−.当1x ≠−时,()()()()()211111.11n n n n n x x f x x x x x x −−−−−'=−+−++−=−=−−+………………7分因此当n 为奇数时,()2311231n n n x x x x f x x n n −=−+−++−−.此时1,1,()1, 1.n n x x f x x n x ⎧+−≠−⎪'=+⎨⎪−=−⎩ 则()0n f x '<,所以()n f x 单调递减. 此时(0)10n f =>.1()1f x x =− 显然有唯一零点,无最小值.当2n 时,()2312222212231−=−+−++−−n nn f n n()2123212220.321−⎛⎫⎛⎫=−+−++−< ⎪ ⎪−⎝⎭⎝⎭n n n n 且当2x >时,()()()231211231311,321n n n n x x x x f x x n n x x n x x x x n n −−⎛⎫⎛⎫=−+−++− ⎪ ⎪−⎝⎭⎝⎭⎛⎫⎛⎫=−+−++−<− ⎪ ⎪−⎝⎭⎝⎭由此可知此时()n f x 不存在最小值.从而当n 为奇数时,()n f x 有唯一零点,无最小值.………………………………… 8分当2()n k k *=∈N 为偶数时,()2311231n nn x x x x f x x n n−=−+−+−+−, 此时1,1,()1, 1.n n x x f x x n x ⎧−≠−⎪'=+⎨⎪−=−⎩则()n f x 在(,1]−∞上单调递减,在(1,)+∞上单调递增,故()n f x 的最小值为()()111111110,2321n f n n n⎛⎫⎛⎫=−+−++−+> ⎪ ⎪−−⎝⎭⎝⎭ 即()(1)0n n f x f >,当n 为偶数时,()n f x 没有零点.………………………………… 9分在不等式()ln 1(0)1x x x x +>>+中令1x n =可得11ln 1n n n +>+, 分别取,1,,21n k k k =+−可知 ()2111111112342121111111223224211111112322111122−=−+−++−−⎛⎫⎛⎫=++++−+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=++++−+++ ⎪ ⎪⎝⎭⎝⎭=+++++k f k kk k k k k k k……………………………10分 1222ln ln ln ln ln 2,121++<+++==+−k k k k k k k k…………………………11分 即()211ln 2k m f =>−.从而当n 为偶数时,()n f x 没有零点,存在最小值m ,且1ln 2m >−. ……………… 12分综上所述,当n 为奇数时,()n f x 有唯一零点,无最小值;当n 为偶数时,()n f x 没有零点,存在最小值m ,且1ln 2m >−.。
2024届四川省成都市高三阶段性调研考试试题一、单选题 (共7题)第(1)题图为核电站的反应堆示意图,下列说法正确的是( )A.水泥防护层主要起保温作用B.镉棒的作用是使快中子变成慢中子C.反应堆放出的热量可直接全部转化为电能D.核反应堆中的核废料需要装入特定的容器深埋地下第(2)题某物理兴趣小组的两位同学对波的干涉特别感兴趣,利用课余时间进行了如下实验探究。
两位同学以相同频率分别在两端甩动水平细绳,形成两列简谐横波甲、乙,已知甲、乙两波源相距8m,甲、乙两波的波速均为,完成一次全振动的时间均为2s,距离乙波源3m的O点处串有一颗红色珠子。
某一时刻的波形图如图所示,从该时刻开始计时。
则下列说法正确的是( )A.两列波的波长均为0.25mB.甩动细绳6s后,红色珠子开始向左传播C.该时刻细绳两端的振动情况相反D.当两列波在O点相遇时,该点的振动加强第(3)题某均匀介质中两持续振动的振源P、Q分别位于x轴上和处,时刻两振源同时开始振动,时刻在x轴上第一次形成如图所示的波形。
则下列说法正确的是( )A.振源P的振动方程为B.振源Q起振方向沿y轴正方向C.两列波在处相遇后,该质点的振动始终加强D.两列波在处相遇后,该质点的振动始终加强第(4)题质量为的物体在4个共点力作用下处于静止状态,其中最大的一个力大小为,最小的一个力大小为。
下列判断正确的是( )A.其他两个力的合力大小可能等于B.其他两个力的合力大小一定为或C.若保持其他力不变,只撤除,物体运动的加速度大小一定是D.若保持其他力不变,瞬间把的方向改变60°,物体由静止开始运动,在最初1秒内的位移大小是第(5)题医学影像诊断设备PET/CT是借助于示踪剂可以聚集到病变部位的特点来发现疾病。
示踪剂常利用同位素作示踪原子标记,其半衰期仅有20min。
可由小型回旋加速器输出的高速质子流轰击获得,下列说法正确的是( )A.用高速质子轰击,生成的同时释放出中子B.用高速质子轰击,生成的同时释放出粒子C.1g的经40min后,剩余的质量为0.75gD.将置于回旋加速器中,其半衰期可能发生变化第(6)题如图所示,一充电后的平行板电容器的两极板相距l.在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距l的平面.若两粒子间相互作用力可忽略,不计重力,则M∶m为( )A.3∶2B.2∶1C.5∶2D.3∶1第(7)题如图甲所示,在同一介质中,波源分别为与的频率相同的两列机械波在时刻同时起振。
河南省三门峡市2024-2025学年高三上学期11月阶段性考试数学试题一、单选题1.已知集合{}2log 2A x x =≤,{}24B x x =-<<,则A B = ()A .()2,2-B .()0,2C .()0,4D .(]0,42.“1x >”是“2x x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数2x y -=-与2x y =的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y=x 对称4.已知等比数列{}n a 的前n 项和为341,2n S S a a =-,且2415a a +=,则35a a +=()A .3B .5C .30D .455.如图,平行四边形ABCD 中,2,AE EB DF FC ==,若,CB a CE b == ,则AF =()A .1322a b+ B .3122a b-C .1322a b- D .1322a b -+ 6.关于x 的方程(1)(4)x x a --=有实数根12,x x ,且12x x <,则下列结论错误的是()A .当0a =时,121,4x x ==B .当0a >时,1214x x <<C .当0a >时,121,4x x <>D .当904a -<<时,122544x x <<7.已知角αβ,满足tan 2α=,2sin cos()sin βαβα=+,则tan β=()A .13B .17C .16D .28.在古巴比伦时期的数学泥版上,有许多三角形和梯形的分割问题,涉及到不同的割线.如图,梯形ABCD 中,//AB CD ,且CD a =,AB b =,EF 和GH 为平行于底的两条割线,其中EF 为中位线,GH 过对角线交点,则比较这两条割线可以直接证明的不等式为()A.)0,02a ba b +≥>>B .()20,0112a ba b a b+≤>>+C.)0,02a b a b +≤>>D.)220,0a b a b +≥>>二、多选题9.在实际应用中,通常用吸光度A 和透光率T 来衡量物体的透光性能,它们之间的换算公式为1lg A T=,下表为不同玻璃材料的透光率:玻璃材料材料1材料2材料3T0.70.80.9设材料1、材料2、材料3的吸光度分别为123,,A A A ,则下列结论正确的是()A .12A A >B .233A A >C .1322A A A +>D .231A A A +>10.已知非零向量,,a b c,则下列结论正确的是()A .若a c b c ⋅=⋅ ,则a b=B .若()0a b c ⋅= ,则b c⊥C .若()()a b a b +⊥-,则||||a b = D .向量()()a b c a c b ⋅-⋅ 与向量a垂直11.已知函数()cos sin f x x x x =-在区间(0,3π)内有两个零点12,x x ,则下列结论正确的是()A .当π0,2x ⎛⎫∈ ⎪⎝⎭时,tan x x>B .12πx x ->C .12sin 02x x +⎛⎫> ⎪⎝⎭D .1221sin sin 0x x x x +<三、填空题12.在ABC V 中,2cos 3C =,4AC =,3BC =,则cos B =13.已知二次函数()f x 从1到1x +∆的平均变化率为23x ∆+,请写出满足条件的一个二次函数的表达式()f x =.14.已知函数()11x x e f x e -=+,()()11g x f x =-+,()*12321n n a g g g g n N n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则数列{}n a 的通项公式为.四、解答题15.设函数()e xf x =,x ∈R .(1)求方程()()()22f x f x =+的实数解;(2)若不等式()22x b b f x +-≤对于一切x ∈R 都成立,求实数b 的取值范围.16.已知函数2()2sin cos f x x x x =+-R x ∈,且将函数()f x 的图象向左平移π(02ϕϕ<<个单位长度得到函数()g x 的图象.(1)求()f x 的最小正周期和单调递增区间;(2)若函数()g x 是奇函数,求ϕ的值;(3)若1cos 3ϕ=,当x θ=时函数()g x 取得最大值,求π12f θ⎛⎫+ ⎪⎝⎭的值.17.ABC V 中,内角A 、B 、C 的对边分别为a 、b 、c .(1)若sin sin sin sin cos21A B B C B ++=,3π4C =,求a b的值;(2)求证:()222sin sin A B a b c C--=.18.已知数列{}n a 的前n 项和为n S ,11a =,11nn S a n n+=--,*N n ∈.(1)求n S ;(2)令()11121n n n n n n n S S b na a n a a ++++=-+,证明:12313n b b b b ++++< .19.若函数()f x 对其定义域内任意()1212,x x x x ≠满足:当()()12f x f x =时,恒有12x x m =,其中常数m ,则称函数()f x 具有性质()V m .(1)函数1()2=+g x x x具有性质()V m ,求m .(2)设函数()()()1221()ln ,0h x x x h x h x x x =-=>>,(ⅰ)判断函数()h x 是否具有性质()V m ,若有,求出m ,若没有,说明理由;(ⅱ)证明:2122x x <.。
高三年级通用技术学科(答案在最后)一、选择题(本大题共12小题,每小题2分,共24分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.如图是希沃TeachingBar录摄终端,集成音频采集、视频采集和录播终端功能,一台设备即可完成录播教室部署。
下列说法中正确的是()A.可在城市、乡村、大山、小镇等多场景的校园教室中安装使用,体现了技术的复杂性B.20°倾角斜面,创新式隐藏设计摄像头,拒绝教室监视感,体现了技术对人的保护作用C.希沃TeachingBar录摄终端的研发是一项科学活动D.申请专利时可以按照以下步骤:提交申请步骤→受理阶段→初审阶段→实质审查阶段→申请公布阶段→授权阶段【答案】A【解析】2.如图所示的多功能课桌椅,椅子采用可折叠设计供学生午休。
下列关于该课桌椅的分析与评价中恰当的是()A.座椅展开后,学生可以平躺午休,实现了人机关系的高效目标B.座椅展开后的长度应考虑动态尺寸C.椅子可折叠,符合设计的技术规范原则D.可通过摇柄轻松调节桌面高度,符合设计的实用原则【答案】D【解析】3.如图所示为某榫卯连接的三个构件,在规划时,对于木材的纹理编排正确的是()A. B. C.D.【答案】B【解析】4.如图所示为一款脚踏式起重机构。
提臂上可放置重物,用力F踩踏踏板可驱动连杆1和连杆2,将提臂和重物抬升。
下列说法中正确的是()A.连杆1在提臂抬升时主要受压与受弯曲B.连杆2在提臂抬升时主要受弯曲C.连杆3在提臂抬升时提起过程中不受力D.提臂放置重物并被抬升时主要受拉【答案】B【解析】5.在通用技术实践课上,小明用厚度3m的钢板加工如图所示的零件,下列操作中不正确...的是()A.划线时,先划基准线,再冲眼、划圆,然后划轮廓线B.加工外凸圆弧时,根据划出的轮廓线进行锯割,然后用平锉锉削C.钻孔时要避免抬升进给手柄,工件用手虎钳夹紧D.正常锯割时,推拉节奏以20-40次/分钟为宜【答案】C【解析】6.小明准备在通用技术实践室用实木块制作一个如图所示的零件,下列关于该零件加工流程的分析中不合..理.的是()A.用实木块加工时,必须先刨削再画线B.使用双刃刀锯加工榫头时,横截木纹锯割采用锯齿较疏的面C.加工榫眼时,可以先在两端用手电钻钻孔,再进行凿削D.对外轮廓圆弧进行表面处理时,可以使用抛光研磨机【答案】B【解析】7.如图所示是某形体的三视图,图中存在的错误至少有()A.2处B.3处C.4处D.5处【答案】C【解析】8.如图a所示是一款渔场智能养鱼装置,该装置主要有水质检测、饲料投喂等功能。
注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题符合题目要求的.1. 已知集合{}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭则A B = ( )A. ()4,3-B. ()0,3C. ()3,0-D. ()4,0-【答案】B 【解析】【分析】先分别求出集合A B ,,再进行集合的交集运算【详解】由12816x <<解得43x -<<,∴{}43A x x =-<<,由250x x +>解得0x >或5x <-,所以{0B x =>或5}x <-,所以A B = (0,3)故选:B.2. 已知点()()()1,2,1,4,,1A B C x -,若A ,B ,C 三点共线,则x 的值是( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】利用向量共线的坐标表示即可得解.【详解】因为()()()1,2,1,4,,1A B C x -,所以()()2,2,1,1AB AC x =-=--,因为A ,B ,C 三点共线,则,AB AC共线,则()212(1)x -⨯-=⨯-,解得2x =.故选:B.3. “1x >”是“11x-<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】将11x -<化简,再根据充分必要条件关系判断.【详解】()1110101x x x x x x+-<⇔>⇔+>⇔<-或0x >,由1x >成立可以推出1x <-或0x >,但1x <-或0x >成立不能推出1x >,所以1x >是11x-<的充分不必要条件.故选:A.4. 若0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭,则a ,b ,c 的大小关系为( )A. a c b << B. c a b<< C. b c a<< D. c b a<<【答案】D 【解析】【分析】首先化解,a b ,再根据中间值1,以及幂函数的单调性比较大小,即可判断.【详解】00.1.11331a -⎛⎫= ⎪=⎭>⎝,01.10.51225b -⎛⎫=> ⎪⎝⎭⎛⎫= ⎪⎝⎭,()35log 0,12c =∈,0.1y x =在()0,∞+上单调递增,532>,所以a b >,所以a b c >>.故选:D5. 设m ,n 是不同的直线,,αβ为不同的平面,下列命题正确的是( )A. 若,,n m n αβαβ⊥⋂=⊥,则m α⊥.B. 若,//,//n m n m αβα= ,则//m β.C. 若,,//,//m n m n ααββÌÌ,则//αβ.D. 若//,,m n m n αβ⊥⊥,则//αβ.【答案】D 【解析】【分析】根据空间直线、平面间的位置关系判断.【详解】对于A ,直线m 与平面α可能平行、相交或直线m 在平面α内,故错误;对于B ,//m β或m β⊂,故错误;对于C ,平面α与平面β平行或相交,故错误;对于D ,//,,m n m α⊥则n α⊥,又n β⊥,所以//αβ,D 正确;故选:D .6. 若曲线1()ln f x x x=+在2x =处的切线的倾斜角为α,则()sin cos cos 1sin2αααα-=-( )A. 1712-B. 56-C. 175-D. 【答案】A 【解析】【分析】根据导数的几何意义先求出函数()f x 在2x =处的导数值,即可得到在2x =处切线的斜率,进而得到倾斜角α的正切值,再根据tan α求出题中式子的值.【详解】由题意得,211()f x x x'=-,所以411(2)241f '=-=,于是()f x 在2x =处切线的斜率为14,即1tan 4α=.又()22sin cos sin cos cos 1sin2cos (sin 2sin cos cos )ααααααααααα--=--+2sin cos 1cos (sin cos )cos (sin cos )αααααααα-==--222sin cos sin cos cos ααααα+=-,将原式分子分母同时除以2cos α得,2222sin cos tan 1sin cos cos tan 1ααααααα++=--,代入1tan 4α=可得最终答案为1712-.故选:A.7. 已知数列{}n a 的首项12025a =,前n 项和n S ,满足2n n S n a =,则2024a =( )A.12025B.12024C.11012D.11013【答案】C 【解析】【分析】根据2n n S n a =得到211(1)n n S n a --=-,两式相减得到221(1)n n n a n a n a -=--,求出n a 即可求解.