矩形、菱形与正方形测试8
- 格式:docx
- 大小:216.69 KB
- 文档页数:4
矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为A.1B.C.D.2、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④3、下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线相等C.平行四边形的对角线相等D.对角线互相垂直的四边形是菱形4、如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9B.9C.27D.275、如图,是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13B.19C.25D.1696、如图,已知平行四边形ABCD的对角线的交点是0,直线EF过O点,且平行于AD,直线GH过0点且平行于AB,则图中平行四边形共有()A.15个B.16个C.17个D.18个7、如图,四边形ACED为平行四边形,DF垂直平分BE甲乙两虫同时从A点开始爬行到点F,甲虫沿着A﹣D﹣E﹣F的路线爬行,乙虫沿着A﹣C﹣B﹣F的路线爬行,若它们的爬行速度相同,则()A.甲虫先到B.乙虫先到C.两虫同时到D.无法确定8、如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为()A. B. C. D.39、下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形10、如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A. B. C.3 D.11、如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是()A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→矩形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形12、如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形 C.若AD⊥BC且AB=AC,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是矩形13、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3 :4B.5 :8C.9 :16D.1 :214、如图,在△ABC中,∠A=∠B=45 ,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.1615、如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠,折叠后顶点D 恰好落在边OC上的点F处.若点D的坐标为,则点E的坐标为()A. B. C. D.二、填空题(共10题,共计30分)16、工人师傅在做矩形零件时,常用测量平行四边形的两条对角线是否相等来检查直角的精确度,这是根据________.17、阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作E F∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).请回答:BC+DE的值为________参考小明思考问题的方法,解决问题:如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________18、如图,O是边长为4的正方形ABCD的中心,将一块足够大,圆心角为直角的扇形纸板的圆心放在点O处,并将纸板的圆心绕点O旋转,则正方形ABCD被纸板覆盖部分的面积为 ________。
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()A.1B.2C.D.2、下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等且有一个角是直角的四边形是矩形C.平行四边形两条对角线的平方和等于四条边的平方和D.有一条对角线平分一组对角的四边形是菱形3、如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A.AM=ANB.MN⊥ACC.MN是∠AMC的平分线D.∠BAD=120°4、下列给出的条件中,能判定一个四边形是菱形的是()A.有一组对边平行且相等,有一个角是直角B.有一组对边平行且相等,一组邻角相等C.有一组对边平行,一组对角相等,两条对角线相等 D.一组对边平行,一组对角相等,有一组邻边相等5、如图,∠MON=90°,OB=2,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两角平分线所在的直线交于点F,求点A 在运动过程中线段BF的最小值为()A.2B.C.4D.6、菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )A.(-3,﹣1)B.(3,﹣1)C.(3,1)D.(﹣1,3)7、若一个圆内接正多边形的内角是,则这个多边形是()A.正五边形B.正六边形C.正八边形D.正十边形8、下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个9、如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块,按图中的方式组成图案,则选取的三块纸片的不可能的是()A.1,2,3B.1,3,4C.2,3,5D.3,4,510、如图,在□ABCD中,按以下步骤作图:①以点A为圆心,AB的长为半径作弧,交AD于点F;②分别以点F,B为圆心大于FB的长为半径作弧,两弧在∠DAB内交于点G;③作射线AG,交边BC于点E,连接EF.若AB=5,BF=8,则四边形ABEF的面积为()A.12B.20C.24D.4811、如图,是由四个全等的直角三角形与中间的小正方形拼成的大正方形,图案是某届国际数学大会的会标,如果大正方形的面积为16,小正方形的面积为3,直角三角形的两直角边分别为和,那么的值为()A.25B.29C.19D.4812、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1B.2C.3D.413、下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形14、如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.315、如图,△ABC中,点E、F在BC边上,点D,G分别在AB,AC边上,四边形DEFG是矩形,若矩形DEFG面积与△ADG的面积相等,设△ABC的BC边上高AH与DG相交于点K,则的值为()A.1:1B.1:2C.2:3D. :3二、填空题(共10题,共计30分)16、如图,正方形ABCD的边长为4,延长CB至M,使BM=2,连接AM,BN⊥AM 于N,O是AC、BD的交点,连接ON,则ON的长为________17、如图,在菱形中,,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是________.18、如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件________,使四边形DBCE是矩形.19、如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是________.20、如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是________.21、如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________ .22、如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为________cm2。