【详解】因为2n n S n a =,所以211(1)(2)n n S n a n --=-≥,两式相减得221(1)n n n a n a n a -=--,所以11(2)1n n a n n a n --=≥+,所以1321221123121213121(1)n n n n a a a n n a a a n a n a n n -------⋅⋅⋅⋅=⋅⋅⋅⋅=++++L L ,所以12(2)(1)n a n a n n =≥+,所以4050(2)(1)n a n n n =≥+,所以202411012a =.故选:C.8. 已知1x 是函数()()2ln 1f x x x =---的零点,2x 是函数()2266g x x ax a =+--的零点,且满足1234x x -<,则实数a 的取值范围是( )A. )3,-+∞B. 253,8⎫-⎪⎭C. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ D. 7125,568⎫⎛-⎪⎝⎭【答案】B 【解析】【分析】利用导数研究函数的单调性可证明函数()f x 存在唯一零点,即12x =,可得()g x 在511,44⎛⎫ ⎪⎝⎭有零点,利用参变分离可求解.【详解】由()()2ln 1f x x x =---,1x >,可得()12111x x f x x --=-'-=,当12x <<时,()0f x '<,此时()f x 在()1,2单调递减;当2x >时,()0f x '>,此时()f x 在()2,+∞单调递增;又因为()20f =,所以函数()f x 存在唯一的零点,即12x =.因为122324x x x -=-<,解得2511,44x ⎛⎫∈ ⎪⎝⎭.即()2266g x x ax a =+--在511,44⎛⎫⎪⎝⎭上有零点,故方程2623x a x -=-在511,44⎛⎫⎪⎝⎭上有解,而263336(3)333x x x x x x -⎡⎤=---=-+-+⎢⎥---⎣⎦,因为511,44x ⎛⎫∈⎪⎝⎭,故713,44x ⎛⎫-∈ ⎪⎝⎭,故349(3)34x x ≤-+<-,所以25624a ≤<2538a -≤<故选:B.【点睛】方法点睛:对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间(),m n 上的题型,一般采取列不等式组(主要考虑判别式、对称轴、()(),f m f n 的符号)的方法解答.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在π0,2⎛⎫⎪⎝⎭为减函数的是( )A. ()cos f x x= B. ()1πsin 23f x x ⎛⎫=-⎪⎝⎭C. ()22cos sin f x x x=- D. ()πtan 4f x x ⎫⎛=-⎪⎝⎭【答案】ACD【解析】【分析】根据三角函数图象与性质,以及复合函数的单调性判断方法逐项判断即可.【详解】对于A ,()cos f x x =的最小正周期为π,当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()cos cos f x x x ==,根据余弦函数的单调性可知,此时函数单调递减,故A 正确;对于B ,()1πsin 23f x x ⎛⎫=- ⎪⎝⎭的最小正周期2πT=4π12=,故B 不正确;对于C ,()22cos sin f x x x =-cos 2x =,所以最小正周期2πT=π2=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()20,πx ∈,根据余弦函数的单调性可知,此时函数单调递减,故C 正确;对于D ,最小正周期πT=π1=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,πππ,444x ⎛⎫-∈- ⎪⎝⎭,由复合函数单调性判断方法可知,此时()πtan 4f x x ⎛⎫=- ⎪⎝⎭单调递减,故D 正确.故选:ACD.10. ABC V中,BC =BC 边上的中线2AD =,则下列说法正确的有( )A. 4AB AC +=B. AB AC ⋅为定值C. 2220AC AB +=D.BAD ∠的最大值为45︒【答案】ABD 【解析】【分析】由中线的性质结合向量的线性运算判断A 选项;由中线的性质和向量数量积的运算有22AB AC AD DB ⋅=- ,求值判断B 选项;C 选项,由πADB ADC ∠+∠=,结合余弦定理求22AC AB +的值;D 选项,ABD △中,余弦定理得22cos 4AB BAD AB+∠= ,结合均值不等式求解.【详解】A .24AB AC AD +==,故A 正确;的B .22()()()()422AB AC AD DB AD DC AD DB AD DB AD DB ⋅=+⋅+=+⋅-=-=-= ,故B 正确;C .πADB ADC ∠+∠= ,cos cos 0ADB ADC ∴∠+∠=,由余弦定理知,222222022AD BD AB AD CD AC AD BD AD CD+-+-+=⋅⋅0=,化简得2212AC AB +=,故C 错误;D .22cos 4AB BAD AB +∠==≥=AB =时等号成立,由于090BAD <∠< ,所以BAD ∠的最大值为45 ,故D 正确;故选:ABD .11. 在正方体1111ABCD A B C D -中,6AB =,,P Q 分别为11C D 和1DD 的中点,M 为线段1B C 上一动点,N 为空间中任意一点,则下列结论正确的有( )A. 直线1BD ⊥平面11AC DB. 异面直线AM 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C. 过点,,B P Q的截面周长为+D. 当AN BN ⊥时,三棱锥A NBC -体积最大时其外接球的体积为【答案】ACD 【解析】【分析】利用线面垂直的判定定理,结合正方体的性质可判断A 正确;由11A D B C 转化异面直线所成的角,在等边1AB C △中分析可知选项B 错误;找出截面图形,利用几何特征计算周长可得选项C 正确;确定三棱锥体积最大时点N 的位置,利用公式可求外接球的半径和体积,得到选项D 正确.【详解】A.∵11111111111,,AC B D AC B B B D B B B ⊥⊥= ,11B D ⊂平面11BDD B ,1BB ⊂平面11BDD B ,∴11A C ⊥平面11BDD B ,∵1BD ⊂平面11BDD B ,∴111A C BD ⊥,同理可证,11DC BD ⊥,∵1111A C DC C ⋂=,11AC ⊂平面11AC D ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,选项A 正确.B. 如图,连接1,AB AC ,由题意得,11A D B C ,11AB AC B C ===直线AM 与1A D 所成的角等于直线AM 与1B C 所成的角,在等边1AB C △中,当点M 与1,B C 两点重合时,直线AM 与1B C 所成的角为3π,当点M 与1B C 中点重合时,1AM BC ⊥,此时直线AM 与1B C 所成的角为2π,故直线AM 与1A D 所成角的取值范围是[,]32ππ,选项B 错误.C. 如图,作直线PQ 分别与直线1,CC CD 交于点,S T ,连接BS 与11B C 交于点E ,连接BT 与AD 交于点F ,则五边形BEPQF 即是截面.由题意得,1SPC △为等腰直角三角形,113PC SC ==,由1BB CS ∥得,1112BB B EC S CE==,∴114,2B E C E ==,∴BE =PE =,同理可得,BF QF ==,∵,P Q 分别为11C D 和1DD 的中点,∴PQ =,∴截面周长为+C 正确.D.当AN BN ⊥时,点N 的轨迹为以AB 为直径的球,球心为AB 中点,半径为3,三棱锥A NBC -的体积即为三棱锥N ABC -的体积,点N 到平面ABC 距离的最大值为球的半径,此时点N 在正方形11ABB A 的中心处,三棱锥A NBC -体积有最大值.由题意得,平面NAB ^平面ABC ,NAB △,ABC V 均为等腰直角三角形,NAB △的外接圆半径为132AB r ==,ABC V 的外接圆半径为22ACr ==,∴三棱锥A NBC -的外接球半径R ==,∴外接球体积为3344ππ33R =´=,选项D 正确.故选:ACD.【点睛】方法点睛:本题为立体几何综合问题,求三棱锥外接球半径方法为:(1)在三棱锥A BCD -中若有AB ⊥平面BCD ,设三棱锥外接球半径为R ,则2224h R r =+,其中r为底面BCD △的外接圆半径,h 为三棱锥的高即AB 的长.(2)在三棱锥A BCD -中若有平面ABC ⊥平面BCD ,设三棱锥外接球半径为R ,则2222124l R r r =+-,其中12,r r 分别为,ABC BCD 的外接圆半径,l 为,ABC BCD 公共边BC 的长.三、填空题:本题共3小题,每小题5分,共15分.12. 复数221iz =--(i 是虚数单位),则复数z 的模为________.【解析】【分析】利用复数除法运算化简,再由复数模的计算公式求解.【详解】()()()()21i 22221i 1i 1i 1i 1i z +=-=-=-+=---+,z ∴==.13. 在数列{a n }中,111,34n n a a a +==+,若对于任意的()*,235n n k a n ∈+≥-N 恒成立,则实数k 的最小值为______.【答案】427【解析】【分析】利用构造法分析得数列{}2n a +是等比数列,进而求得2n a +,从而将问题转化为353nn k -≥恒成立,令()()*253nn f n n -=∈N ,分析数列(){}f n 的最值,从而得解.【详解】由134n n a a +=+,得()1232n n a a ++=+,又12123a +=+=,故数列{}2n a +为首项为3,公比为3的等比数列,所以12333n n n a -+=⨯=,则不等式()235n k a n +≥-可化为353nn k -≥,令()()*353n n f n n -=∈N ,当1n =时,()0f n <;当2n ≥时,()0f n >;又()()1132351361333n n n n n nf n f n ++---+-=-=,则当2n =时,()()32f f >,当3n ≥时,()()1f n f n +<,所以()()333543327f n f ⨯-≤==,则427k ≥,即实数k的最小值为427.故答案为:427.14. 若定义在()0,+∞的函数()f x 满足()()()6f x y f x f y xy +=++,且有()3f n n ≥对n *∈N 恒成立,则81()i f i =∑的最小值为________.【答案】612【解析】【分析】由条件等式变形为()()()()222333f x y x y f x x f y y +-+=-+-,再构造函数()()23g x f x x =-,得到()()()g x y g x g y +=+,并迭代得到()()13g n n f =-⎡⎤⎣⎦,由此得到()()23133f n n f n n =+-≥⎡⎤⎣⎦,,并求和,利用放缩法,即可求解最小值.【详解】因为()()()6f x y f x f y xy +=++,所以()()()()222333f x y x y f x x f y y +-+=-+-,设()()23g x f x x =-,则()()()g x y g x g y +=+,因此()()()()()()()()11211221g n g n g g n g g g n g =-+=-++=-+()()()()()211321g n g ng n f ==+-==-⎡⎤⎣⎦ ,所以()()23133f n n f n n =+-≥⎡⎤⎣⎦,取1n =,得()13f ≥,所以()8111188822()3133612i i i i f i ii i f =====+-≥=⎡⎤⎣⎦∑∑∑∑,所以81()i f i =∑的最小值为612.故答案:612.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形ABCD中,已知4,120,AB BC ABC AC =∠=︒=(1)求ABC V 的面积;(2)若150,BCD AD ∠=︒=ADC ∠的大小.【答案】(1(2)60︒【解析】【分析】(1)由已知,设BC x =,则4AB x =,由余弦定理,可得1x =,利用三角形的面积公式即可求得ABC V 的面积;(2)在ABC V中,由正弦定理,可求得sin ACB ∠=,进而求得cos ACB ∠=,进而求得sin ACD ∠=ACD中,由正弦定理,求得sin ADC ∠=ADC ∠的大小.【小问1详解】由已知,设BC x =,则4AB x =,在ABC V 中,由余弦定理,2222cos AC AB BC AB BC ABC =+-⋅∠,为因为120,ABC AC ∠=︒=,所以22222116421x x x x =++=,解得1x =,所以1BC =,4AB =,所以11sin 4122ABC S AB BC ABC =⋅∠=⨯⨯= .【小问2详解】在ABC V 中,由正弦定理,sin sin ACB ABCAB AC ∠∠=,因为120,ABC AC ∠=︒=,4AB =,所以sin sin 4ABC ACB AB AC ∠∠=⋅==,又在ABC V 中,120ABC ∠=︒,则060ACB ︒<∠<︒,所以cos ACB ∠==,因为150BCD ∠=︒,所以()sin sin 150ACD ACB ∠=︒-∠sin150cos cos150sin ACB ACB=︒∠-︒∠12⎛== ⎝,在ACD 中,由正弦定理,sin sin ADC ACDAC AD∠∠=,又AD ==解得sin ADC ∠=>,所以60ACD ∠>︒,因为0180ADC ︒<∠<︒,则60ADC ∠=︒.16. 如图,在直三棱柱111ABC A B C -中,1,3,4,,,AB AC AC AB AA M N P ⊥===分别为11,,AB BC A B 的中点.(1)求证://BP 平面1C MN ;(2)求二面角1P MC N --的余弦值.【答案】(1)证明见解析(2).【解析】【分析】(1)先证明1,,,M N C A 四点共面,再证明1MA BP ,由线面平行的判定定理可证;(2)以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,结合空间向量的坐标运算以及二面角公式,带入求解即可.【小问1详解】证明:连接1A M ,因为,M N 分别为,AB BC 的中点,则MN AC ∥,在三棱柱111ABC A B C -中,11ACA C ,则11MN A C ∥,则11,,,M N A C 四点共面,11AB A B = ,且11AB AB ∥,,M P 分别为11,AB A B 的中点,则1BM PA 且1BM PA =,则四边形1BMA P 为平行四边形,则1MA BP ,BP ⊄ 平面1C MN ,1MA ⊂平面1C MN ,则//BP 平面1C MN .【小问2详解】在直棱柱111ABC A B C -中,11,,AA AB AA AC AB AC ⊥⊥⊥,则以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系:则有13(0,0,0),(4,0,0),(0,3,0),(2,0,0),(2,,0),(2,0,4),(0,3,4)2A B C M N P C ,13(2,3,4),(0,,0),(0,0,4)2MC MN MP =-== ,设平面1MPC 的一个法向量为(,,)m x y z = ,平面1MNC 的一个法向量为(,,)n a b c =,则1234040m MC x y z m MP z ⎧⋅=-++=⎪⎨⋅==⎪⎩及12340302n MC a b c n MN b ⎧⋅=-++=⎪⎨⋅==⎪⎩,令3,1x c ==,则有(3,2,0),(2,0,1)m n ==,则cos ,m n m n m n ⋅===,因为二面角1P MC N --为钝角,则所求二面角的余弦值为.17. 已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,点()4,3P 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点()10-,的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.【答案】(1)22143x y -=; (2)存在,29(,0)8Q -,58564.【解析】【分析】(1)根据题意由双曲线的渐近线方程得到ba的值,再根据(4,3)P 在双曲线上,将坐标代入双曲线方程即可解得,a b 的值.(2)设出直线l 方程与M ,N 点坐标1122(,),(,)x y x y ,联立直线与双曲线方程,结合韦达定理可表示出12x x +、21x x 、12y y +、12y y ,再设出Q 坐标(,0)t ,则可以表示出,QM QN 坐标,即可用坐标表示出QM QN⋅的值,再结合具体代数式分析当QM QN ⋅为常数时t 的值.【小问1详解】由题意得,因为双曲线渐近线方程为y x =,所以b b a =⇒=,又点(4,3)P 在双曲线上,所以将坐标代入双曲线标准方程得:221691a b-=,联立两式解得21612a a -=⇒=,b =,所以双曲线的标准方程为:22143x y -=.