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG= (BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个2、如图,直角三角形DEF中,∠DFE=90°在直角三角形外面作正方形ABDE,CDFI,EFGH的面积分别为25,9,16.△AEH,△BDC,△GFI的面积分别为S 1, S2, S3,则S1+S2+S3=()A.18B.21C.23.5D.263、如图,在正方形ABCD中,E是BC的中点,△DEF的面积等于2,则此正方形ABCD的面积等于()A.4B.8C.12D.164、如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沼作对折,使得点B落在边AD上的点B处,折痕与边BC交于点E,则CE的长为()A.2cmB.3cmC.4cmD.6cm5、如图,四边形ABCD是平行四边形,则下列结论:①若AB=BC,则四边形ABCD一定是菱形;②若AC⊥BD,则四边形ABCD一定是矩形;③若∠ABC=90°,则四边形ABCD一定是菱形;④若AC=BD,则四边形ABCD一定是正方形.其中正确的有()A.1个B.2个C.3个D.4个6、如图,Rt△ACB中,∠C=90°,AC=6,BC=8,半径为1的⊙O与AC,BC相切,当⊙O沿边CB平移至与AB相切时,则⊙O平移的距离为()A.3B.4C.5D.67、如图,在正方形ABCD中,点O为对角线AC的中点,过点o作射线OG、ON 分别交AB,BC于点E,F,且∠EOF=90°,BO、EF交于点P.则下列结论中:⑴图形中全等的三角形只有两对;⑵正方形ABCD的面积等于四边形OEBF面积的4倍;⑶BE+BF= OA;⑷AE2+CF2=2OP•OB.正确的结论有()个.A.1B.2C.3D.48、如图,有两张形状、大小完全相同的直角三角形纸片(同一个直角三角形的两条直角边不相等),把两个三角形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形,其中,形状不同的四边形有()A.3种B.4种C.5种D.6种9、如图,在矩形中,按以下步骤作图:①分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于点M和N;②作直线交于点E,若,,则该矩形的周长().A.12B.24C.32D.2210、如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1等于( )A.100°B.110°C.120°D.130°11、如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE·OP;③S△AOD =S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是()A.1B.2C.3D.412、如图,把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是( ).A.12B.8+C.8+D.8+13、如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点B的坐标为()A.(1﹣,+1)B.(﹣,+1)C.(﹣1,+1) D.(﹣1,)14、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cos∠ABC =,则BD的长为()A.2B.4C.2D.415、下列说法中错误的是()A.有一组邻边相等的矩形是正方形B.在反比例函数中,y随x的增大而减小 C.顺次连接矩形各边中点得到的四边形是菱形 D.如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°二、填空题(共10题,共计30分)16、如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.17、如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为________.18、如图,,正方形,正方形,正方形,正方形,…,的顶点,,在射线上,顶点,在射线上,连接交于点,连接交于点,连接交于点,…,连接交于点,连接交于点,…,按照这个规律进行下去,设四边形的面积为,四边形的面积为,四边形的面积为,…,,若,则等于________.(用含有正整数的式子表示).19、如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是________.20、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.21、如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为________.22、如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE 沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为________.23、如图,在菱形中,,在上,将沿翻折至,且刚好过的中点P,则________.24、如图,已知四边形ABCD是平行四边形,请你添加一个条件使它成为菱形.这个条件为________.25、若一元二次方程的两个根分别是矩形的边长,则矩形对角线长为________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、N恰好能组成平行四边形?28、如图,在▱ABCD中,E,F分别为AD,BC的中点,连结BE,AF交于点G,连结DF,EC交于点H.求证:四边形EGFH是平行四边形.29、已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.30、如图,矩形ABCD中,AB=4,BC=10,E在AD上,连接BE,CE,过点A作AG∥CE,分别交BC,BE于点G,F,连接DG交CE于点H.若AE=2,求证:四边形EFGH是矩形.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、A5、A6、B7、C8、B9、B10、C11、C12、C13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、。
八年级数学下册第十九章矩形、菱形与正方形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知菱形两条对角线的长分别为8和10,则这个菱形的面积是()A.20 B.40 C.60 D.802、如图,在矩形ABCD中,AB=6cm,对角线AC=10cm,动点P从点A出发,以2cm/s的速度沿折线AB﹣BC向终点C运动.设点P的运动时间为t s,△APC的面积为S cm2,则下列图象能大致反映S与t 之间函数关系的是()A .B .C .D .3、若菱形的两条对角线长分别为10和24,则菱形的面积为( )A .13B .26C .120D .2404、如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A .2.5B .CD 5、在ABCD 中,AC 与BD 相交于点O ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是( )A .AO =COB .AO =BOC .AO ⊥BOD .AB ⊥BC6、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,47、矩形ABCD 的对角线交于点O ,∠AOD =120°,AO =3,则BC 的长度是( )A .3B .C .D .68、陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,下图中有可能不合格的零件是( )A .B .C .D .9、下列命题正确的是( )A .若a b =,则33a b =B .四条边相等的四边形是正四边形C .有一组邻边相等的平行四边形是矩形D .如果2a ab =,则a b =10、如图,已知在正方形ABCD 中,10AB BC CD AD ====厘米,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4AE =厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动时间为t 秒.若存在a 与t 的值,使BPE 与CQP 全等时,则t 的值为( )A .2B .2或1.5C .2.5D .2.5或2第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在矩形ABCD 中,5AB =,4BC =,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,则FC =______2、菱形ABCD 的周长为AC 和BD 相交于点O ,AO :BO =1:2,则菱形ABCD 的面积为________.3、如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是___.4、在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形n 1n n n A B C C -,使得点1A 、2A 、3A 、…在直线1上,点1C 、2C 、3C 、…在y 轴正半轴上,则点n B 的坐标是________.5、已知矩形一条对角线长8cm ,两条对角线的一个交角是60°,则矩形较短的边长为 _____cm .6、判断:(1)菱形的对角线互相垂直且相等( )(2)菱形的对角线把菱形分成四个全等的直角三角形( )7、如图,a //b //c ,直线a 与直线b c 与直线b 之间的距离为ABC 的三个顶点分别在直线a 、直线b 、直线c 上,则等边三角形的边长是______.8、如图,E 是正方形ABCD 的对角线BD 上一点,连接CE ,过点E 作EF AD ⊥,垂足为点F .若3AF =,5EC =,则正方形ABCD 的面积为______.9、一个长方形的周长是22cm ,若这个长方形的长减少2cm ,宽增加3cm ,就可以成为一个正方形,则长方形的长是______cm .10、如图,在矩形ABCD 中,5AB =,3BC =.将矩形ABCD 绕点B 按顺时针方向旋转得到矩形HBEF ,点H 落在矩形ABCD 的边CD 上,则CH 的长是 __.三、解答题(5小题,每小题6分,共计30分)1、已知,将水平向右平移AD 的长度得到其中点C 与点D 对应,点B 与点A 对应,点F 与点E 对应),过点E 作BD 的垂线,垂足为M ,连接AM .