【小问2详解】如图所示,点(1,0)E -,直线l 与双曲线交于,M N 两点,由题意得,设直线l 的方程为1x my =-,Q 点坐标为(,0)t ,联立221431x y x my ⎧-=⎪⎨⎪=-⎩得,22(34)690m y my ---=,设11(,)M x y ,22(,)N x y ,则122634m y y m +=-,122934y y m -=-,21212122268(1)(1)()223434m x x my my m y y m m +=-+-=+-=-=--,22121212122124(1)(1)()134m x x my my m y y m y y m --=--=-++=-,11)(,t y QM x =- ,22,)(Q x t y N =-,所以21212121212()()()Q t x t y y x x t x x t y M N y Q x +⋅--=-++=+2222212489343434m t t m m m ---=-⋅++---222222121384(34)8293434m t m t t tm m -------=+=+--22829434t t m +=--+-,所以若要使得上式为常数,则8290t +=,即298t =-,此时58564QM QN ⋅= ,所以存在定点29(,0)8Q -,使得QM QN ⋅ 为常数58564.【点睛】关键点点睛:本题(2)问解题关键首先在用适当的形式设出直线l 的方程,当已知直线过x 轴上的定点(,0)n 时,可设直线方程为x my n =+,这样可简化运算,其次在于化简QM QN ⋅时计算要仔细,最后判断何时为常数时要抓住“消掉m ”这个关键,即最后的代数式中没有我们设出的m.18. 已知函数()2sin cos f x x x x x =--.(1)求()f x 在πx =处的切线方程;(2)证明:()f x 在()0,2π上有且仅有一个零点;(3)若()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,求a 的取值范围.【答案】(1)220x y π+-= (2)证明见解析 (3)1πa <-【解析】分析】(1)根据解析式求出切点,再根据导函数求出斜率,点斜式可得到切线方程;(2)先分析函数的单调性,需要二次求导,再结合函数值的情况进行判断;(3)对于函数图象的位置关系问题,可先特值探路求出参数的取值范围,再证明在该条件不等式恒成立即可.【小问1详解】()2sin cos f x x x x x =--,当πx =时,()π2sin ππcos ππ0f =--=,所以切点为()π,0,因为()2cos cos sin 1cos sin 1f x x x x x x x x =-+-=+-',【所以斜线方程的斜率()πcos ππsin π12k f ==+-=-',根据点斜式可得()02πy x -=--可得220x y π+-=,所以()f x 在πx =处的切线方程为220x y π+-=;【小问2详解】由(1)可得()cos sin 1f x x x x =+-',令()()cos sin 1g x f x x x x ==+-',所以()sin sin cos cos g x x x x x x x '=-++=,当π0,2x ⎛⎫∈ ⎪⎝⎭和3π,2π2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()0g x '>,()g x 单调递增;当π3π,22x ⎛⎫∈⎪⎝⎭时,cos 0x <,()0g x '<,()g x 单调递减;()πππππ0cos00sin010,cos sin 11022222g g ⎛⎫=+⨯-==+⨯-=-> ⎪⎝⎭,()πcos ππsin π1=2<0g =+--,3π3π3π3π3πcos cos 11022222g ⎛⎫=+-=--< ⎪⎝⎭,()2πcos 2π2πsin 2π10g =+-=,存在0π,π2x ⎛⎫∈⎪⎝⎭使得g (x 0)=0,所以()f x 在()00,x 上单调递增,在()0,2πx 单调递减,又()()02sin 00cos 00,π2sin ππcos ππ0f f =-⨯==-⨯-=,()2π2sin 2π2πcos 2π2π=4πf =---,所以()f x 在()0,2π上有且仅有一个零点;【小问3详解】因为()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,即2sin x ax x >+恒成立,等价于2sin x xa x -<恒成立,当πx =时,有2sin 1ππa ππ-<=-,下证:2sin 1πx x x -≥-即证21sin πx x x -≥-,()0,x ∞∈+恒成立,令()21sin πs x x x x =-+,当2πx ≥时,2sin 2π4π>01sin πx x x x --++>,当()0,2πx ∈时,()2cos 1πs x x x -+'=,设()2cos 1πt x x x =-+,则()2sin πt x x -'=+,此时()0t x '=在()0,2π有两个不同解1212π,,0π2x x x x <<<<,且当10x x <<或22πx x <<时,()0t x '>,当12x x x <<时,()0t x '<,故()t x 在()12,x x 上为减函数,在()10,x ,()2,2πx 上为增函数,而()()()π0π0,2π402t t t t ⎛⎫====> ⎪⎝⎭,故当π02x <<时,()0t x >,当ππ2x <<时,()0t x <,当π2πx <<时,()0t x >,故()s x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,在π,π2⎛⎫ ⎪⎝⎭为减函数,在()π,2π为增函数,而()()0π0s s ==,故()0,2πx ∈时,()0s x ≥恒成立,综上1πa <-.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数y =g (x )的图象的交点问题.19. 数列{}n b 满足32121222n n b b b b n -++++= ,{}n b 前n 项和为n T ,等差数列{}n a 满足的的1143,a b a T ==,等差数列前n 项和为n S .(1)求数列{}{},n n a b 的通项公式;(2)设数列{}n a 中的项落在区间()21,1m m T T ++中的项数为()m c m N*∈,求数列{}mc 的前n 和n H;(3)是否存在正整数m ,使得3m m m mS T S T +++是{}n a 或{}n b 中的项.若有,请求出全部的m 并说明理由;若没有,请给出证明.【答案】(1)21n a n =-,12n n b -=(2)2121233m m m H +=-+(3)1m =,2m =或5m =【解析】【分析】(1)先利用数列通项与前n 项和的关系求出12n n b -=,然后得到12n n b -=为等差数列,求得n T ,再求得14,a a ,计算数列{a n }的通项公式即可;(2)先求出区间()21,1m m T T ++的端点值,然后明确{a n }的项为奇数,得到()21,1m m T T ++中奇数的个数,得到()m c m N*∈通项公式,然后求和即可;(3)先假设存在,由(1)求得2n S n =,21nn T =-,令3m m m mS T L S T ++=+,然后判断L 的取值,最后验证,不同取值时,m 的值即可.【小问1详解】由题可知,当1n =时,11b =;当2n ≥时,得3121221222n n b b b b n --++++=- 因为32121222n n b b b b n -++++= 两式相减得11122n n n n bb --=⇒=经检验,当*N n ∈时,12n n b -=显然,{b n }是以1为首项,2为公比的等比数列,所以122112nn n T -==--所以1143,17a b a T ====等差数列{a n }的公差71241d -==-所以21n a n =-【小问2详解】由(1)可知,2212,12m m m m T T +=+=因为21n a n =-,所以21n a n =-为奇数;故()m c m N *∈为区间()21,1m m TT ++的奇数个数显然2212,12m m m m T T +=+=为偶数所以21224222m m mm m c --==-所以()2121444412222m mm m m H ---++++=-++++ ()214141122122141233m mm m +--=⨯-=-+--【小问3详解】由(1)可知2n S n =,21nn T =-所以23322121m m m m m m S T m S T m ++++-=++-若3m m m mS T S T +++是{a n }或{b n }中的项不妨令3m m m mS T L S T ++=+,则L *∈N 则有()()()232221118221m m m m L L m L m ++-=⇒--=-+-因为210,20m m -≥>所以18L ≤≤因为L 为数列{a n }或{b n }中的项所以L 的所有可能取值为1,2,3,4,5,7,8当1L =时,得20m =无解,所以不存在;当18L <≤时得28112m L m L --=-令()2*1,2m m g m m -=∈N 得()22ln 2ln 22mm m g m +='-令()22ln 2ln 2h m m m =-+显然()22ln 2ln 2h m m m =-+为二次函数,开口向下,对称轴为()11,2ln 2m =∈()()()120,368ln 20,4815ln 20h h h =>=->=-<所以当3m ≤时,()0g m '>,()2*1,2m m g m m N -=∈单调递增;当3m ≥时,()0g m '<,()2*1,2m m g m m N -=∈单调递减得()()1531,416g g ==因为28112m L m L --=-所以89112L L L -≤⇒≥-所以L 的可能取值有5,7,8我们来验证,当5L =时,得21324m m -=,可得存在正整数解2m =或5m =,故5L =满足;当7L =时,得21126m m -=,当m 为整数时,212m m -分子为整数,分母不能被3整除;所以21126m m -=无正整数解,故7L =不满足;当8L =时,得2102m m -=,得存在正整数解1m =,故8L =满足;综上所诉,1m =,2m =或5m =.【点睛】关键点点睛:(1)需要构造数列,然后合理利用数列通项与前n 项和的关系求解即可;(2)需要明确两个数之间奇数的个数即可;(3)先假设存在,然后确定数列{a n }或{b n }中的项是哪些,最后再反过来求m 的值即可.。
山东名校考试联盟2024年10月高三年级阶段性检测数学试题注意事项:1.答卷前,考生务必将自己的考生号、姓名、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3全卷满分150分.考试用时120分钟..考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知()(){}23230,02x A x x x B x x +=∈−−==∈≤ − Q R∣,则A B = ( )A. {}2B. {C. {}2D. ∅【答案】D 【解析】【分析】解方程与不等式求得集合,A B ,进而可求A B ∩.【详解】由2(2)(3)0x x −−=,可得2x =或x =,又Q x ∈,所以2x =,所以{2}A =;由302x x +≤−,可得(3)(2)020x x x +−≤ −≠,解得32x −≤<,所以{|32}Bx x =−≤<, 所以{2}{|32}A B x x =−≤<=∅ . 故选:D.2. 幂函数()23f x x =的图象大致为( )A. B.C. D.【答案】B 【解析】【分析】根据题意,利用函数奇偶性的判定方法,得到函数()f x 为偶函数,再由幂函数的性质,结合选项,即可求解.【详解】由函数()23f x x ==,可得函数的定义域为R ,关于原点对称,且()()f x f x −===,所以函数()f x 为偶函数,所以函数()f x 的图象关于y 轴对称,又由幂函数的性质得,当0x ≥时,函数()f x 单调递增, 结合选项,选项B 符合题意. 故选:B.3. 把物体放在冷空气中冷却,如果物体原来的温度是1C θ ,空气的温度是0C θ,那么min t 后物体的温度θ(单位:C )可由公式)01010ktθθθθ−=+−⋅求得,其中k 是一个随物体与空气的接触情况而定的正常数.现有65C 的物体,放到15C 的空气中冷却,1min 后物体的温度是35C ,已知lg20.3≈,则k 的值大约为( ) A. 0.2 B. 0.3 C. 0.4 D. 0.5【答案】C 【解析】【分析】根据题意列出等式()3515651510k−=+−⋅,化简后即可求解.【详解】由题意知015C θ= ,165C θ=, 代入公式()01010ktθθθθ−=+−⋅,可得()3515651510k−=+−⋅,则2105k−=,两边同时取对数得2lg10lg 5k−=, 即lg2lg 50.30.70.4k −=−≈−=−,则0.4k =,故C 正确. 是故选:C.4. 如图所示,一个组合体的上面部分是一个高为0.5m 长方体,下面部分是一个正四棱锥,公共面是边长为1m 的正方形,已知该组合体的体积为32m 3,则其表面积为( )A. (22m +B. (23m +C. (22m +D. (23m +【答案】B 【解析】【分析】由题意先利用棱锥体积公式求出正四棱锥的高,然后再求出其斜面上的高,即可求解. 【详解】由题意知该组合体由长方体和正四棱锥组成,且该组合体的体积为32m 3, 长方体的体积为31110.5m 2××=,则正四棱锥体积为3211m 326−=, 所以正四棱锥的高为1316m 112×=×,2112×, 所以组合体的表面积为()(210.541143m ××+×=+,故B 正确.故选:B.5. 若12,x x 是一元二次方程()()220x m x m m −++=∈R 的两个正实数根,则1221x x x x +的最小值为( ) A. 2 B. 4C. 6D. 8【答案】C 【解析】【分析】由题意及韦达定理可得122x x m +=+,12x x m =,从而得()2221212211222m mx x x x x x x x m+−++==,再结合基本不等式即可求解.【详解】由若12,x x 是一元二次方程()()220x m x m m −++=∈R 的两个正实数根, 所以122x x m +=+,12x x m =,则mm >0所以()()222212121212211212222x x x x m mx x x x x x x x x x m+−+−++===2244226m m m m m ++==++≥+=,当且仅当2m =时取等号,故C 正确. 故选:C.6. 已知等差数列{}n a 和等比数列{}n b 的前n 项和分别为n S 和n T ,且21nn S n T =+,则35=a b ( ) A. 9 B. 10 C. 11 D. 12【答案】C 【解析】【分析】分别设出为n S 和n T 的二次形式,由此求得35,a b ,即可化简后得到结果. 【详解】由等差数列{aa nn }和等比数列{bb nn }的前n 项和分别为n S 和n T ,所以可设()21n S kn n =+,n T kn =,0k ≠, 所以可得33255421101154a S S k k b T T k k−−===−−,故C 正确. 故选:C.7. 若2x =是函数()222exax x f x +−=的极小值点,则实数a 的取值范围是( ) A. (),1∞−− B. (),1−∞C. ()1,−+∞D. ()1,+∞【答案】A 【解析】【分析】求导,利用导数,分0a =,0a >,0a <三种情况讨论可求实数a 的取值范围.【详解】由()222exax x f x +−=,可得()222(22)e (22)e (22)4(2)(2)(e e e)x x x x xax ax x ax a x ax x f x +−+−−+−+−−−′===, 若0a =,当2x <时,()0f x ′>,当2x >时,()0f x ′<,故2x =是()222exax x f x +−=的极大值点,不符合题意,若0a ≠时,令()0f x ′=,可得(2)(2)0ax x −−−=,可得2x =或2x a=−, 若0a >时,则20a−<,当22x a −<<时,()0f x ′>,当2x >时,()0f x ′<,故2x =是()222exax x f x +−=的极大值点,不符合题意, 若0a <时,则20a−>,由二次函数的(2)(2)y ax x =−−−图象可知, 要使2x =是函数()222exax x f x +−=的极小值点, 需22a−<,解得1a <−, 所以实数a 的取值范围是(,1)∞−−. 故选:A.8. 已知函数()()6sin cos 10f x x x ωωω=+−>在π0,3上有且仅有3个零点,则ω的取值范围是( ) A. 3,32B. 3,32C. 93,2D. 93,2【答案】D 【解析】【分析】化简得23()sin 24f x x ω=−,由题意可得2π2π3π3ω<≤,求解即可. 详解】()()()66224224sin cos 1sin cos sin sin ?cos cos 1f x x x x x x x x x ωωωωωωωω=+−=+−+−()242242222sin sin ?cos cos 1sin cos 3sin ?cos 1x x x x x x x x ωωωωωωωω−+−=+−−22222313sin cos 13sin cos sin 24x x x x x ωωωωω=−−=−=− ,因为π0,3x ∈,2π20,3x ωω ∈ , 【由函数()()66sin cos 10f x x x ωωω=+−>在π0,3上有且仅有3个零点,可得2π2π3π3ω<≤,解得932ω<≤,所以ω的取值范围是9(3,]2.故选:D.二、多选题:本题共3小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9. 已知n S 为数列{}n a 的前n 项和,若3n n S a n =+,则( ) A. 112a =B. 数列{}1n a −为等比数列C. 312nn a =−D. 3332nn S n =−⋅+【答案】BCD 【解析】【分析】当1n =时,1131S a =+,解得112a =−;根据3n n S a n =+,可得当2n ≥时,1131n n S a n −−=+−,从而得13122n n a a −=−,即()13112n n a a −−=−;根据B 可求得312nn a−=−;从而可求出333?2nn S n =−+.【详解】A :当1n =时,1131S a =+,解得112a =−,故A 错误; B :因为3n n S a n =+,当2n ≥时,1131n n S a n −−=+−, 将两式相减可得1331n n n a a a −=−+,即13122n n a a −=−, 则()13112n n a a −−=−,因112a =−,则1312a −=−,数列{}1n a −为首项为32−,公比为32的等比数列,故B 正确;C :由B 可得13331?222n n n a −−=−=−,所以312nn a =− ,故C 正确;D :3333?2nn n S a n n =+=−+,故D 正确.故选:BCD.10. 已知幂函数()()293m f x m x =−的图象过点1,n m−,则( )A. 23m =−B. ()f x 为偶函数C. n =D. 不等式()()13f a f a +>−的解集为(),1−∞ 【答案】ABC 【解析】【分析】利用幂函数的定义结合过点1,n m−,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293m f x mx =−为幂函数,所以2931m −=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n − ,故23m ≠,当23m =−,幂函数()23f x x −=的图象过点2,3n,则2332n =,解得32()32n ==,故AC 正确; ()23f x x −=的定义域为{|0}x x ≠,且()2233()()f x x xf x −−−=−==,故()f x 为偶函数,故B 正确;函数()23f x x−=在(0,)+∞上单调递减,由()()13f a f a +>−,可得()()|1||3|f a f a +>−,所以1310a a a +<− +≠,解得1a <且1a ≠−,故D 错误.故选:ABC.11. 已知函数()f x 及其导函数()f x ′的定义域均为R ,记()()g x f x ′=,若()2g x +的图象关于直线2x =−对称,且()()()111f x f x f x −++=+−,则( )A. ()g x 是偶函数B. ()f x 是奇函数C. 3为()y f x =的一个周期D.20251()0i g i ==∑【答案】ACD 【解析】【分析】由()2g x +的图象关于直线2x =−对称,则可得()g x 关于xx =0对称,可对A 判断;由gg (xx )=ff ′(xx ),从而可得ff (xx )关于()0,1对称,可对B 判断;由ff (xx )关于()0,1对称,可得()()()113f x f x f x −+++=,故()()()213f x f x f x −+−+=,从而得()()12f x f x +=−,即()()3f x f x +=,可对C 判断;由()()()113f x f x f x −+++=,两边求导得()()()110g x g x g x −+++=,可对D 判断.【详解】A :因为()2g x +的图象关于直线2x =−对称,故将()2g x +的图象向右平移2个单位后变为()g x 的图象,此时()g x 关于xx =0对称,所以()g x 是偶函数,故A 正确;B :因为()g x 是偶函数,所以ff (xx )关于()0,c 对称且c 为常数,当xx =0时,()()()1110f f f −+=+,又因为()()112f f c −+=,()0f c =,所以1c =,所以ff (xx )关于()0,1对称,故B 错误; C :因为ff (xx )关于()0,1对称,所以()()2f x f x −=−+,所以()()()()1113f x f x f x f x −++=+−=−,所以()()()113f x f x f x −+++=①,故()()()213f x f x f x −+−+=②,则①②两式相减得()()12f x f x +=−,即()()3f x f x +=,所以3是()y f x =的一个周期,故C 正确; D :因为()()()113f x f x f x −+++=,两边求导得()()()110g x g x g x −+++=,且()g x 的周期为3,又因为20256753=×,所以()202510i g i ==∑,故D 正确.故选:ACD.【点睛】关键点点睛:B 中因为()g x 是偶函数,所以可得ff (xx )关于()0,c 对称,从而可求出1c =;D 中可有()()()113f x f x f x −+++=,两边求导得()()()110g x g x g x −+++=,从而可知()g x 中连续3项之和为零.三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数()ln f x x x =,则曲线()y f x =在1x =处的切线方程是 _____.【答案】10x y −−=【解析】【分析】求出导函数,根据导数的几何意义得出斜率,求出切点坐标,代入点斜式方程,即可得出答案.【详解】因为()ln 1f x x ′=+,所以()11f ′=. 根据导数的几何意义可知,曲线()y f x =在1x =处的切线的斜率()11k f ′==. 又()10f =,所以,切线方程为1y x =−,即10x y −−=. 故答案为:10x y −−=. 13. 已知0a >且1a ≠,函数()2,1,1x x x f x a x ≥= <,若关于x 的方程()()2560f x f x −+=恰有3个不相等的实数解,则实数a 的取值范围是______. 【答案】(]2,3 【解析】【分析】当1x ≥时,()2xf x =,方程()()2560fx f x −+=有2个不相等实数解,则当1x <时,()x f x a =,此时方程()()2560f x f x −+=只有1个实数解,对a 分类讨论,由()x f x a =的值域求实数a 的取值范围. 【详解】方程()()2560fx f x −+=,即()2f x =或()3f x =, 当1x ≥时,()2xf x =,由()2f x =解得1x =,由()3f x =解得2log 3x =; 当1x <时,()xf x a =,此时方程()()2560fx f x −+=只有1个实数解, 若01a <<,则()xf x a =在(),1∞−上单调递减,()(),f x a ∞∈+,的此时()2f x =和()3f x =都有解,不合题意,若1a >,则()xf x a =在(),1∞−上单调递增,()()0,f x a ∈,则23a <≤.所以实数a 的取值范围是(]2,3. 故答案为:(]2,314. 已知三棱锥A BCD −的四个顶点都在球O 的球面上,若AB CD =O 的半径为,则三棱锥A BCD −体积的最大值为__________.【答案】 【解析】【分析】设,AB CD 的中点为,M N ,球心为O ,由题意可得,,O M N 在同一直线上时,ABN 的面积最大,CD ⊥平面ABN ,三棱锥A BCD −体积的最大值,求解即可. 【详解】设,AB CD 的中点为,M N ,球心为O ,由题意可得,OM AB ON CD ⊥⊥,由题意可得1,2OM ON ==,当,,O M N 在同一直线上时,ABN 的面积最大,最大面积为1(12)2×+, 设C 到平面ABN 的距离为d ,由题意可得D 到平面ABN 的距离也为d ,当CD ⊥平面ABN 时,d 取最大值12CD =所以三棱锥A BCD −体积的最大值为112233ABN S d ××=×=故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()2π2sin 4f x x x=+.(1)求()f x 在π0,2上的单调递增区间;(2)已知ABC 的内角,,A B C 的对边长分别是,,a b c,若π1212C f−,2c =,求ABC 面积的最大值. 【答案】(1)5π[0,]12(2)2 【解析】【分析】(1)化简π()12sin(2)3f x x =+−,利用πππ2π22π,Z 232k x k k −+≤−≤+∈,可求单调区间;(2)由余弦定理可得22242cos 2c a b ab C ab ==+−≥,可求ab 的最大值,进而可求ABC 面积的最大值. 【小问1详解】()2π1cos 2π22sin 21sin 242x f x x x x x x−+=+=×−=+−πππ12(sin 2cos cos2sin 12sin(2)333x x x =+−=+−, 由πππ2π22π,Z 232k x k k −+≤−≤+∈,得π5πππ,Z 1212k x k k −+≤≤+∈, 又π0,2∈ x ,所以函数()f x 在π0,2上的单调递增区间为5π[0,]12;【小问2详解】由π1212C f−=−,得ππ12sin[2()]12123C +×−−,所以πsin()2C −,所以cos C =,因为0πC <<,所以π6C =,又2c =,在ABC中,由余弦定理可得22242cos 2c a b ab C ab ==+−≥−,所以4(2ab ≤=,当且仅当a b ==时取等号,所以111sin 4(22222ABC S ab C =≤×+×=+所以ABC 面积的最大值为2. 16. 已知函数()()ln R mf x x m x=+∈. (1)讨论函数()f x 的单调性;(2)当1m =时,证明:当1x ≥时,()e e 0xxf x x −−+≤.【答案】(1)答案见解析 (2)证明见解析 【解析】【分析】(1)利用导数与函数单调性的关系,分类讨论即可得解;(2)构造函数()()e e xg x xf x x =−−+,利用二次导数,结合函数的最值情况,证得()0g x ≤,从而得证.【小问1详解】因为()ln mf x x x=+的定义域为()0,∞+, 所以()221m x mf x x x x −′=−=,当0m ≤时,()0f x ′>恒成立,所以()f x 在()0,∞+上单调递增; 当0m >时,令()0f x ′=,得x m =, 当()0,x m ∈时,()()0,f x f x ′<单调递减, 当(),x m ∈+∞时,()()0,f x f x ′>单调递增, 综上,当0m ≤时,()f x 在()0,∞+上单调递增;当0m >时,()f x 在()0,m 上单调递减,在(),m +∞上单调递增. 【小问2详解】当1m =时,()1ln f x x x=+, 令()()e e ln e e 1xxg x xf x x x x x =−−+=−−++,则()ln e xg x x =−′, 令()()ln e xh x g x x ′==−,则()1e xh x x=′−,因为1x ≥,所以11,e e 1x x≤≥>, 所以当1x ≥时,()h x ′1e 0xx=−<恒成立,所以()h x 在[)1,+∞上单调递减,即()ln e x g x x =−′在[)1,+∞上单调递减,所以()()1e 0g x g ′≤−′=<, 所以()g x 在[)1,+∞上单调递减,所以()()10g x g ≤=,即()e e 0xxf x x −−+≤. 【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<. (2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔−> ;()()f x g x <恒成立()()max 0f x g x ⇔−< ; (4)1x M ∀∈,2x N ∀∈,()()()()1212min max f x g x f x g x >⇔>.17. 已知函数()33x x af x a+=−.(1)若()f x 为奇函数,求a 的值;(2)当0a <时,函数()f x 在[],m n 上的值域为11,33m n −− ,求a 的取值范围.【答案】(1)1或1−(2)(,3−∞−− 【解析】【分析】(1)由ff (xx )为奇函数,可得()()0f x f x +−=,从而可求解; (2)当0a <时,可得()y f x =是单调增函数,从而可得即,m n 是函数3133x x x a a +=−−的两个解,参数分离可得23313x x xa +=−,利用换元法设13xt =−,可得23a t t =+−,且1t <,再结合对勾函数性质从而可求解.【小问1详解】由()32133x xx a af x a a+==+−−,所以()22?31131?3x x x a a f x a a −−=+=+−−, 因为ff (xx )为定义域上的奇函数,所以()()0f x f x +−=, 即22?311031?3xx xa a a a +++=−−,化简得·3131?3x xx a a a a +=−−−, 则22222·3?3?33?3?30x x x x x x a a a a a a a −+−+−−+=,则得21a =, 所以aa =−1或1a =. 【小问2详解】当0a <时,()32133x x xa af x a a+==+−−,所以()y f x =是单调增函数, 由函数()f x 在[],m n 上的值域为11,33m n −−, 所以()3133m m m a f m a +==−−,()3133n n n a f n a +==−−,即,m n 是函数3133x x x a a +=−−的两个解,则得23313x x xa +=−,设130xt =−<,则22332313x xxa t t +==+−−,0t <,根据对勾函数性质可得23y t t=+−在()上单调递减,(,−∞上单调递增,其中23y t t=+−在(),0−∞上的值域为(,3 −∞− ,当t =时取最大值,综上可得3a <−,所以a 的取值范围为(),3−∞−−. 18. 已知函数()()28ln 1exf x axbx =+++.(1)若()f x ′在R 上单调递减,求a 的最大值; (2)证明:曲线()y f x ′=是中心对称图形; (3)若()8ln2f x ,求a 的取值范围. 【答案】(1)1− (2)证明见解析 (3)(],1−∞−【解析】【分析】(1)对ff (xx )求导得()8e 21e x x f x ax b =+++′,令()8e 21exxg x ax b =+++,再结合基本不等式从而可得()8201e 2ex x g x a =++′≤+,即可求解. (2)由()()28f x f x b ′′−+=+,从而曲线yy =ff ′(xx )关于点()0,4b +对称,即可求解. (3)分情况讨论求出0a <,4b =−,然后再利用导数讨论1a ≤−,10a −<<情况下,从而可求出a 的取值范围是(],1−∞−. 【小问1详解】由函数()()28ln 1e xf x ax bx =+++,所以()8e 21exxf x ax b =+++′, 令()8e 21e xxg x ax b =+++,因若ff ′(xx )在RR 上单调递减,则()()28e 822011e e 2exxxx g x a a =+=+++′≤+恒成立,因为1e 224e x x ++≥=,当且仅当xx =0时取等号, 则821e 2e x x −≥−++,所以821e 2ex x a ≤−++,即22a ≤−,得1a ≤−. 故a 的最大值为1−. 【小问2详解】证明:由(1)知()8e 21e x x f x ax b =+++′,则()8e 21exxf x ax b −−−=−++′, 则()()8e 8e 8e 8222281e 1e 1e 1ex x x x x x xf x f x ax b ax b b b −−−+=−++++=++=+′+′+++, 所以曲线yy =ff ′(xx )关于点()0,4b +对称,是中心对称图形.【小问3详解】当aa >0时,则当x →+∞时,()f x →+∞,与()8ln2f x ≤矛盾,所以0a ≤;为当0a =,0b ≥时,则当x →+∞时,()f x →+∞,与()8ln2f x ≤矛盾; 当0a =,0b <时,则当x →−∞时,()f x →+∞,与()8ln2f x ≤矛盾; 所以0a <.当4b >−,则当402b x a +<<−时,()8e 24201exxf x ax b ax b =++>++>+′, 此时()()08ln 2f x f >=,矛盾; 当4b <−,则当402b x a +−<<时,()8e 24201ex x f x ax b ax b =++<++<+′, 此时()()08ln 2f x f >=,矛盾; 因此4b =−,所以()8e 241exxf x ax =+−+′, 当1a ≤−,由(1)可知ff ′(xx )在RR 上单调递减,又()00f ′=,所以当0x ≤时,()0f x ′≥,ff (xx )在区间(],0−∞上单调递增; 当xx >0时,()0f x ′<,ff (xx )在区间(0,+∞)上单调递减; 此时()()08ln 2f x f ≤=,符合题意; 当10a −<<,则当0ln 1x <<−时,()()()228e 82201e 1e xxxg x a a =+>+′>++,此时()()()00f x g x g >′==,则()()08ln 2f x f >=,不合题意. 综上所述:a 的取值范围是(],1−∞−.【点睛】方法点睛:(1)导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理;(2)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用;(3)证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.19. 