(1)根据题意补全图形,并证明MB ME =;(2)①用等式表示线段AM 与CF 的数量关系,并证明;②用等式表示线段AM ,BM ,DM 之间的数量关系(直接写出即可)2、如图,一次函数1y x b =+与反比例函数2k y x=交于点()1,A a ,()4,1D --,与y 轴,x 轴分别交于点B ,C . (1)求反比例函数的表达式;(2)作AE y ⊥轴于点E ,连接DE ,求ADE 的面积;(3)根据图象请直接写出当12y y >时,x 的取值范围.3、如图,ABC 和DBC △中,90ACB DBC ∠=∠=︒,E 是BC 的中点,且ED AB ⊥于点F ,且AB DE =,CD 交AB 于点M .(1)求证:2BD EC =;(2)求ACM △与BCM 的面积之比.4、问题解决:如图1,在矩形ABCD 中,点E ,F 分别在AB ,BC 边上,DE =AF ,DE ⊥AF 于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,△AED=60°,AE=7,BF=2,则DE=________.(只在图2中作辅助线,并简要说明其作法,直接写出DE的长度5、下面是小东设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点.求作:四边形ABCD,使得四边形ABCD是矩形.作法:①作射线BO,以点O为圆心,OB长为半径画弧,交射线BO于点D;②连接AD,CD.四边形ABCD是所求作的矩形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点O为AC的中点,∴AO=CO.又∵BO=,∴四边形ABCD是平行四边形()(填推理的依据).∵∠ABC=90°,∴□ABCD是矩形()(填推理的依据).-参考答案-一、单选题1、B【解析】【分析】根据菱形的面积公式求解即可.【详解】 解:这个菱形的面积=12×10×8=40.故选:B .【点睛】本题考查了菱形的面积问题,掌握菱形的面积公式是解题的关键.2、C【解析】【分析】先求解8,BC = 再分别求解“当03t ≤≤时,点P 在AB 上,当37t <≤时,点P 在BC 上”时的函数解析式,再根据函数解析式判断函数图象即可.【详解】 解: 矩形ABCD 中,AB =6cm ,对角线AC =10cm , 228,BC AC AB 当03t ≤≤时,点P 在AB 上,2,AP t 11=288,22S AP BC t t当37t <≤时,点P 在BC 上,682142,CP t t 11=6142426,22S CP AB t t所以能大致反映S 与t 之间函数关系的是C.故选:C【点睛】本题考查的是动点问题的函数图象,一次函数的图象,矩形的性质,明确“当03t ≤≤时,点P 在AB 上,当37t <≤时,点P 在BC 上”是列函数关系式的关键,也是判断图象的关键.3、C【解析】 【分析】根据菱形的面积公式即可得到结论.【详解】解:菱形的两条对角线长分别为10和24,∴菱形的面积为110241202⨯⨯=, 故选:C .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的面积公式.4、D【解析】【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.解:四边形OABC 是矩形,∴90OAB ∠=︒,在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.5、C【解析】【分析】根据菱形的判定分析即可;【详解】∵四边形ABCD 时平行四边形,AO ⊥BO ,∴ABCD 是菱形;故选C .【点睛】本题主要考查了菱形的判定,准确分析判断是解题的关键.6、C【解析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.7、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=12AC,OB=12BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC2=AC2-AB2=36-9=27,∴BC=故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.8、C【解析】【分析】根据矩形的判定定理判断即可.【详解】∵A满足的条件是有一个角是直角的平行四边形是矩形,∴A合格,不符合题意;∵B满足的条件是三个角是直角的四边形是矩形,∴B 合格,不符合题意;∵C 满足的条件是有一个角是直角的四边形,∴无法判定,C 不合格,符合题意;∵D 满足的条件是有一个角是直角的平行四边形是矩形,∴D 合格,不符合题意;故选C .【点睛】本题考查了矩形的判定定理,正确理解题意,熟练掌握矩形的判定定理是解题的关键.9、A【解析】【分析】利用等式的性质以及矩形、正方形、菱形的判定方法分别判断后即可确定正确的选项.【详解】解:A 、若a b =,则33a b =,故此命题正确;B 、四条边相等的四边形是菱形,故原命题不正确;C 、有一组邻边相等的平行四边形是菱形,故原命题不正确;D 、如果2a ab =,a ≠0时,则a b =,若0a =时,此命题不正确,故选:A .【点睛】本题考查了命题与定理以及等式的性质等知识,解题的关键是了解矩形及菱形的判定方法.10、D【解析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当2a=,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当2a≠,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=252 2.5BP÷=÷=(秒).综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.二、填空题1、3 2【解析】在Rt△ADE中,AD2+DE2=AE2,可得DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,可得(4-x)2=22+x2,解方程即可.【详解】解∵△ABF≌△AEF,∴AE=AB=5,在矩形ABCD中,AD=BC=4,在Rt△ADE中,AD2+DE2=AE2,∴DE=3,CE=CD-DE=2,设FC=x,则EF=BC-FC=4-x,在Rt△ECF中,EF2=EC2+FC2,即(4-x)2=22+x2,8x=12,x=32,∴FC=32.故此答案为32.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.2、4【分析】根据菱形的性质求得边长,根据AO :BO =1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形ABCD 是菱形AB AD DC CB ∴===,11,22AO AC BO BD ==菱形ABCD 的周长为AB ∴ AO :BO =1:2,AB ∴1,2AO BO ∴==2,4AC BD ==1124422ABCD S AC BD ∴=⋅=⨯⨯=菱形 故答案为:4本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.3、(0,-5)【解析】【分析】在Rt △ODC 中,利用勾股定理求出OC 即可解决问题.【详解】解:∵A (12,13),∴OD =12,AD =13,∵四边形ABCD 是菱形,∴CD =AD =13,在Rt △ODC 中,5==OC ,∴C (0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.4、()12,21n n --【解析】【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“Bn (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论.解:当y =0时,有x -1=0,解得:x =1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…,∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…,∴Bn (2n -1,2n -1)(n 为正整数),故答案为:()12,21n n --【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn (2n -1,2n -1)(n 为正整数)”是解题的关键.5、4【解析】【分析】如下图所示:∠AOD =∠BOC =60°,即:∠COD =120°>∠AOD =60°,AD 是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA =OD =OC =OB =12×8=4cm ,又因为∠AOD =∠BOC =60°,所以AD =OA =0D =4cm .【详解】解:如图所示:矩形ABCD,对角线AC=BD=8cm,∠AOD=∠BOC=60°∵四边形ABCD是矩形×8=4cm,∴OA=OD=OC=OB=12又∵∠AOD=∠BOC=60°∴OA=OD=AD=4cm∵∠COD=120°>∠AOD=60°∴AD<DC所以,该矩形较短的一边长为4cm.故答案为4.【点睛】本题主要考查矩形的性质:矩形的对角线相等且互相平分,且矩形对角线相交所的角中“大角对大边,小角对小边”.6、× √【解析】【分析】根据菱形的性质,即可求解.【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形.故答案为:(1)×;(2)√【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.7、【解析】【分析】如图所示,过点A作AD⊥直线c于D,过点B作EF⊥直线b分别交直线a、c于F、E,先证明四边形ADEF是矩形,得到AF=DE,AD=EF,再由直线a与直线b c与直线b之间的距==+=AB=AC=BC=x,由勾股定理BF=BE=AD EF BF BE得:AF=,EC=CD=AF EC CD=+,即可得到=【详解】解:如图所示,过点A作AD⊥直线c于D,过点B作EF⊥直线b分别交直线a、c于F、E,∵a∥b∥c,∴AD⊥直线a,EF⊥直线a,EF⊥直线c,∴四边形ADEF是矩形,∴AF=DE,AD=EF,∵直线a与直线b c与直线b之间的距离为∴BF=BE=∴AD EF BF BE==+=∵△ABC是等边三角形,∴可设AB =AC =BC =x ,由勾股定理得:AF =EC =,CD =又∵AF EC CD =+,∴22231227x x x -=-+-+∴236x -=∴()()422272129641227x x x x -+=--∴()4242721296439324x x x x -+=-+,∴424272129641561296x x x x -+=-+,∴423840x x -=,解得x =,∴△ABC 的边长为故答案为:【点睛】本题主要考查了等边三角形的性质,矩形的性质与判定,勾股定理,平行线的间距,解题的关键在于熟练掌握相关知识.8、49【解析】【分析】延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,由正方形的性质得45CDB ∠=︒,推出BME 是等腰直角三角形,得出3EM BM ==,由勾股定理求出CM ,故得出BC ,由正方形的面积公式即可得出答案.【详解】如图,延长FE 交AB 于点M ,则EM BC ⊥,3AF BM ==,∵四边形ABCD 是正方形,∴45CDB ∠=︒,∴BME 是等腰直角三角形,∴3EM BM ==,在Rt EMC 中,4CM =,∴347BC BM CM =+=+=,∴22749ABCD S BC ===正方形.故答案为:49.【点睛】本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.9、8【解析】【分析】设这个长方形的长为xcm ,则长方形的宽为()11x -cm ,由题意得长2-=宽+3.进而得到方程2113x x -=-+,解方程即可得到答案.【详解】解:设这个长方形的长为x cm ,由题意得:2113x x -=-+,216,x ∴=解得:8,x =答:这个长方形的长为8.cm故答案为:8【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,抓住关键语句,表示出正方形的边长,进而利用正方形边长相等得到方程.10、4【解析】【分析】根据矩形的性质和旋转性质得出BH=AB=5,∠C=90°,再根据勾股定理求解即可.【详解】解:由题意知:5BH AB ==,∠C=90°,∴在Rt△BCH 中,BC =3,∴4CH ,故答案为:4.【点睛】本题考查矩形的性质、旋转性质、勾股定理,熟练掌握旋转性质和勾股定理是解答的关键.三、解答题1、 (1)见解析FC =,理由见解析 ②2222DM BM AM +=【解析】【分析】(1)如图所示,根据四边形ABCD 是正方形,BD 是对角线,得出45ABD ∠=︒,根据EM BD ⊥,可证BEM △是等腰直角三角形即可;(2)①先证AEM △≌FBM 得AM FM =,由AE BF =知EF BC AB ==,证MEF ≌MBC △得EMF BMC ∠=∠,FM MC =,由90FMC ∠=︒知FCM △是等腰直角三角形,从而得FC =;②连接DE ,证四边形CDEF 是平行四边形得DE CF =,由CF =,MF AM =知DE =,结合BM EM =,90DME ∠=︒得222DM EM DE +=,从而得出答案.(1)如图所示,∵DC =AB =AD =BC ,∴四边形ABCD 为菱形,∵∠DAE =90°∴四边形ABCD 为正方形,BD 是正方形ABCD 对角线,45ABD ∴∠=︒,EM BD ,∴∠EMB =90°,∠MEB =180°-∠EMB -∠ABD =180°-90°-45°=45°,∴∠MEB =∠MBE =45°,BEM ∴是等腰直角三角形,MB ME ∴=;(2)①如图所示,连接CM 、FM ,BEM 是等腰直角三角形,MB ME ∴=,45ABM BEM ∠=∠=︒,135AEM FBM ∴∠=∠=︒,又AE FB =,在△AEM 和△FBM 中,AE FB AEM FBM ME MB =⎧⎪∠=∠⎨⎪=⎩, AEM ∴△≌FBM SAS (), AM FM ∴=,AE BF =,EF BC AB ∴==,∵BD 为对角线,∴∠MBC =45°,∴∠MBC =∠MEF =45°,在△MEF 和△MBC 中,ME MB MEF MBC EF BC =⎧⎪∠=∠⎨⎪=⎩, MEF ∴≌MBC SAS (), EMF BMC ∴∠=∠,FM MC =,AM CM FM ∴==,∴∠CMF =∠CMB -∠BMF =∠EMF -∠BMF =∠EMB =90°,∴△CMF 为等腰直角三角形,∴CF=;2222DM BM AM +=②,如图, AE BF =,AE BE BF BE EF ∴+=+=,又//DC AB 且DC AB =,DC EF ∴=,//DC EF ,∴四边形CDEF 是平行四边形,DE CF ∴=, 2CF =,MF AM =,DE ∴,又BM EM =,90DME ∠=︒,222DM EM DE ∴+=,则2222DM BM AM +=.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形与等腰直角三角形及平行四边形的判定与性质、勾股定理等知识点.2、(1)4y x=;(2)52;(3)-40x <<或1x > 【解析】【分析】(1)利用待定系数法求分别列函数解析式,将点D 坐标代入计算即可;(2)根据反比例函数解析式求A 点的坐标,然后证明四边形EONM 为矩形,用三角形面积公式即可;(3)利用一次函数图像位于反比例函数图像上方的位置,得出在交点D 的右侧,y 轴的左侧和交点A 的右侧满足条件即可.【详解】(1)∵点()4,1D --在反比例函数k y x=的图象上, ∴()414k =-⨯-=, ∴反比例函数的表达式为4y x=; (2)∵点()1,A a 在在反比例函数4y x =的图象上, ∴4a =,∴点A 的坐标为(1,4),∵AE y ⊥轴,∴1,4AE OE ==,作DM AE ⊥交AE 的延长线于点M ,交x 轴于点N .∴∠NME =90°,∵AE ⊥y 轴,∴∠MEO =90°,∵∠EON =90°∴∠NME =∠MEO =∠EON =90°,∴四边形EONM 为矩形,则4,1MN OE ND ===,∴5MD =,∴Δ11515222ADE S AE DM =⨯⨯=⨯⨯=;(3)当12y y >时,一次函数13y x =+的图像位于反比例函数24y x=的图像上方, ∵两函数图像的交点为()1,4A ,()4,1D -,在交点D 的右侧,y 轴的左侧和交点A 的右侧满足条件,∴-40x <<或1x >.【点睛】 本题考查待定系数法求分别列函数解析式,一次函数解析式,用求三角形面积,矩形判定与性质,图像法求不等式解集,掌握待定系数法求分别列函数解析式方法,一次函数解析式,,数形结合思想利用图像法求不等式解集是解题关键.3、 (1)见解析 (2)12【解析】【分析】(1)易证DEB A ∠=∠,即可证明ACB EBD ∆≅∆,得出BC BD =,根据点E 是BC 的中点即可解题;(2)过点M 作,BC AC 的垂线,交于点,P Q ,证四边形PMQC 为矩形,再证得四边形PMQC 为正方形,得出MP MQ =,根据ACM BCM S AC S BC=. (1) 解:证明:90DEB ABC ∠+∠=︒,90A ABC ∠+∠=︒,DEB A ∴∠=∠,在ACB ∆和EBD ∆中,ACB DBE A DEB AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ACB EBD ∴∆≅∆,()AAS ;BC BD ∴=,点E 是BC 的中点,2EC BC ∴=,2BD EC ∴=;(2)解:过点M 作,BC AC 的垂线,交于点,P Q ,//,//,90MP QC MQ PC MPC ∴∠=︒,∴四边形PMQC 为矩形,,90BC BD DBC =∠=︒,BCD ∴△为等腰直角三角形,45MCP ∴∠=︒,CPM ∴为等腰直角三角形,CP MP ∴=,∴四边形PMQC 为正方形,MP MQ ∴=, 11,22ACM BCM SAC MQ S BC MQ =⋅=⋅, ACMBCM S AC S BC ∴=, 12AC BC =, 12ACMBCMSS ∴=. 【点睛】本题考查了全等三角形的判定,等腰直角三角形,正方形的判定及性质,解题的关键是掌握全等三角形的判定及性质,同时利用等量代换的思想进行求解.4、(1)见解析;(2)△AHF 是等腰三角形,理由见解析;类比迁移:9【解析】【分析】(1)根据矩形的性质得∠DAB =∠B =90°,由等角的余角相等可得∠ADE =∠BAF ,利用AAS 可得△ADE ≌△BAF (AAS ),由全等三角形的性质得AD =AB ,即可得四边形ABCD 是正方形;(2)利用AAS 可得△ADE ≌△BAF (AAS ),由全等三角形的性质得AE =BF ,由已知BH =AE 可得BH =BF ,根据线段垂直平分线的性质可得即可得AH =AF ,△AHF 是等腰三角形;类比迁移:延长CB 到点H ,使BH =AE =6,连接AH ,利用SAS 可得△DAE ≌△ABH (SAS ),由全等三角形的性质得AH=DE,∠AHB=∠DEA=60°,由已知DE=AF可得AH=AF,可得△AHF是等边三角形,则AH=HF=HB+BF=AE+BF=6+2=8,等量代换可得DE=AH=8.