若存在1,1,2,2,,,n n 的一个排列n A ,满足每两个相同的正整数()1,2,,k k n = 之间恰有k 个正整数,则称数列n A 为“有趣数列”,称这样的n 为“有趣数”.例如,数列7:4,6,1,7,1,4,3,5,6,2,3,7,2,5A 为“有趣数列”,7为“有趣数”.(1)判断下列数列是否为“有趣数列”,不需要说明理由; ①2:1,2,1,2A ;②3:3,1,2,1,3,2A . (2)请写出“有趣数列”4A 的所有可能情形;(3)从1,2,,4n 中任取两个数i 和()j i j <,记i 和j 均为“有趣数”的概率为n P ,证明:14n P <. 【答案】(1)①不是;②是(2)4,1,3,1,2,4,3,2或2,3,4,2,1,3,1,4 (3)证明见解析 【解析】【分析】(1)根据“有趣数列”定义逐项判断即可求解.(2)分当两个1中间为2,当两个1中间为3,当两个1中间为4,共3种情况从而可找到符合题意的“有趣数列”,即可求解.(3)先设“有趣数列”n A 中数字()1,2,3,k k n = 第一次出现的项记作k a 项,从而可得()21111n n n k k k k k k a a a k k === +++=∑∑∑,可求得()1314nk k n n a =−=∑,再分情况讨论当()*43,42n m m m =−−∈N ,()*41n m m =−∈N ,()*4nm m ∈N 时符合“有趣数列”的情况,从而可得224C 1C 4nn nP =<,即可求解.【小问1详解】①2:1,2,1,2A 中两个2之间间隔数只有一个,故不是“有趣数列”, ②3:3,1,2,1,3,2A 中两个1之间间隔数有1个,两个2之间间隔数有2个, 两个3之间间隔数有3个,故是“有趣数列”.小问2详解】当两个1中间为2,不妨设1,2,1右边两个2中间可能为1,3或1,4, 则4A 可能为4,3,1,2,1,3,2,4或4,3,1,2,1,4,2,3,不符合题意; 当两个1中间为3,两个2中间可能为3,4或4,3,则4A 可能为4,1,3,1,2,4,3,2或2,3,4,2,1,3,1,4,符合题意;【当两个1中间为4,不妨设1,4,1右边两个2中间可能为3,4或4,3, 则4A 可能为1,4,1,2,3,4,2,3或1,4,1,2,4,3,2,3,不符合题意; 综上所述:“有趣数列”4A 可能为4,1,3,1,2,4,3,2或2,3,4,2,1,3,1,4. 【小问3详解】将“有趣数列”n A 中数字()1,2,3,k k n = 第一次出现的项记作k a 项, 由题意可知数字k 第二次出现的项为()1k a k ++项, 于是()21111n nn k kk k k k a aa k k === +++=∑∑∑,则()()13221222nk k n n n n a =+++=∑,即()1314nk k n n a =−=∑,又因为1nk k a =∑为整数,故必有()314n n −为整数,当()*43,42n m m m =−−∈N时,()314n n −不可能为整数,不符合题意; 当()*41n m m =−∈N时,()314n n −为整数,构造“有趣数列”41m A −为44,,2,42,23,1,41,1,23,m m m m m m −−−−− 2,,44,21,43,,21,42,m m m m m −−−+−22,,2,21,41,2,,22,21,,43m m m m m m −−−−+− ,符合题意; 当()*4nm m ∈N 时,()314n n −为整数,构造“有趣数列”4m A 为44,,2,42,23,1,41,1,23,m m m m m m −−−−− 2,,44,4,43,,21,42,m m m m m m −−+−22,,2,21,41,2,,22,21,,43,21,4m m m m m m m m −−−−+−− ,符合题意;这里44,,2m m − 是指将44m −一直到2m 的偶数按从大到小的顺序进行排列,23,,1m − 是指将23m −一直到1的奇数按从大到小的顺序进行排列,故1,2,,4n 中的“有趣数列”为3,4,7,8,,41,4n n − 共2n 个,则所求概率为()224C 211C 2414nn nn P n −==<−. 【点睛】方法点睛:本题主要是根据“有趣数列”定义,理解并应用,对于(3)中主要巧妙设出“有趣数列”n A 中数字()1,2,3,k k n = 第一次出现的项记作k a 项,由题意可知数字k 第二次出现的项为()1k a k ++项,从而求出()1314nk k n n a =−=∑,从而可求解.。
山东名校考试联盟2024年10月高三年级阶段性检测语文试题一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分) 阅读下面的文字,完成1~5题。
材料一:《红楼梦》中有一个聚讼纷纭的案例,学界产生了多篇专论之文,但仍有可深入探讨之处。
在第四十回中,贾母带领众人去蘅芜苑,从荇叶渚上船。
宝玉道:“这些破荷叶可恨,怎么还不叫人来拔去。
”宝钗笑道:“今年这几日,何曾饶了这园子闲了,天天逛,那里还有叫人来收拾的工夫。
”林黛玉道:“我最不喜欢李义山的诗,只喜他这一句:‘留得残荷听雨声’。
偏你们不留着残荷了。
”宝玉道:“果然好句,以后咱们就别叫人拔去了。
”首先,探讨一下林黛玉引用时的改字问题。
其实,这是一种“随文立训”式的改动。
据文本内容来推,本回故事当发生在八月二十五日。
因为巧姐发热,彩明念《玉匣记》云“八月二十五日,病者在东南方得遇花神”,此时之荷尚未枯,用“残”字更贴切。
关于此,《红楼梦》中恰有可以援证之文,第六十七回袭人“刚来到沁芳桥畔,那时正是夏末秋初,池中莲藕新残相间,红绿离披”,这个夏末秋初大概是何时,书中并未明言,但亦可推知,第六十六回中柳湘莲对贾琏说“不过月中就进京的”,后又说“八月内湘莲方进了京”,然后是尤三姐自刎、柳湘莲出家等,则应该是八月下旬。
黛玉为了加强说服力,把形容此时秋景本不特别贴切的诗句改了一个字,这一改动在她引用之后的语言中也有非常清楚的显示。
事实上,这种引用时的随文改动正是古人常有之例。
因此,虽然可以确定李商隐的原文与曹雪芹的引文有一字之不同,但这却绝非一个校勘学上的“他校”问题。
接下来,我们从情节前后的脉络出发,来讨论黛玉引此诗的背后逻辑。
理解这一段对话的关键就藏在上引的原文之中,或者说,存在于作者对宝、黛、钗三人关系的设定之中。
在这三人的关系中,黛玉一直是最为警惕的那一个,面对来自宝钗的威胁,她总是下意识地防范,甚至会主动出击。
仔细看一下原文。
先是宝玉说“这些破荷叶可恨,怎么还不叫人来拔去”,这时,如果宝钗未接话,黛玉或许也可能赞同宝玉的意见,然而心思细密又喜欢给人讲道理的宝姐姐这时肯定会有所表现,所以她立刻就接着说:“今年这几日,何曾饶了这园子闲了,天天逛,那里还有叫人来收拾的工夫。
河南省部分名校阶段性测试2024-2025学年高三上学期11月期中考试数学试题一、单选题1.已知集合{}{}22,1,0,1,2,3,4,5A x x B =-<≤=-,则A B = ()A .{}1,0-B .{}1,0,1,2-C .{}1,0,1-D .{}2,3,4,52.已知复数0z ≠,若|3||3i |z z -=-,则z 的实部与虚部的比值为()A .3B .2C .1D .123.已知{}n a 是正项等比数列,若2436,,a a a 成等差数列,则{}n a 的公比为()A .13B .12C .2D .34.函数2,2lg (),lg ,2lg x x xxf x x x---⎧≤=⎨>⎩在区间(0,)+∞上()A .单调递增B .单调递减C .先减后增D .先增后减5.放射性物质的衰变规律为:012t TM M ⎛⎫=⨯ ⎪⎝⎭,其中0M 指初始质量,t 为衰变时间,T 为半衰期,M 为衰变后剩余的质量.已知甲、乙两种放射性物质的半衰期分别为12,T T (单位:天),若两种物质的初始质量相同,1024天后发现甲的质量是乙的质量的8倍,则2111T T -=()A .31024B .1512C .11024D .35126.若函数2e ()1xf x x bx =++在2x =时取得极小值,则()f x 的极大值为()A .1eB .1C .3e 8D .e7.若函数π()sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,33⎛⎫- ⎪⎝⎭上有唯一极值点,则ω的取值范围是()A .(0,2]B .(1,2]C .72,2⎡⎫⎪⎢⎣⎭D .71,2⎛⎤ ⎥⎝⎦8.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知22228a b c --=,点O 在ABC V 所在的平面内,满足1110OA OB OC a c b++= ,且1cos 3OAC ∠=,则a ()A .有最大值10B .有最小值10C .有最大值8D .有最小值8二、多选题9.已知函数()()π2sin ,2sin 232x x f x g x ⎛⎫=-+= ⎪⎝⎭,则()A .()f x 与()g x 有相同的最小正周期B .()f x 与()g x 有相同的最大值C .()f x 与()g x 的图象有相同的对称轴D .将()f x 的图象绕点2π,03⎛⎫⎪⎝⎭旋转180︒可得到()g x 的图象10.如图,ABC V 是边长为1的等边三角形,13BD BC =,点P 在以CD 为直径的半圆上(含端点),设AP xAB yAC =+,则()A .y 的值不可能大于1B .1233AD AC AB=+ C .AP AB ⋅ 的最小值为13D .AP AB ⋅的最大值为111.已知数列{}n a 满足1,042ππn a a =<<,且()()11(21)sin sin ,n n n n n a a a a +++-=+则()A .2sin 5a =B .1tan 2n n a -=C .当2n ≥时,1n a >D .2πn a <-三、填空题12.若[0,1]x ∃∈,使得230x x a +-≤,则实数a 的取值范围为.13.如图是利用尺规作图得到的一个“九芒星”图形,若九芒星的顶点将圆九等分,设相邻两个顶点之间的劣弧对应的圆心角为α,则cos cos 2cos 4ααα=.14.已知函数3()1f x x x =++,若关于x 的不等式(1)(ln )2f ax f x x -+->的解集中有且仅有2个整数,则实数a 的最大值为.四、解答题15.已知数列{}12n n a a +-是以3为首项,2为公比的等比数列,且11a =.(1)证明:2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列{}n a 的前n 项和n S .16.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,已知π0,2B ⎛⎫∈ ⎪⎝⎭,且11tan tan B C +=(1)求B ;(2)若ABC V 的外接圆半径为R ,周长为R ,且a b >,求A .17.已知函数()2()2sin cos ().f x x x x a x a a =++-∈R(1)求()f x 的图象在点(0,(0))f 处的切线方程;(2)若()f x 在区间π0,2⎛⎫⎪⎝⎭上单调递减,求a 的取值范围.18.已知函数()e 2()x f x ax a =--∈R .(1)当2a =时,求()f x 的零点个数;(2)设2a ≥,函数2e ()()e 12xx g x f x a =-+-.(i )判断()g x 的单调性;(ii )若()()()g m g n m n ''=<,求()()g m g n +的最小值.19.设有穷数列{}n b 的项数为m ,若1i m i b b a +-=(a 为常数,且0,1,2,3,,a i m ≠= ),则称该数列为等积数列,a 叫做该数列的公共积.(1)若231,,,2,4b b 是公共积为a 的等积数列,求该数列的公共积a 及23,b b ;(2)若{}n b 是公共积为a 的等积数列,且212k k b b c -=(*k ∈N 且,2mk c 为常数),证明:当()*42m r r =+∈N 时,对任意给定的,a c ,数列{}n b 中一定存在相等的两项;(3)若{}n b 是公共积为1的等积数列,且10(1,2,3,,1),i i b b i m m +<<=- 是奇数,对任意的1,,,,2i j m b b i j m ⎛⎫+⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭都存在正整数[]1,u m ∈,使得j i u b b b =,求证:{}n b 是等比数列.。
河南省部分名校2024-2025学年高三上学期阶段性测试(二)数学试题考生注意:(答案在最后)1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(2)30},(,2)(4,)A xx x B =-+>=-∞⋃+∞∣,则()R A B ⋂=ð()A.[2,3)B.(1,2)-C.(,3)(4,)-∞⋃+∞D.(1,4]-【答案】A 【解析】【分析】首先求解集合A ,再根据交,并,补的运算,即可求解.【详解】()2230230x x x x -+>⇔--<,即()()130x x +-<,得13x -<<,即()13A ,=-,[]R 2,4B =ð,所以()[)R 2,3A B ⋂=ð.故选:A2.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边过点31,22P ⎛⎫-- ⎪ ⎪⎝⎭,则πcos 6α⎛⎫+= ⎪⎝⎭()A.-1B.32-C.12-D.32【答案】C 【解析】【分析】结合三角函数的定义求cos α和sin α,再代入两角和的余弦公式,即可求解.【详解】由终边点31,22P ⎛⎫-- ⎪ ⎪⎝⎭可知,cos 2α=-,1sin 2α=-,所以πππ111cos cos cos sin sin 66622222ααα⎛⎫+=-=-⨯+⨯=- ⎪⎝⎭.故选:C3.已知函数e ,1()ln 2,1(4),1x x f x x f x x -⎧<⎪==⎨⎪->⎩,则()(9)f f =()A.2eB.1C.ln 2D.12【答案】D 【解析】【分析】根据自变量取值所属区间代入对应函数解析式,由内而外逐层求解即可,注意对数恒等式的应用.【详解】由题意,()()()1lnln 221(9)(5)(1)(ln 2)ee2f f f f f f f -======.故选:D.4.已知π6cos 46α⎛⎫+=⎪⎝⎭,则sin 2α=()A.56-B.23-C.23D.56【答案】C 【解析】【分析】代入二倍角公式,以及诱导公式,即可求解.【详解】由条件可知,22ππ2cos 22cos 1212463αα⎛⎫⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而π2sin 2cos 223αα⎛⎫=-+= ⎪⎝⎭.故选:C5.函数2e ()e 1xx x f x =+的大致图象为()A.B.C.D.【答案】B 【解析】【分析】首先判断函数的奇偶性,再集合函数值的正负,以及取向,即可判断选项.【详解】函数的定义域为R ,且()()22e e e 1e 1x xx x x x f x f x ---⋅-⋅-===-++,所以函数()f x 是奇函数,故排除A ,且当0x >时,()0f x >,故排除C ,()1e e x xx f x =+,当x →+∞时,0y →,故排除D ,满足条件的只有B.故选:B6.若命题“21,e e 10x x x k +∃∈-+<R ”是假命题,则实数k 的取值范围是()A.(,-∞B.(∞-C.(),-∞⋃+∞D.)⎡+∞⎣【答案】A 【解析】【分析】将命题是假命题转化为其否定是真命题进行分析,通过换元转化为一元二次不等式在给定区间上的恒成立问题,通过分离参数求最值得到最终结果.【详解】由题意,命题“21,e e 10x x x k +∃∈-+<R ”是假命题,等价于其否定“21,e e 10x x x k +∀∈-+≥R ”是真命题,令()e0xt t =>,则2e 10t kt -+≥对0t ∀>恒成立,即1e k t t ≤+,需满足min 1e k t t ⎛⎫≤+ ⎪⎝⎭,而0t >,1e t t +≥=,当且仅当1e t t =,即e et =时取等号.所以min1e t t ⎛⎫+= ⎪⎝⎭k ≤故选:A.7.将函数π()cos (06)6f x x ωω⎛⎫=+<< ⎪⎝⎭的图象向右平移π6个单位长度得到函数()g x 的图象,若()g x 是奇函数,则()f x 在区间(0,π)内的极值点个数为()A.1B.2C.3D.4【答案】D 【解析】【分析】由平移关系与奇函数性质可得()f x 的对称性,求得()f x 的解析式,然后根据余弦函数的性质求解即可.【详解】若()g x 是奇函数,则()g x 图象关于(0,0)对称,由题意得()g x 的图象向左移π6个单位长度得到函数()f x 的图象,故()f x 的图象关于π,06⎛⎫- ⎪⎝⎭对称,()cos 6f x x πω⎛⎫=+ ⎪⎝⎭,则cos 066ππω⎛⎫-+= ⎪⎝⎭,则,662k k πππωπ-+=+∈Z ,解得62,k k ω=--∈Z ,又因为06ω<<,则当1k =-时,4ω=.()cos 46f x x π⎛⎫=+ ⎪⎝⎭,π()0,x ∈,令ππ25π4,666t x ⎛⎫=+∈ ⎪⎝⎭,则()cos h t t =在π25π,66⎛⎫⎪⎝⎭极值点的个数与()f x 在区间(0,π)内的极值点个数相同.而函数()cos h t t =在π25π,66⎛⎫⎪⎝⎭内的所有极值点为π,2π,3π,4π,共4个.故()f x 在区间(0,π)内的极值点个数也为4个.故选:D.8.已知函数()f x 的定义域为(),1f x -R 为奇函数,()2f x +为偶函数,则()()()1216f f f =+++L ()A.0B.16C.22D.32【答案】B 【解析】【分析】由()1f x -为奇函数得对称中心为 벘ࢿ,结合(2)f x +为偶函数,求周期为8,从而求出()()()128f f f +++ ,即可得到()()()1216f f f +++ 的值.