【详解】解:(1)证明:∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵DE⊥AF,∴∠DAB=∠AGD=90°,∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,∴∠ADE=∠BAF,∵DE=AF,∴△ADE≌△BAF(AAS),∴AD=AB,∵四边形ABCD是矩形,∴四边形ABCD是正方形;:(2)①∵四边形ABCD是正方形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD,∵BH=AE,∴△DAE≌△ABH(SAS),∴AH=DE,∵DE=AF,∴AH=AF,∴△AHF是等腰三角形.②延长CB到点H,使得BH=AE,∵四边形ABCD是菱形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD,∵BH=AE,∴△DAE≌△ABH(SAS),∴AH=DE,∠AHB=∠DEA=60°,∵DE=AF,∴AH=AF,∴△AHF是等边三角形,∴AH=HF=HB+BF=AE+BF=7+2=9,∴DE=AH=9【点睛】本题考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,等边三角形判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5、 (1)补全图形见解析(2)OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解析】【分析】(1)根据题意画图即可;(2)根据对角线互相平分的四边形是平行四边形,得到四边形ABCD是矩形,再结合一个角是直角,即可得证.(1)解:如图,四边形ABCD即为所求.(2)证明:∵点O为AC的中点,∴AO=CO.又∵BO=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,∴▱ABCD是矩形(有一个角是直角的平行四边形是矩形).故答案为:OD,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【点睛】本题考查矩形的判定、平行四边形的判定,对角线互相平分的四边形是平行四边形;有一个角是直角的平行四边形是矩形.。
9.4 矩形、菱形、正方形(解答题)1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD 的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.6.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.7.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE 的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.9.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.10.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.11.如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E 关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.12.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)13.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)14.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.15.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.16.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.17.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.20.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.21.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.23.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.24.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.25.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;=2S△ECF,求BE.(2)若AB=2,S△ABE26.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.27.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由28.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.29.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.30.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.答案与解析1.(2021•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2021•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2021•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2021•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2021•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.6.(2021•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.【解答】解:(1)过点P作PG⊥EF于点G,如图1所示.∵PE=PF=6,EF=6,∴FG=EG=3,∠FPG=∠EPG=∠EPF.在Rt△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=120°.(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF,∴ME=NF.又AP=10,∠PAM=∠DAB=30°,∴AM=AN=APcos30°=10×=5,∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.(3)如图,当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P′,P之间运动,∴P′O=PO=3,AO=9,∴AP的最大值为12,AP的最小值为6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.7.(2021•三明)如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可.【解答】证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键.8.(2021•抚顺)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.9.(2021•沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.10.(2021•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED ≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.11.(2021•德阳)如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.【分析】(1)根据直角三角形的性质得到CE=AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案.【解答】(1)证明:∵∠ACB=90°,点E是AB边的中点,∴CE=AB=EA,∵点F是点E关于AC所在直线的对称点,∴AE=AF,CE=CF,∴CE=EA=AF=CF,∴四边形CFAE为菱形;(2)解:∵四边形CFAE为菱形;∴OA=OC,OE=OF,∴OE=BC=5,∴OF=5.【点评】本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键.12.(2021•梅州)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.13.(2021•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.14.(2021•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.15.(2021•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt △CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.16.(2021•遵义)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD 的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.17.(2021•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.18.(2021•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(2021•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ ,由折叠性质得:△ANM ≌△ADM ,∴∠DMA=∠AMQ ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ ,∴MQ=AQ ,设NQ=x ,则AQ=MQ=1+x ,∵∠ANM=90°,∴∠ANQ=90°,在Rt △ANQ 中,由勾股定理得:AQ 2=AN 2+NQ 2,∴(x +1)2=32+x 2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S △NAB =S △NAQ =×AN•NQ=××3×4=;(3)过点A 作AH ⊥BF 于点H ,如图2所示:∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠HBA=∠BFC ,∵∠AHB=∠BCF=90°,∴△ABH ∽△BFC , ∴=, ∵AH ≤AN=3,AB=4,∴当点N 、H 重合(即AH=AN )时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图3所示:由折叠性质得:AD=AH ,∵AD=BC ,∴AH=BC ,在△ABH 和△BFC 中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.20.(2021•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(2021•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.22.(2021•兰州)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23.(2021•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH 和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.。
第19章矩形、菱形和正方形单元测试一.单选题(共10题;共30分)1.取四边形ABCD的各边中点E、F、G、H,依次连结EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )A. 相等B. 相等且平分C. 垂直D. 垂直且平分2.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的是()A. AO=CO,BO=DOB. AO=CO=BO=DOC. AO=CO,BO=DO,AC⊥BDD. AO=BO=CO=DO,AC⊥BD3.如图,矩形ABCD中,AE⊥BD垂足为E,若∠DAE=3∠BAE,则∠EAC的度数为()A. 67.5°B. 45°C. 22.5°D. 无法确定4.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A. (,)B. (,)C. (2,﹣2)D. (,﹣)5.如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A. (﹣1,+1)B. (﹣1,1)C. (1,+1)D. (﹣1,2)6.下列性质中,正方形具有而菱形不一定具有的性质是()A. 四条边相等B. 对角线互相平分C. 对角线相等D. 对角线互相垂直7.菱形具有而矩形不具有的性质是()A. 对角线互相平分B. 四条边都相等C. 对角相等D. 邻角互补8.在平面中,下列说法正确的是().A. 四边相等的四边形是正方形B. 四个角相等的四边形是矩形C. 对角线相等的四边形是菱形D. 对角线互相垂直的四边形是平行四边形9.如图,ABCD、AEFC都是矩形,而且点B在EF上,这两个矩形的面积分别是S1,S2,则S1,S2的关系是()A. S1>S2B. S1<S2C. S1=S2D. 3S1=2S210.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是()A. 90°B. 80°C. 70°D. 60°二.填空题(共8题;共24分)11.如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是________ .12.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为________.13.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为________.14.设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…根据以上规律,第n个正方形的边长a n=________.15.在四边形ABCD中,∠A=∠B=∠C=∠D,则四边形ABCD是________.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是________ .17.(如图所示)两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.18.如图,正方形ABCD的边长为4,延长CB至点M,使BM=2,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.三.解答题(共6题;共36分)19.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.20.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE等于多少时,四边形CEDF是矩形;②当AE等于多少时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)21.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.22.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF的值。
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
9.4矩形、菱形、正方形同步练习一.选择题1.下列说法中不正确的是()A.对角线垂直的平行四边形是菱形B.对角线相等的平行四边形是矩形C.菱形的面积等于对角线乘积的一半D.对角线互相垂直平分的四边形是正方形2.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的平行四边形是菱形C.三个角都是直角的四边形是矩形D.一组邻边相等的平行四边形是正方形3.如图,矩形ABCD中,AB=2,点E在边AD上,EB平分∠AEC,∠DCE=45°,则AE长()A.B.2﹣2C.2﹣D.24.如图,在菱形ABCD中,对角线AC、BD交于点O,且AC=6,BD=8,过A点作AE垂直BC,交BC于点E,则的值为()A.B.C.D.5.如图,点E是矩形ABCD的边CD上一点,作AF⊥BE于F,连接DF,若AB=6,DF=BC,则CE的长度为()A.2B.C.3D.6.如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=()A.30°B.70°C.30°或60°D.40°或70°7.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD =100°时,则∠CDF=()A.15°B.30°C.40°D.50°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4C.1D.9.如图所示,在菱形ABCD中,AC、BD相交于O,∠ABC=70°,E是线段AO上一点,则∠BEC的度数可能是()A.100°B.70°C.50°D.20°10.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别与AD,AC,BC相交于点E,O,F.下列结论正确的个数有()①四边形AFCE为菱形;②△ABF≌△CDE;③当F为BC中点时,∠ACD=90°.A.0个B.1个C.2个D.3个二.填空题11.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠ACB=30°,BD=4,则矩形ABCD 的面积是.12.