【详解】因为()1f x -为奇函数,则()01f =,且函数()f x 的图象关于 벘ࢿ中心对称,即()()2f x f x +-=,因为()2f x +为偶函数,所以()()22f x f x +=-,则()()4f x f x +=-,所以()()42f x f x ++=,()()482f x f x +++=,所以()()8f x f x =+,故()f x 的周期为8,因为()()()()()()()()152,262,372,482f f f f f f f f +=+=+=+=,所以()()()()()()1216212816f f f f f f ⎡⎤+++=+++=⎣⎦ ,故选:B .【点睛】关键点点睛:由()1f x -为奇函数,()2f x +为偶函数,求对称中心和对称轴,推函数()f x 的周期,关于抽象函数考查对称性和周期性的综合题,一般都是借助题中的条件找到对称中心和对称轴再推周期.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知110a b<<,则()A.22a b >B.ln()ln()b a ->-C.()2222()a ba b +>+ D.2a ab<【答案】BCD 【解析】【分析】首先判断0b a <<,再结合不等式的性质,函数的单调性,以及作差法,即可判断选项.【详解】由110a b<<,可知,0b a <<,所以22a b <,故A 错误;0b a ->->,对数函数ln y x =单调递增,所以()()ln ln b a ->-,故B 正确;()()()222220a b a b a b +-+=->,即()()2222a b a b +>+,故C 正确;()2a ab a a b -=-,由0b a <<,可知()20a ab a a b -=-<,即2a ab <,故D 正确.故选:BCD10.已知函数1()sin 2sin cos f x x x x=+,则()A.()f x 为奇函数B.()f x 的值域为(,)-∞-⋃+∞C.()f x 的图象关于直线3π4x =对称D.()f x 以π为周期【答案】ACD 【解析】【分析】首先化简函数()2sin 2sin 2f x x x=+,再根据奇函数的定义,判断A ,通过换元分析函数2y t t =+的单调性,即可求函数的值域,判断B ,证明()3π2f x f x ⎛⎫-= ⎪⎝⎭,判断C ,根据()()πf x f x +=,即可判断D.【详解】()2sin 2sin 2f x x x=+,sin 20x ≠,则π2π2k x k x ≠⇒≠,Z k ∈,则函数的定义域为π,Z 2k x x k ⎧⎫≠∈⎨⎬⎩⎭,函数的定义域关于原点对称,且满足()()f x f x -=-,所以函数是奇函数,故A 正确;设[)(]sin 21,00,1t x =∈- ,2y t t=+在区间(]0,1单调递减,[)3,y ∈+∞,因为函数是奇函数,所以函数的值域是(][),33,∞∞--⋃+,故B 错误;()()()3π22sin 3π2sin 22sin 3π2sin 2f x x x f x x x ⎛⎫-=-+=+= ⎪-⎝⎭,所以函数()f x 关于3π4x =对称,故C 正确;()()()()22πsin 22πsin 2sin 22πsin 2f x x x f x x x+=++=+=+,所以函数()f x 的周期为π,故D 正确.故选:ACD11.已知对任意0x >,不等式32e 2ln 0x ax ax x -+≥恒成立,则实数a 的可能取值为()A.1B.e 2C.eD.2e 【答案】ABC 【解析】【分析】将不等式运算转化为指对同构形式,整体换元转化不等式,分离参数后再构造函数求最值可得a 的范围.【详解】由0x >,32e 2ln 0xax ax x -+≥可化为2e 2ln 0xax a x x-+≥,则又可化为()2222e e e ln 0ln 0x x x a x x a x x x--≥⇔-≥,令2()x e x xϕ=,则3e (2)()x x x x ϕ-'=,令()0x ϕ'=,得2x =,当02x <<时,()0x ϕ'<,则()ϕx 在(0,2)单调递减;当2x >时,()0x ϕ'>,则()ϕx 在(2,)+∞单调递增;故2mine ()(2)4x ϕϕ==,且当x →+∞,()x ϕ→+∞.再令2e xt x =,则2e ,4t ⎡⎫∈+∞⎪⎢⎣⎭,则关于t 的不等式ln 0t a t -≥在2e ,4⎡⎫+∞⎪⎢⎣⎭恒成立,即ln ta t ≤在2e ,4⎡⎫+∞⎪⎢⎣⎭恒成立,令()ln t h t t =,2e ,4t ⎡⎫∈+∞⎪⎢⎣⎭,则2ln 1()(ln )t h t t -'=,由()0h t '=解得e t =,当2e e 4t ≤<时,()0h t '<,则()h t 在2e ,e 4⎡⎫⎪⎢⎣⎭单调递减;当t e >时,()0h t '>,则()h t 在(e,)+∞单调递增;所以min ()(e)e h t h ==,要使ln t a t ≤在2e ,4⎡⎫+∞⎪⎢⎣⎭恒成立,则e a ≤.故选:ABC.【点睛】方法点睛:解决指对混合不等式时,通常需要利用指对运算挖掘同构特点(指对同构)进行整体代换,从而构造新函数解决问题,其运算实质还是指对互化与指数、对数恒等式的变换.常见变形方式有:()ln ln ln e e e ee e ln l ,n e ,ln ln e ,,x x x x xx x x x xx x x x x x x x x x+--===+=-=.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合(){,12},{ln 20}P yy x a x Q x x ==+-<≤=-<∣∣,若x P ∈是x ∈Q 的必要不充分条件,则实数a 的取值范围为______.【答案】[]0,2【解析】【分析】化简集合,P Q ,再结合P 是Q 的必要不充分条件列不等式族求解.【详解】由y x a =+,12x -<≤,则12a y a -<≤+,所以{}12P y a y a =-<≤+,由()ln 20x -<,即()ln 2ln1x -<,解得12x <<,所以{}12Q x x =<<,因为P 是Q 的必要不充分条件,所以1122a a -<⎧⎨+>⎩,且11a -=,22a +=也符合题意,解得02a ≤≤.所以实数a 的取值范围为 벘h .故答案为: 벘h .13.已知,a b 均为正实数,且23a b ab +=,则1332a b +--的最小值为_____________.【解析】【分析】由已知条件等式配凑积为定值(3)(2)6a b --=的形式,再利用基本不等式求解可得最小值.【详解】由23a b ab +=,得230ab a b --=,则236(3)(2)6ab a b a b --+=--=,由已知0,0a b >>,则23(3)0a ab b b a =-=->,所以3a >,且32(2)0b ab a a b =-=->,所以2b >.所以30,20a b ->->,故1332a b +≥--当且仅当1332a b =--,即32a b ==+所以1332a b +--.14.已知曲线e x y =上有不同的两点P 和Q ,若点,P Q 关于直线y x =的对称点,P Q ''在曲线2y kx x =-上,则实数k 的取值范围为_____________.【答案】()0,1【解析】【分析】由曲线e x y =与ln y x =关于直线y x =对称,将问题转化为曲线ln y x =与2y kx x =-有2个交点,即方程ln 1x kx x=-有2个不同的实根,进而转化为()ln xh x x =和1y kx =-有两个交点,利用导数求函数()ln xh x x=的大致图象,结合图象即可求解.【详解】 曲线e x y =与ln y x =关于直线y x =对称,又点,P Q 关于直线y x =的对称点,P Q ''在曲线2y kx x =-上,∴曲线()ln 0y x x =>与2y kx x =-有2个交点,即2ln x kx x =-有2个不同的实根,即方程ln 1xkx x=-有2个不同的实根,设函数()ln x h x x =,则()21ln xh x x-'=,∴当0e x <<时, , 在()0,e 上单调递增,当e x >时, , 在()e,+∞上单调递增,()()max 1e eh x h ∴==,再根据当0x →时,()h x ∞→-,当x →+∞时,()0h x →,作出的大致图象,如图,由于直线1y kx =-过定点()0,1-,当直线1y kx =-与 的图象相切时,设切点为000ln ,x x x ⎛⎫⎪⎝⎭,此时00200ln 11ln x x x k x x +-==,即002ln 10x x +-=,可得01x =,此时切线的斜率为1,由图可知,01k <<时,直线1y kx =-与 的图象有2个交点,∴实数k 的取值范围为 벘ࢿ,故答案为: 벘ࢿ.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数32()2g x x mx mx n =+-+的图象在点(1,(1))g --处的切线与直线820x y +-=垂直.(1)求m 的值;(2)已知()g x 在区间[1,2]-上的最小值为5-,求()g x 在区间[1,2]-上的最大值.【答案】(1)1m =-(2)1.【解析】【分析】(1)根据导数的几何意义求解;(2)利用导数判断()g x 的单调性,结合()g x 的最小值为5-,求出n ,并求出最大值.【小问1详解】由已知,得2()34g x x mx m '=+-,由题知(1)348g m m '-=--=,解得1m =-.【小问2详解】由(1)可知,32()2g x x x x n =-++,21()3413(1)3g x x x x x ⎛⎫'=-+=-- ⎪⎝⎭,,(),()x g x g x '的变化情况如表所示:x 1-11,3⎛⎫- ⎪⎝⎭131,13⎛⎫ ⎪⎝⎭1(1,2)2()g x '+0-0+()g x 4n - 极大值427n + 极小值n 2n +4n n -< ,min ()45g x n ∴=-=-,1n ∴=-,max 42,()2 1.27n n g x n +<+∴=+= 即()g x 在区间[1,2]-上的最大值为1.16.已知向量(cos sin ),(cos sin ,2cos )m x x x n x x x =+=- ,函数()g x m n =⋅ .(1)求()g x 的最小正周期;(2)若函数()()f x g x a =-在区间π0,2⎡⎤⎢⎥⎣⎦上恰有两个零点,求实数a 的取值范围.【答案】(1)π(2)[1,2).【解析】【分析】(1)首先利用数量积公式和二倍角公式,辅助角公式,化简函数,再求周期;(2)由题意转化为y a =与函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的图象恰有两个交点,利用整体代入的方法,结合正弦函数的图象,即可求解.【小问1详解】22()cos sin cos g x m n x x x x =⋅=-+,cos 222sin 26x x x π⎛⎫=+=+ ⎪⎝⎭()g x ∴的最小正周期2ππ2T ==;【小问2详解】由题知()g x a =在区间π0,2⎡⎤⎢⎥⎣⎦上恰有两个不同的实数根,即函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的图象与直线y a =恰有两个交点,令72,0,,,6266u x x u ππππ⎡⎤⎡⎤=+∈∴∈⎢⎥⎢⎥⎣⎦⎣⎦,作出72sin ,66y u u ππ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图象与直线y a =,如图.由图知,当12a ≤<时,72sin ,66y u u ππ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的图象与直线y a =有两个交点,∴实数a 的取值范围为[1,2).17.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知57cos 14C =,4a =,且ABC V 的面积为(1)求c ;(2)延长CB 至点D ,使得ABD △是等腰三角形,求sin DAC ∠.【答案】(1)2(2)32114【解析】【分析】(1)首先根据同角三角函数的平方关系求出sin C ,然后根据三角形的面积公式求出b 的值,再利用余弦定理求解即可;(2)首先利用余弦定理的推论求出1cos 2ABC ∠=-,进而得到3ABD π∠=,根据ABD △是等腰三角形得到ABD △是边长为2的等边三角形,再利用ADC ABD ABC S S S =+ 求解即可.【小问1详解】cos 14C = ,(0,π)C ∈,sin 14C ∴===,1121sin 42214ABC S ab C b ==⨯⨯⨯= ,b ∴=∴由余弦定理得222222cos 424414c a b ab C =+-=+-⨯⨯=,2c ∴=;【小问2详解】如图,由(1)及余弦定理可得,222222421cos 22422a cb ABC ac +-+-∠===-⨯⨯,2π3ABC ∴∠=,π3ABD ∴∠=, ABD △是等腰三角形,∴ABD △是边长为2的等边三角形,2AD AB ==,224ADC ABD ABC S S S =+=⨯+=又1sin 2ADC S AD b DAC DAC =⨯∠=∠= 321sin14DAC ∴∠=.18.已知函数()f x 的定义域为(,0)(0,)-∞+∞ ,对任意,x y ∈R 且||||x y ≠,都满足()22()()f x y f x y f x y ++-=-.(1)求(1),(1)f f -;(2)判断()f x 的奇偶性;(3)若当1x >时,()0f x >,且(2)1f =,求不等式(2)(1)2f x f x +--<的解集.【答案】(1)0;0(2)偶函数(3)2(,2)2,(2,)5⎛⎫-∞-⋃-⋃+∞ ⎪⎝⎭.【解析】【分析】(1)利用赋值法计算可得;(2)对任意非零实数a ,b ,令,22a b a b x y +-==,即可得到()()()f a f b f ab +=,再令1b =-,即可得解;(3)首先说明()f x 在区间(0,)+∞上单调递增,再得到(4)2f =,则不等式转化为(2)(44)f x f x +<-,再结合单调性与奇偶性转化为自变量的不等式,解得即可.【小问1详解】因为对任意,x y ∈R 且||||x y ≠,都满足()22()()f x y f x y f x y++-=-,令1,0x y ==,得(1)(1)(1)f f f +=,(1)0f ∴=,令1,0x y =-=,得(1)(1)(1)0f f f -+-==,(1)0f ∴-=.【小问2详解】对任意非零实数a ,b ,令,22a b a b x y +-==,可得()()()f a f b f ab +=.在上式中,令1b =-,得()(1)()f a f f a +-=-,即对任意非零实数a ,都有()()f a f a =-,()f x ∴是偶函数.【小问3详解】对任意12,(0,)x x ∈+∞且12x x <,有22111,0x x f x x ⎛⎫>∴> ⎪⎝⎭,由(2)知()()()22211111x x f x f x f f x f x x x ⎛⎫⎛⎫=⨯=+> ⎪ ⎪⎝⎭⎝⎭,()f x ∴在区间(0,)+∞上单调递增.(2)1,211(2)(2)(4)f f f f =∴=+=+= ,(2)(1)2f x f x +--< ,(2)(1)2(1)(4)(44),f x f x f x f f x ∴+<-+=-+=-()f x 是定义域为(,0)(0,)-∞+∞ 的偶函数,且在区间(0,)+∞上单调递增,∴原不等式转化为0|2||44|x x <+<-,解得2x <-或225x -<<或2x >,∴原不等式的解集为2(,2)2,(2,)5∞∞⎛⎫--⋃-⋃+ ⎪⎝⎭.19.已知函数()(2)e (2)1x f x x ax x =---+.(1)若()f x 仅有一个极值点且()2f x >-恒成立,求实数a 的取值范围;(2)当a 变化时,求()f x 的图象经过的所有定点的坐标,并请写出一个函数tan()y A x ωϕ=+,使其图象经过上述所有定点;(3)证明:21(2)e 4(1)1e 2ln 34x x f x ax x x ⎡⎤++-->+-⎣⎦.【答案】(1)(]e 3,0-(2)ππtan 44y x ⎛⎫=- ⎪⎝⎭(3)证明见解析【解析】【分析】(1)由()()(1)e 2x f x x a =--'分类讨论函数极值并求函数最小值满足条件即可;(2)令a 的系数为0求定点,结合特殊角的正切值写出满足题意的一个函数即可;(3)化简函数解析式求导函数,利用隐零点回代的方法求证函数最小值大于0可得.【小问1详解】由题知()()(1)e 22(1)e 2x x f x x ax a x a '=--+=--,①当0a ≤时,20x e a ->恒成立,∴当1x <时,()0,()'<f x f x 在(,1)-∞单调递减,当1x >时,()0,()'>f x f x 在(1,)+∞单调递增,则()f x 仅有一个极值点,且min ()(1)e 1f x f a ==-++.要使()2f x >-恒成立,得(1)e 12f a =-++>-,解得e 3a >-.所以e 30a -<≤;②当0a >时,由()0f x '=,得11x =或()2ln 2x a =.当ln(2)1a =,即e 2a =时,()0f x '≥恒成立,则()f x 在R 上单调递增,即函数()f x 无极值点,不满足题意;当ln(2)1a >时,即2e a >时,1ln(2)a <当1x <时,()0f x '>,()f x 在(,1)-∞单调递增;当1ln(2)x a <<时,()0f x '>,()f x 在()1,ln(2)a 单调递减;当ln(2)x a >时,()0f x '>,()f x 在()ln(2),a +∞单调递增;则()f x 在1x =与ln(2)x a =处都取极值,即有两个极值点,故不满足题意;同理,当ln(2)1a <时,即0e 2a <<时,()f x 也有两个极值点,故不满足题意;综上所述,实数a 的取值范围是(]e 3,0-.【小问2详解】令(2)0x x -=,可得0x =或2x =,(0)1,(2)1f f =-= ,()f x ∴的图象经过的所有定点的坐标为(0,1)-和(2,1).函数tan()y A x ωϕ=+图象过(0,1)-和(2,1),则tan 1A ϕ=-,且()tan 21A ωϕ+=.当ππ1,,44A ωϕ===-时,函数ππ()tan 44x x ϕ⎛⎫=- ⎪⎝⎭,则π14(0)tan ϕ⎛⎫-⎝==-⎪⎭,且1(2)ta 4n πϕ==满足题意.图象经过点(0,1)-和(2,1)的函数tan()y A x ωϕ=+可以是ππtan 44y x ⎛⎫=-⎪⎝⎭.(函数解析式不唯一)【小问3详解】要证21(2)e 4(1)1e 2ln 34x x f x ax x x ⎡⎤++-->+-⎣⎦,即证21(21)e e 2ln 304x x x x ---+>.设21()(21)e e 2ln 34x x g x x x =---+,则()222()e e e 1e x x x x g x x x x x '⎛⎫=--=+- ⎪⎝⎭0,e 10,x x x >∴+> 设2()e (0)x h x x x=->,则()h x 在区间(0,)+∞上单调递增,232(1)e 20,e 303h h ⎛⎫=->=-< ⎪⎝⎭故存在唯一的02,13x ⎛⎫∈ ⎪⎝⎭,使得()0002e 0x h x x =-=,即002e x x =,即00ln ln 2x x =-+.∴当00x x <<时,()0h x <,即()0g x '<;当0x x >时,()0h x >,即()0g x '>,()g x ∴在区间()00,x 上单调递减,在区间()0,x +∞上单调递增,()min 0()()g x g x g x ∴≥=()00200121e e 2ln 34x x x x =---+()20000122212ln 2234x x x x ⎛⎫=-⨯--++ ⎪⎝⎭0201232ln 2.x x =-+-设21()232ln 2t x x x =-+-,则()t x 在区间2,13⎛⎫ ⎪⎝⎭上单调递增,∴当2,13x ⎛⎫∈ ⎪⎝⎭时,2491()32ln 22(1ln 2)033412t x t ⎛⎫>=-+-=+-> ⎪⎝⎭,21(2)e 4(1)1e 2ln 34x x f x ax x x ⎡⎤∴++-->+-⎣⎦.【点睛】方法点睛:在导函数应用题型中,有些题目零点不会解,可以采用设出零点,利用导数为0条件代回函数解析式求解最值的方法,一般步骤如下:(1)用零点存在性定理判定导函数零点的存在性,列出零点方程()0f x '=,并结合()f x 的单调性得到零点的取值范围.(2)以零点为分界点,说明导函数()f x '的正负,进而得到()f x 的最值表达式.(3)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.。
安徽省阜阳第一中学2024-2025学年高三上学期7月阶段性考试第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What is probably the man?A.A teacher.B.A student.C.A journalist.2.When will the speakers set out?A.At 3:30 p. m.B.At 4:00 p. m.C.At 4:30 p. m.3.What does the woman plan to do this weekend?A.Throw a party.B.Buy some cheese.C.Go to Washington. 4.How much was the man’s new bike?A.$ 120.B.$ 170.C.$ 50.5.Why does Bob refuse the woman’s offer?A.He is poorly paid.B.He is very busy.C.He is not confident.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟:听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.Why does Joshua make the call?A.To ask for advice.B.To check the time.C.To make an apology. 7.Where is Joshua now?A.On Poplar Street.B.On Elmer Road.C.On Cider Street.听第7段材料,回答第8、9题。
高三阶段性诊断测试物 理1.B 【解析】该同学的质量不变,选项A 错误;该同学在这段时间内处于超重状态,电梯启动时一定在竖直向上运动,选项B 正确、C 错误;电梯启动时人受到的合力大小为50 N ,人加速度大小为1.25 m/s 2,选项D 错误。
2.A 【解析】列车通过桥头的平均速度大小1L v t=,列车通过桥尾的平均速度大小22L v t =,平均速度等于中间时刻的瞬时速度,所以列车的加速度大小1222.55v v La t t-==,选项A 正确。
3.C 【解析】根据已知条件可知,运动员着网时的速度大小v 1=8 m/s ,运动员离网时的速度大小v 2=10 m/s ,根据动量定理有(F -mg )t =m (v 1+v 2),解得F =2000 N ,选项C 正确。
4.D 【解析】根据已知条件可知,水从管口水平喷出到落地的时间为0.6 s ,根据勾股定理可知,水的水平位移大小为2.4 m ,所以水从管口喷出时的速度大小为4 m/s ,选项D 正确。
5.C 【解析】根据万有引力提供向心力有()()2224πGMmm R h T R h =++,解得()3224πR h M GT+=,选项C 正确。
6.D 【解析】物体在拉力F 1作用下有F 1cos60°-μ(mg -F 1sin60°)=ma 1,物体在推力F 2作用下有F 2cos30°-μ(mg +F 2 sin30°)=ma 2,解得μ=23,选项D 正确。
7.D 【解析】分析可知,两者运动的v -t 图像如图所示,木板的 长度为1.5 m ,木板的最大速度为1 m/s ,选项A 、B 均错误;物 块向右运动的最大距离为2.5 m ,木板沿地面运动的最大距离为 1 m ,选项C 错误、D 正确。
8.D 【解析】根据图中数据可知,运动员做匀加速直线运动的时间为2 s ,选项A 错误;a -x 图像与横着围成面积的两倍等于速度的平方,即运动员的最大速度(817)4m/s 10m/s v +⨯=,选项B 错误;运动员到达终点前匀速运动的时间为8.3 s ,选项C 错误;运动员在x =8 m 处的速度大小为8 m/s ,运动员在x =17 m 处的速度大小为10 m/s ,此过程中的平均速度大于9 m/s ,此过程运动的时间小于1 s ,运动员的成绩小于11.3 s ,选项D 正确。
2024-2025学年乾县第一中学高三语文第二次阶段性检测试题本试卷满分150分,考试时间150分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面文字,完成下面小题。
材料一:加快形成新质生产力,是我国把握新一轮科技革命机遇、建设现代化产业体系,进而全面塑造发展新优势的关键之举。
我们要充分发挥产业体系完备、超大规模市场等优势,加快培育新质生产力。
新质生产力是先进生产力的具体体现,可从“新”和“质”两个方面理解。
从“新”的角度看,新质生产力的内在要求是创新,不仅包括技术和业态模式层面的创新,还包括管理和制度层面的创新,从而提供有利于其蓬勃发展的环境。
“质”是一事物成为其自身并区别于其他事物的规定性,新质生产力不是传统生产力的局部优化与简单迭代,而是由技术革命性突破、生产要素创新性配置、产业深度转型升级而催生的当代先进生产力。
智能化、数控化、复杂化、精细化的生产工具可以作为新质生产力的重要标志。
(节选自《理解新质生产力的内涵》)材料二:新质生产力是一个内涵丰富、意蕴深厚的经济范畴,代表着一种生产力的跃迁,是科技创新在其中发挥主导作用的生产力,尤其是关键性颠覆性技术实现突破的生产力,具备高效能,体现高质量,区别于依靠大量资源投入、高度消耗资源能源的生产力发展方式,是摆脱了传统增长路径、符合高质量发展要求的生产力,是数字时代更具融合性、更体现新内涵的生产力。
准确理解新质生产力的内涵特征,需要从“新”和“质”两个方面进行把握。
所谓“新”,是指新质生产力不同于一般意义上的传统生产力,是实现关键性颠覆性技术突破而产生的生产力,是以新技术、新经济、新业态为主要内涵的生产力。
高2025届高三上11月阶段性检测数学试题(答案在最后)(满分:150分:考试时间:120分钟)注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭则A B = ()A.()4,3- B.()0,3 C.()3,0- D.()4,0-2.已知点()()()1,2,1,4,,1A B C x -,若A ,B ,C 三点共线,则x 的值是()A.1B.2C.3D.43.“1x >”是“11x-<”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.若0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭,则a ,b ,c 的大小关系为()A.a c b<< B.c a b << C.b c a<< D.c b a <<5.设m ,n 是不同的直线,,αβ为不同的平面,下列命题正确的是()A.若,,n m n αβαβ⊥⋂=⊥,则m α⊥.B.若,//,//n m n m αβα= ,则//m β.C.若,,//,//m n m n ααββ烫,则//αβ.D .若//,,m n m n αβ⊥⊥,则//αβ.6.若曲线1()ln f x x x=+在2x =处的切线的倾斜角为α,则()sin cos cos 1sin2αααα-=-()A.1712-B.56-C.175-D.17-7.已知数列{}n a 的首项12025a =,前n 项和n S ,满足2n n S n a =,则2024a =()A.12025B.12024C.11012D.110138.已知1x 是函数()()2ln 1f x x x =---的零点,2x 是函数()2266g x x ax a =+--的零点,且满足1234x x -<,则实数a 的取值范围是()A.)3,-+∞ B.253,8⎫-⎪⎭C.7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ D.7125,568⎫⎛-⎪⎝⎭二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.在下列函数中,最小正周期为π且在π0,2⎛⎫⎪⎝⎭为减函数的是()A.()cos f x x =B.()1πsin 23f x x ⎛⎫=-⎪⎝⎭C.()22cos sin f x x x=- D.()πtan 4f x x ⎫⎛=-⎪⎝⎭10.ABC V 中,BC =BC 边上的中线2AD =,则下列说法正确的有()A.4AB AC +=B.AB AC ⋅为定值C.2220AC AB += D.BAD ∠的最大值为45︒11.在正方体1111ABCD A B C D -中,6AB =,,P Q 分别为11C D 和1DD 的中点,M 为线段1B C 上一动点,N 为空间中任意一点,则下列结论正确的有()A.直线1BD ⊥平面11A C DB.异面直线AM 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C.过点,,B P Q 的截面周长为+D.当AN BN ⊥时,三棱锥A NBC -体积最大时其外接球的体积为三、填空题:本题共3小题,每小题5分,共15分.12.复数221iz =--(i 是虚数单位),则复数z 的模为________.13.在数列 中,111,34n n a a a +==+,若对于任意的()*,235n n k a n ∈+≥-N 恒成立,则实数k 的最小值为______.14.若定义在()0,+∞的函数()f x 满足()()()6f x y f x f y xy +=++,且有()3f n n ≥对n *∈N 恒成立,则81()i f i =∑的最小值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.平面四边形ABCD 中,已知4,120,AB BC ABC AC =∠=︒=(1)求ABC V 的面积;(2)若150,BCD AD ∠=︒=ADC ∠的大小.16.如图,在直三棱柱111ABC A B C -中,1,3,4,,,AB AC AC AB AA M N P ⊥===分别为11,,AB BC A B 的中点.(1)求证://BP 平面1C MN ;(2)求二面角1P MC N --的余弦值.17.已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为2y x =,点()4,3P 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点()10-,的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM QN ⋅ 为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.18.已知函数()2sin cos f x x x x x =--.(1)求()f x 在πx =处的切线方程;(2)证明:()f x 在()0,2π上有且仅有一个零点;(3)若()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,求a 的取值范围.19.数列{}n b 满足32121222n n b b b b n -++++= ,{}n b 的前n 项和为n T ,等差数列{}n a 满足1143,a b a T ==,等差数列前n 项和为n S .(1)求数列{}{},n n a b 的通项公式;(2)设数列{}n a 中的项落在区间()21,1m m T T ++中的项数为()m c m N *∈,求数列{}mc 的前n 和n H;(3)是否存在正整数m ,使得3m m m mS T S T +++是{}n a 或{}n b 中的项.若有,请求出全部的m 并说明理由;若没有,请给出证明.高2025届高三上11月阶段性检测数学试题(满分:150分:考试时间:120分钟)注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】A【7题答案】【答案】C【8题答案】【答案】D二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.【9题答案】【答案】ACD【10题答案】【答案】ABD 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】 【13题答案】【答案】427【14题答案】【答案】612四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1(2)60︒【16题答案】【答案】(1)证明见解析(2)65-.【17题答案】【答案】(1)22143x y -=;(2)存在,29(,0)8Q -,58564.【18题答案】【答案】(1)220x y π+-=(2)证明见解析(3)1πa <-【19题答案】【答案】(1)21n a n =-,12n n b -=(2)2121233m m m H +=-+(3)1m =,2m =或5m =。
大联考2024—2025学年高中毕业班阶段性测试(二)生物学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共13小题,每小题2分,共26分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.机体中的生物大分子不能及时被正常降解而贮积,会引起细胞、组织及器官功能的障碍,这主要与下列哪种细胞器的功能障碍有关()A.内质网B.高尔基体C.溶酶体D.核糖体2.奶茶作为年轻人喜爱的新式茶饮,由茶、奶和糖等原材料制成,含有多种多样的化学物质。
下列有关奶茶中的物质检测的说法,错误的是()A.若奶茶和斐林试剂水浴加热后不出现砖红色,则说明奶茶中不含糖类B.奶茶中的蛋白质加热变性后,仍可以与双缩脲试剂产生紫色反应C.向奶茶中加入适量的苏丹Ⅲ染液后,奶茶中的脂肪被染成橘黄色D.向奶茶中加入适量的碘液,通过显色反应检测奶茶中是否含有淀粉3.腺苷是一种神经递质,在海马结构中的作用最强。
腺苷激酶(ADK)通过使腺苷磷酸化转变为AMP来降低组织中腺苷的水平,控制中枢神经系统中腺苷的代谢,调节细胞外腺苷的水平。
目前已证实腺苷具有抗癫痫作用,下列有关说法错误的是()A.组成腺苷的化学元素有C、H、O、NB.腺苷分子彻底水解能获得两种不同的产物C.腺苷磷酸化的产物AMP可作为合成DNA的原料D.降低体内ADK的活性对癫痫的发作有明显的抑制作用4.近年来研究发现,原核细胞也存在细胞骨架,人们已经在细菌中发现了FtsZ、MreB和CreS这3种重要的细胞骨架蛋白。
下列有关说法错误的是()A.细菌合成FtsZ、MreB和CreS时直接在细胞质基质中对蛋白质进行加工B.FtsZ、MreB和CreS等蛋白锚定并支撑着线粒体、核糖体等多种细胞器C.高温破坏FtsZ、MreB和CreS的空间结构,从而使其功能不可逆地丧失D.细胞骨架与物质运输、能量转化、信息传递、细胞分裂等生命活动密切相关5.低温处理下,植物细胞能通过改变细胞液渗透压增强其抗寒性。