如图,正方形ABCD边长为2,点P在BC边上,DP交AC于点E,∠ADE=∠AED,则BP的长度是.13.如图,点E为正方形ABCD外一点,ED=CD,AE与BD相交于点F.若∠CDE=52°,则∠DCF=°.14.在长方形ABCD中,AB=,BC=4,CE=CF,延长AB至点E,连接CE,CF平分∠ECD,则BE=.15.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.三.解答题16.如图,点E在矩形ABCD的边BC上,延长EB到点F,使BF=CE,连接AF.求证:AD =EF.17.如图,正方形ABCD中,点P是对角线AC上一点,连接PB,边作PE⊥PB交AD边于于点E,且点E不与点A,D重合,作PM⊥AD,PN⊥AB,垂足分别为点M和N.(1)求证:PM=PN;(2)求证:EM=BN.18.已知:在矩形ABCD中,点E在BC边上,连接DE,且DE=BC,过点A作AF⊥DE于点F.(1)如图1,求证:AB=AF;(2)如图2,连接AE,当BE=DF时,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于AB的线段.参考答案一.选择题1.解:A、对角线垂直的平行四边形是菱形,正确,故不符合题意;B、对角线相等的平行四边形是矩形,正确,故不符合题意;C、菱形的面积等于对角线乘积的一半,正确;故不符合题意;D、对角线互相垂直平分且相等的四边形是正方形,故选项错误,故符合题意.故选:D.2.解:A、一组对边平行,另一组对边也平行的四边形是平行四边形,所以A选项错误,不符合题意;B、对角线相等的平行四边形是矩形,所以B选项错误,不符合题意;C、三个角都是直角的四边形是矩形,所以C选正确;符合题意;D、一组邻边相等的平行四边形是正方形,所以D选项错误,不符合题意.故选:C.3.解:∵四边形ABCD是矩形,∴AB=CD=2,∠A=∠D=∠DCB=90°,∵∠DCE=45°,∴DE=DC=2,∴EC=2,∵∠DCE=45°,∴∠DEC=45°,∵EB平分∠AEC,∴∠BEC=∠AEB=∠AEC=,∴∠EBC=180°﹣67.5°﹣45°=67.5°,∴∠BEC=∠EBC,∴BC=CE=2,∴AD=BC=2,∴AE=AD﹣DE=2﹣2,故选:B.4.解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC===5,∵S菱形ABCD=AC•BD=BC×AE,∴AE==.在Rt△ABE中,BE===,∴CE=BC﹣BE=5﹣=,∴的值为,故选:C.5.解:过D作DH⊥AF于点H,延长DH与AB相交于点G,∵四边形ABCD为矩形,∴AD=BC,∵DF=BC,∴DA=DF,∴AH=FH,∵AF⊥BE,∴DG∥BE,∴AG=BG=,∵矩形ABCD中,AB=DC=6,AB∥DC,∴四边形BEDG为平行四边形,∴DE=BG=3,∴CE=CD﹣DE=6﹣3=3.故选:C.6.解:∵在菱形ABCD中,∠ABC=80°,∴∠ABD=ABC=40°,AD∥BC,∴∠BAD=180°﹣∠ABC=100°,∵△ABE是等腰三角形,∴AE=BE,或AB=BE,当AE=BE时,∴∠ABE=∠BAE=40°,∴∠DAE=100°﹣40°=60°;当AB=BE时,∴∠BAE=∠AEB=(180°﹣40°)=70°,∴∠DAE=100°﹣70°=30°,综上所述,当△ABE是等腰三角形时,∠DAE=30°或60°,故选:C.7.解:如图,连接BF,∵四边形ABCD是菱形,∴CD=BC,∠DCF=∠BCF,在△BCF和△DCF中,∵,∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:B.8.解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:A.9.解:∵四边形ABCD是菱形,∠ABC=70°,∴∠ABO=35°,AC⊥BD,∴∠BAC=55°,∵∠BEC=∠BAC+∠ABE,∴55°≤∠BEC≤90°,故选:B.10.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,AB=CD,∠B=∠D,AB∥CD,∴∠EAC=∠FCA,∵EF垂直平分AC,∴OA=OC,EA=EC,∴∠EAC=∠ECA,∴∠FCA=∠ECA,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AFCE为平行四边形,∵EF垂直平分AC,∴平行四边形AFCE是菱形,①正确;∴AE=CF,∴BF=DE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),②正确;∵四边形AFCE是菱形,∴AF=CF,∵F为BC的中点,∴BF=CF,∴AF=CF=BC,∴∠BAC=90°,∵AB∥CD,∴∠ACD=∠BAC=90°,③正确;正确的个数有3个,故选:D.二.填空题11.解:∵四边形ABCD是矩形,BD=4,∴AC=BD=4,∠ABC=90°,∵∠ACB=30°,∴AB=2,BC===2,∴矩形ABCD的面积是:2×2=4,故答案为:4.12.解:∵正方形ABCD,边长为2,∴AD∥BC,AC=2,∴∠ADE=∠DPC,∵∠ADE=∠AED,∴AE=AD=2,∠DPC=∠AED=∠CEP,∴CP=CE=AC﹣AE=2﹣2,∴BP=BC﹣CP=2﹣(2﹣2)=4﹣2.故答案为:4﹣2.13.解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADB=∠BDC=45°,∵DC=DE,∴AD=DE,∴∠DAE=∠DEA,∵∠ADE=90°+52°=142°,∴∠DAE=19°,在△ADF和△CDF中,,∴△ADF≌△CDF(SAS),∴∠DAE=∠DCF=19°,故答案为:19.14.解:如图,延长CF,BA交于点G,连接EF,过点F作FH⊥CE于H,过点E作EM⊥CF 于M,∵四边形ABCD是矩形,且AB=,BC=4,∴AB∥CD,AB=CD=,∠D=∠ABC=∠CBE=90°,∴∠DCF=∠G,∵CF平分∠ECD,∴∠DCF=∠FCE,FH=DF,∴∠G=∠ECF,∴EC=EG,∴∠ECG是等腰三角形,∴CM=MG,∵CE=CF,∴△ECF是等腰三角形,∵EM⊥CF,FH⊥CE,∴EM和FH是等腰三角形腰上的高,∴EM=FH=DF,∴Rt△CDF≌Rt△CME(HL),∴CM=CD=,∴CG=5,Rt△CBG中,BG===3,设BE=x,则EC=EG=3+x,Rt△CBE中,(3+x)2=x2+42,解得:x=,∴BE=.故答案为:.15.解:如图,连接CG并延长,交AD于点M,连接EM,∵四边形ABCD为菱形,∠B=60°,∴AD∥BC,∴∠A=120°,∠MGD=∠CGH,∵点G为HD的中点,∴HG=DG,∵∠MGD=∠CGH,∴△MGD≌△CGH(ASA),∴MG=CG,MD=CH=BC=AD,∴点G为MC的中点,点M为AD的中点,∵F,G分别为CE和CM的中点,∴FG是△CEM的中位线,∴FG=EM,∴EM=2FG=4,∵E,M分别为AB和AD的中点,∴AE=AM,∵∠A=120°,∴EM=AE=4,∴AE=4,∴AB=2AE=8.故答案为:8.三.解答题16.证明:∵四边形ABCD是矩形,∴AD=BC,∵EF=BF+BE,∵BC=CE+BE,BF=CE,∴EF=BC,∴AD=EF.17.证明:(1)∵四边形ABCD为正方形,∴AC平分∠BAD,又∵PM⊥AD,PN⊥AB,∴PM=PN.(2)∵PM⊥AD,PN⊥AB,∠MAN=90°,PM=PN,∴四边形PMAN为正方形,∴∠MPN=90°,即∠MPE+∠EPN=90°.∵PE⊥PB,∴∠EPN+∠NPB=90°,∴∠MPE=∠NPB.∵PM⊥AD,PN⊥AB,∴∠PME=∠PNB=90°.在△PME和△PNB中,,∴△PME≌△PNB(ASA),∴EM=BN.18.证明:(1)∵四边形ABCD是矩形,AF⊥DE,∴AD∥BC,AD=BC,AB=CD,∠C=∠AFD=90°,∴∠ADE=∠DEC,∵DE=BC,∴AD=DE,在△ADF和△DEC中,,∴△ADF≌△DEC(AAS),∴AF=CD,∴AF=AB;(2)AD,BC,DE的长度等于AB,理由如下:∵△ADF≌△DEC,∴CE=DF,∴BE=EF,∵BE=DF,∴BE=EC=DF=EF,∴DE=2EC,∵DE2=EC2+CD2,∴DE=AB,∴AD=BC=DE=AB.。