2024年秋季普通高中11月份高三年级阶段性联考语文本试卷共8页,23题。
全卷满分150分。
考试用时150分钟。
祝考试顺利注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将答题卡上交。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:近些年,人工智能的算法不断完善,版本迭代更替加速,特别是它与大数据系统的对接,使得基于智能创作平台生成的“虚拟作者”大量涌现,诗文本的数量与质量迎来双线飙升。
尤其是,机器人“小冰”“小封”先后推出诗集《阳光失了玻璃窗》《万物都相爱》,加上近期新一代人工智能工具在词句分析能力方面的进化,让人领略到工具理性与自动化技术结合产生的威力。
机器人写诗现象在触发人们的惊叹之余,也开始令更多人反思文学媒介化、产业化生产所导致的问题,其聚讼的焦点便是:机器写的诗是否具备诗的自足性,仿诗、类诗属于“诗”还是“非诗”?人工智能具有永生性,它的不断通过学习趋于完美的特质,恰恰使其离“仿人类主体”的目标愈发偏远。
因为真实的写作者都不是完美的个体,他们的生命是有限的,无从被“编辑”或“优化”,故而才会痴迷于对死亡、孤独这类话题的不懈追求。
人类诗歌的一个核心母题,便是呈现人自身的精神“不完美”,比如恐惧、忧伤、愁怨,等等。
缺乏情感意识的人工智能拟造出的孤独书写、死亡意识、痛感叙事,是把人类基于体验获得的生命感性与思想灵性,固化为基于数据和概率的技术理性,因此很多作品缺乏精神感染力和审美共通感,也无法抵达非理性想象力、潜意识、直觉等需要经历命运磨砺才能顿悟的“真实”。
成都七中2023-2024学年度2024届高三(上)10月阶段性考试语文试卷本试卷共23题,共8页,共150分。
考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
对素食者和肠胃疾病患者来说,藜麦的发现是一个奇迹。
藜麦不含麸质,富含镁和铁,比其他种子含有更多的蛋白质,包括人体无法独自生成的必需的氨基酸。
美国宇航局宣布,藜麦是地球上营养最均衡的食物之一,是宇航员的理想之选。
产于安第斯山的藜麦有一个令西方消费者神往的传说:印加人非常重视藜麦,认为它是神圣的,并且称之为“万谷之母”。
不过,藜麦的爱好者却通过媒体发现了一个令人不安的事实。
从2006年到2013年,玻利维亚和秘鲁的藜麦价格上涨了两倍。
2011年,《独立报》称,玻利维亚的藜麦消费量“5年间下降了34%,当地家庭已经吃不起这种主食了,它已经变成了奢侈品”。
《纽约时报》援引研究报告称,藜麦种植区的儿童营养不良率正在上升。
2013年,《卫报》用煽动性标题提升了人们对这个问题的关注度:“素食者的肚子能装下藜麦令人反胃的事实吗?”该报称,贫穷的玻利维亚人和秘鲁人正在食用更加便宜的“进口垃圾食品”。
《独立报》2013年一篇报道的标题是“藜麦:对你有利--对玻利维亚人有害”。
这些消息传遍了全球,在健康饮食者之中引发了一场良心危机。
在社交媒体、素食博客和健康饮食论坛上,人们开始询问食用藜麦是否合适。
这种说法看似可信,被许多人认可,但是经济学家马克·贝勒马尔等人对此则持保留意见。
毕竟,藜麦贸易使大量外国资金涌入玻利维亚和秘鲁,其中许多资金进入了南美最贫穷的地区。
几位经济学家跟踪了秘鲁家庭支出的调查数据,将种植且食用藜麦的家庭、食用但不种植藜麦的家庭和从不接触藜麦的家庭划分为三个小组。
他们发现,从2004年到2013年,三个小组的生活水平都上升了,其中藜麦种植户家庭支出的增长速度是最快的。
河南省2025届高三政治阶段性考试试题(三)第I卷(选择题共48分)一、选择题(本大题共24小題,每小题2分,共48分。
在每小题列出的四个选项中,只有--项是符合题目要求的)1.中国人民银行发布的数据显示,2024年人民币跨境收付金额19.67万亿元,同比增长21.1%。
人民币成为全球第五大支付货币,跨境人民币客户已覆盖全球200多个国家和地区。
2024年一季度,人民币在全球外汇储备中的占比升到2.02%,创历史新高。
这意味着①中国企业对外贸易交易成本下降②中国对外资吸引力增加③人民币国际购买力提高④人民币国际化进程加速A.①②B.①④C.②③D.③④2.新疆某贫困县引进木耳产业,随着种植技术的不断提升,2024年木耳产量大增,但销售渠道狭窄。
某援疆干部了解这一状况后将木耳推介到消费扶贫电商平台,受到消费者欢迎,实现了“量价齐升”。
下图中(S、D.分别表示供应曲线和需求曲线)能正确反映这一现象的是3. 2024年上半年,我国玉米市场购销趋旺,玉米价格持续上涨。
某伺料厂在生产中削减玉米用量,增加小麦用量。
由此可见①供求变更干脆形响商品的价格②玉米价格受其自身需求弹性影响较大③价格变动调整生产要素的投入④玉米价格受其替代品价格变动的影响A.①③B.①④C.②③D.②④4.下表为我国2015~2025年服务业发展状况:由此可以推断出①服务业成为我国经济发展的重要引擎②我国居民的生存资料消费支出不断削减③服务业对国民经济的限制力日益增加④我国居民发展型、享受型消费不断增加A.①②B. ①④C.②③D.③④5.边际消费倾向是消费增减量与支配收入增减量的比值,表示每增加或削减一个单位的可支配收入时消费的变动状况。
与低收入群体相比,中等收入群体的消费实力更强;与高收入群体相比,中等收入群体的消费意愿更强。
不考虑其因素,下列图示能够正确反映中等收入群体(E)和高收入群体(F)边际消费倾向的是6.某村建立农户土地托付流转、农户土地入股、联合经营等土地流转方式;依据“业主+农户”“专业合作社+农户”的经营模式,合作社、农户按股比安排产业收益,推动了农夫增收。
2024~2025学年吕梁市高三年级阶段性测试化学试题(本试题满分100分,考试时间75分钟。
答案一律写在答题卡上)注意事项:1.答题前,考生务必用0.5毫米黑色签字笔填写好自己的姓名、班级、考号等信息。
2.考试作答时,请将答案正确地填写在答题卡上,答在本试卷上无效。
3.考试结束后,将答题卡交回。
可能用到的相对原子质量: 一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.回首百年征程,我国在科技领域不断创新和超越,“可上九天揽月,可下五洋捉鳖”。
下列说法正确的是( )。
A.“天问一号”着陆火星,探测到火星陨石中含有的和的化学性质不同B.“长征二号F ”运载火箭的推进剂为偏二甲肼-四氧化二氮,四氧化二氮为酸性氧化物C.“蛟龙号”船体使用的是钛合金,钛合金为金属材料D.隐形战机的隐身涂层材料之一为石墨烯,石墨烯是一种有机高分子材料2.我国古代四大发明之一的黑火药是由硫磺粉、硝酸钾和木炭粉按一定比例混合而成的,爆炸时的反应为:,下列说法正确的是( )。
A.的空间填充模型:B.金刚石、石墨和足球烯都是碳的同素异形体C.表示中子数为18的氧原子D.爆炸反应中每生成转移的电子数为3.“中国芯”的主要原料是单晶硅,制取纯硅的过程如图所示。
下列说法错误的是( )。
A.步骤①中的反应为B.二氧化硅是酸性氧化物,能与氢氧化钠反应生成硅酸钠,硅酸钠是一种矿物胶H 1-C 12-N 14-O 16-Na 23-Al 27-Si 28-P 31-S 32-Fe 56-Co 59-Cu 64-Ba 137-83Kr 84Kr 3222S 2KNO 3C K S N 3CO ++=+↑+↑2CO 18O 21mol N A10N 22SiO CSi CO ++↑高温C.步骤②和③均属于置换反应D.纯硅中含有键4.部分含N 和含S 物质的分类与相应化合价关系如图所示,下列推断正确的是( )。
漳州八中2017届高三复习阶段性测试政治卷命题人:郭琼审题人:王美玉一、单项选择题(本大题有24小题,每小题2分,共48分,每小题只有一个正确答案)1.扶贫首在扶智,一要引智,通过政策引导,把外地人才吸引到贫困地区扎根;二要留智,引得凤凰,还得让凤凰留得住;三要育智,政府加企业模式就地建立高等职业教育基地,既解决本地人才就业,而且一个人脱贫带动一家人脱贫,又形成脱贫的扩大效应。
扶贫首在扶智体现的文化生活道理是()①文化影响经济,对经济发展起促进作用②经济发展是文化发展的基础,但并非完全同步③文化是精神力量,可以转化为物质力量④人的全面发展是衡量社会进步的唯一标准A.①④B.②③C.③④D.①②2.许多科学家在回忆成长经历时,都会提起他们青少年时代读过的《十万个为什么》《趣味物理学》《物理学的进化》等科普作品,正是这些科普作品激发了他们对于科学探索的浓厚兴趣、埋下了科学的种子。
材料表明()①人创造了文化,文化也在塑造着人②优秀文化为人的成长提供精神食粮③文化多样性是人类进步的根本动力④科学技术是一个民族文明程度的标志A.①②B.①④C.②③D.③④3.剪纸是我国古老的民间艺术。
围绕“国是家、勤为本、俭养德、孝为先”等主题创作的剪纸画,是我国传统文化与当代价值有机融合的生动体现。
这一艺术创作形式( )①是中华文明的重要标志,指明了中华文化的发展方向②推动中华文化走向世界,扩大了中华文化的国际影响③保留传统文化基本特征,赋予了传统文化新的内涵④把握文化继承与发展的关系,推动了文化在实践中变迁A.①②B.①③C.②④D.③④4.2014年3月,全国首家省级好人馆向社会免费开放。
好人馆以图片、实物、视频等多种形式,生动直观地展现该省829位入选“中国好人榜”的好人事迹,引起社会热烈反响。
设立好人馆()①反映了社会主义核心价值观的理论创新②拓展了提高公民学科文化素质的渠道③丰富了道德教育的内容,创新了道德教育的形式④提供了社会主义核心价值观教育的生动载体A.①②B. ①④C.②③D.③④5.莆仙戏被誉为宋元时期南戏的“活化石”,是首批国家非物质文化遗产。
近年来,当地政府通过引进艺术人才、安排专项财政资金等方式,大力扶持莆仙戏,使这一传统艺术展现出新的魅力。
政府扶持莆仙戏旨在()①拓展戏曲文化市场,实现经济效益最大化②挖掘传统戏曲的历史文化价值③通过推陈出新维护戏曲文化的多样性④推动戏曲文化生产和消费方式的变革A.①②B. ①④C.②③D.③④6.某主流网站联合其他网站共同开展的“2015中国好网民”系列活动,得到了广大网民的积极响应。
线下,做中国好公民;线上,做中国好网民,已经形成共识,深入人心。
在互联网时代,做中国好网民要有()①高度的安全意识,自觉维护国家网络空间主权②文明的网络素养,不传播和使用网络流行语③守法的行为习惯,用法律衡量个人的网上言行④必备的防护技能,不要轻信和转发各类信息A.①③ B.②④ C.①④ D.②③7.2015年,中国政府网发起“我为政府工作献一策”的网民建言征集活动,得到了广大网民的积极响应。
据统计,李克强总理所做的《政府工作报告》中有46 处与网民建议高度契合。
这一活动中网民的积极参与()①体现公民政治素养的提高②体现了法律面前一律平等③有利于政府科学民主决策④是通过社会公示制度参与民主决策A.①②B.①③C.②④D.③④8.由于缺乏有效监管,加上新型城镇化进程中土地开发带来的巨大利益诱惑,“小村官、大腐败”,村官巨贪戏码不断上演。
下列能有效遏制村官巨贪现象的措施是()①村长由村民民主选举产生,经上级政府批准就职②保障村民选举村干部及罢免村干部的权利③乡镇党委要认真落实党风廉政建设的责任④涉及村民利益的大事由村党支部集体讨论决定A.①④B.③④C.②③D.①②9.某市为综合治理交通拥堵问题,起草了治理交通拥堵的具体方案并公布了方案的征求意见稿,公开向市民征集意见。
假如你是该市的市民,你可以()①提交对治理交通拥堵问题的具体建议,行使提案权②指出治理交通拥堵的不合理之处,参与民主决策③表达自己对治理交通拥堵方案的态度,行使表决权④对交通管理部门的工作提出意见和批评,行使监督权A.①④B.③④C. ①③D.②④10.2016年2月26日,国务院客户端正式上线。
该客户端主要发布中央政府重大决策部署和重要政策文件等政务信息,是政府面向社会提供服务、与公众互动交流的新渠道。
国务院客户端的开通()①是人民参与社会公共事务管理意识不断觉醒的表现②有利于加强政府决策透明度和公众参与度③有利于促进创新型政府和服务型政府建设④提高了公民直接管理国家事务的能力A.①③B.②③C.①④D.②④11.2015年9月26日,国务院印发《关于加快构建大众创新支撑平台的指导意见》,这是对大力推进大众创业、万众创新和推动实施“互联网+”行动的具体部署,是加快推动众创、众包、众扶、众筹等新模式、新业态发展的系统性指导文件。
在这件事中,政府的角色是①生产活动的参与者②社会建设的履行者③宏观经济的调控者④公共权力的所有者A.①②B.③④C.②③D.①④12.目前信息安全“黑洞门”已经到了触目惊心的地步,网络黑客攻击与漏洞利用正在向规模化、批量化方向发展,不仅是个人和企业用户的隐私和权利遭到侵害,而且信息安全威胁已经上升到国家安全层面。
为此,我国政府应该()①积极参与新技术的开发,维护网络安全②立足于国际交流和合作,实现国家信息安全③全面履行职能,提高管理和服务的能力④加大行政执法力度,严厉打击网络侵权犯罪A.①②B.③④C.①③D.②④13.十八届四中全会指出:法律的生命力在于实施,法律的权威也在于实施。
各级政府必须坚持在党的领导下,依法全面履行政府职能,加快法治政府的建设。
下列能直接促进法治政府建设的是()①严格规范公正文明司法,依法惩处各类违法行为②做到合法行政、程序正当、权责统一③坚持科学决策、民主决策和依法决策④政府及其工作人员要有良好的业绩A.①②B.①④ C.②③ D.③④14.为推进行政能力建设、提高行政效率,某省加强对各部门工作的监督。
在下列情形中,属于行政系统内部监督的是()①省政府办公厅检查各地九年制义务教育普及情况②省人大常委会在全省范围内开展环境保护执法检查③省纪委调查省政府机关有关工作人员不动产情况④省审计厅对民政部门财政资金使用情况进行审计A.①②B.①④ C.②③ D.③④15.为了细化2016年1月1日起实施的新《环保法》,环保部将出台50多个新文件作为新《环保法》的配套政策,目前,对环境违法企业的按日计罚、查封扣押和停产限产措施,以及企业环境信息公开的四项政策已制定并公开征求意见。
搞好环境保护,需要政府各部门()①进一步转变职能,提高为经济社会发展服务的能力和水平②立足国情、科学治理、分类指导,审慎行使行政权力③定目标、建机制、强监管,树立求真务实的工作方法④广泛收集群众的意见和建议,扩大公民监督权决策权A.①②B.①④ C.②③ D.③④16.某镇召开人大代表向选民述职评议大会,镇人大代表向选民作了述职汇报,并就选民提出的问题进行了详细的解答,选民对人大代表进行了统一的民主测评,此做法()①保障广大选民对人大代表行使监督权和质询权②体现了人大代表应该对人民负责,受人民监督③方便监督人大代表,确立人民当家作主的地位④有利于人大代表密切联系群众,提高履职能力A.①② B.①④ C.②③ D. ②④17.某地人民法院依据《人民陪审员制度改革试点方案》,探索人民群众参与司法活动的制度渠道,尝试“1+4”(1 名法官和4 名人民陪审员)的大陪审模式,主审法官负责法律适用的裁判,人民陪审员行使事实认定主导权。
该项改革()①有利于扩大地方法院的管辖权②体现了人民群众是依法治国的主体③有利于人民对司法活动行使监督权④表明了人民法院是我国的法律监督机关A.①②B.①④C.②③D.③④18.近期,甘肃省拟推行人大常委会讨论决定重大事项年度清单制度,明确了政府须报本级人大及其常委会讨论决定的“重大事项”范围。
落实人大及其常委会对重大事项的决定权,有助于()①夯实人大权力机关地位,完善人民代表大会制度②实现人大政府相互制衡,有效防止国家权力滥用③贯彻民主集中制的原则,发展社会主义民主政治④重构国家政权组织形式,巩固人民当家作主地位A.①②B.①④C. ①③D.③④19.2015年8月,中共中央印发《中国共产党巡视工作条例》并发出通知,要求派出巡视组的党组织及巡视机构要严格依照条例开展工作;被巡视党组织领导班子及其成员要自觉接受巡视监督;广大党员干部要严格遵守党规党纪,模范遵守国家法律法规。
实施该条例旨在①坚持依法执政,完善国家法律体系②落实全面从严治党要求,依规治党③强化党内监督,推进党风廉政建设④加强党内民主建设,规范组织生活A.①②B.①④ C.②③ D.③④20.2015年底,我国基本完成地方党政机关公务用车制度改革,这一改革从根本上杜绝了公车私用。
机关公务人员用私车或乘坐公共交通工具参加公务活动,为群众办理各种事务。
公车改革有利于()①促进党风廉政建设②密切党和群众的关系③提高党依法执政能力④体现我国民主的真实性A.①②B.①④C.②③D.③④21.人民政协植根于中国历史文化,产生于近代以后中国人民革命的伟大斗争,发展于中国特色社会主义光辉实践,具有鲜明中国特色。
对人民政协理解正确的是()A.围绕民主与团结主题开展活动B.社会主义事业的领导核心C.服从中央人民政府的统一领导D.受人大委托,向人大负责22.截至2015年7月,西藏自治区人大及其常委会制定、批准地方性法规和作出具有法规性质的决议、决定共300件,其中现行有效的地方性法规123件,具有法规性质的决议、决定148件,内容涉及政权建设、经济发展、社会稳定、文化教育、文物保护、生态环保等各个方面。
这些法规、决议、决定的制定()①表明在西藏只有自治区人大及其常委会才能行使自治权②有利于巩固和发展平等团结互助和谐的新型民族关系③扩大了民族自治区政府促进各民族共同发展的职责范围④说明民族自治区享有自主管理本地区内部事务的权力A.①② B. ①③ C. ②④ D. ①④23.今年两会期间,全国政协会议新闻发言人王国庆就民族问题回答记者说到,确实有些民族地区的经济社会发展相对滞后,是实现全面建成小康社会“短板”中的“短板”,因而对民族贫困地区“要高看一眼,要厚爱一分”。
实施扶贫攻坚工程,提升少数民族的获得感,要求()①给予民族贫困地区更多的自治权,促进各民族共同繁荣②党要坚持依法治国,为民族地区发展提供制度和法律保障③人大通过行使监督权,督促相关国家机关落实民族政策④政府完善和实施好差别化支持政策,促进民族地区加快发展A.①③B.③④C.①④D.②③24.唐卡作为悬挂供奉的宗教卷轴画,是藏族文化中一种独具特色的绘画艺术形式。