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、已知:如图,正方形ABCD中,AB=2,AC , BD相交于点O , E , F分别为边BC , CD上的动点(点E , F不与线段BC , CD的端点重合)且BE=CF,连接OE , OF , EF .在点E , F运动的过程中,有下列四个结论:①△OEF是等腰直角三角形;②△OEF面积的最小值是;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.所有符合题意结论的序号是()A.①②③B.③④C.①②④D.①②③④2、如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为()A.2B.2C.4D.43、下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形 C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形4、下列说法中,正确的有()①圆的半径垂直于弦;②直径是弦;③圆的内接平行四边形是矩形;④圆内接四边形的对角互补;⑤长度相等的两条弧是等弧;⑥相等的圆心角所对的弧相等.A.2个B.3个C.4个D.5个5、小敏是一位善于思考的学生,在一次数学活动课上,她将一副三角板按如图位置摆放,A,B,D在同一直线上,EF∥AD,∠BAC=∠EDF=90°,∠C=45°,∠E=60°,测得DE=8,则BD的长是()A.10+4B.10﹣4C.12﹣4D.12+46、如图,在正方形中,E为边上的一点,沿线段对折后,若比大,则的度数为()A. B. C. D.7、如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.178、如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为A. B. C. D.9、如图,在ABC中,AD平分BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧做弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是().A.2B.4C.6D.810、如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为()A.4B.6C.12D.2411、在菱形ABCD中,下列结论错误的是()A.BO=DOB.∠DAC=∠BACC.AC⊥BDD.AO=DO12、下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形 C.正方形的对角线不能相等 D.正方形的对角线相等且互相垂直13、如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是( )A.①②③B.①②④C.①③④D.②③④14、如图,四边形EFGH与四边形ABCD均为矩形,点E,F,G,H分别在边AB,BC,CD,DA上,且EF=3HE,AB=2BC,则tan∠AHE=()A. B. C. D.15、下列说法错误的是( )A.圆周长C是半径r的正比例函数B.对角线相等的四边形是矩形C.菱形的对角线互相垂直平分D.方差越大,波动越大二、填空题(共10题,共计30分)16、如图,把两张宽度都是3cm的纸条交错的叠在一起,相交成角α.则重叠部分的面积为________.17、将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕.若顶点A,C,D 都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为________.18、反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1= 的图象于点B,当点M在y2= 的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积为2﹣a;③当a=1时,点A是MC的中点;④若S四边形OAMB =S△ODB+S△OCA,则四边形OCMD为正方形.其中正确的是________.(把所有正确结论的序号都填在横线上)19、如图,正方形ABCD的边长为3,延长CB到点M,使BM=1,连接AM,过点B作BN⊥AM,垂足为N,O是对角线AC,BD的交点,连接ON,则ON的长为________.20、如图,已知双曲线()经过矩形OABC的边AB,BC的中点F,E,且四边形OEBF的面积为2,则k=________.21、如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x= 时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的是________(写出所有正确判断的序号).22、如图在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,请你添加一个条件________,使四边形BECF是正方形.23、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为________ .24、如图,在菱形中,,,则菱形的面积为________.25、如图,矩形ABCD中,F 是DC上一点,BF⊥AC,垂足为 E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于________三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.求证:OM=ON.28、如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC⊥EG.29、如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF,BE、CF相交于点G.求证:BE⊥CF.30、如图,在▱ABCD中,E,F为对角线AC上的两点,且AE=CF,连接DE,BF,求证:DE∥BF.参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、B5、C6、C7、C8、A9、D11、D12、D13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、30、。
矩形,菱形与正方形单元测试(8)
一、选择题
1.已知四边形ABCD,下列说法正确的是( )
A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形
B.当AD=BC,AB=DC时,四边形ABCD是平行四边形
C.当AC=BD,AC平分BD时,四边形ABCD是矩形
D.当AC=BD,AC⊥BD时,四边形ABCD是正方形
2.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE,则四边形ADCF一定是( )
A.矩形B.菱形C.正方形D.以上都不对
3.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图①,测得AC=2;当∠B=60°,如图②,则AC的长为( )
A. 2 B.2 C. 6 D.2 2
4.如图,正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM的度数为( )
A.45°B.55°C.65°D.75°
5.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD 沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )
A.15 B.20 C.25 D.30
二、填空题
6.如图,将矩形纸片ABCD折叠,使边AB,BC均落在对角线BD上,得折痕BE,BF,则∠EBF=________.
7. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=__
8.在平面直角坐标系中,已知点A(0,2),B(-23,0),C(0,-2),D(23,0),则以这四个点为顶点的四边形ABCD是_______.
9.如图,在矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=2,BC=3,则图中阴影部分的面积为__ __.
10.如图,点P是正方形ABCD的边AB上一点(不与A,B重合),连结PD,将线段PD绕点P顺时针旋转90°得线段PE,连结BE,则∠CBE等于__ _
三、解答题
11.如图,AE是正方形ABCD中∠BAC的平分线,AE分别交BD,BC于点F,E,AC,BD相交于点O.求证:BE=BF.
12.如图,在等边△ABC中,点D是BC的中点,以AD为边作等边△ADE.
(1)求∠CAE的度数;
(2)取AB边的中点F,连结CF,CE,求证:四边形AFCE是矩形.
13.如图①,②,四边形ABCD是菱形,点P是对角线AC上一点,以点P为圆心,PB为半径的弧,交BC的延长线于点F,连结PF,PD,PB.
(1)如图①,若点P是AC的中点,请写出PF和PD的数量关系;
(2)如图②,若点P不是AC的中点,求证:PF=PD.
14.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.
(1)求证:四边形BMDN为菱形;
(2)若AB=4,AD=8,求MD的长.
15.如图①,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图②,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,求证:MP=NQ.
答案:1----5 BAABD
6. 45°
7. 12 5
8. 菱形
9. 3
10. 45°
11. 解:∵四边形ABCD是正方形,∴AC⊥BD,∠ABC=90°,∴∠CAF+∠AFD=90°,∠BAE+∠BEA =90°,又∵AE平分∠BAC,∴∠CAF=∠BAE,∴∠AFD=∠BEA=∠BFE,∴BE=BF
12. 解:(1)∠CAE=30°(2)易得∠BAE=90°,∠BFC=90°,∴AE∥CF,证△ABD≌△CBF,得AD=CF,又∵AE=AD,∴AE=CF,∴四边形AFCE为矩形
13. 解:(1)PF=PD(2)易证△ABP≌△ADP,∴PD=PB,又∵PB=PF,∴PF=PD
14. 解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠MDO=∠NBO,∠DMO=∠BNO,又∵BO=DO,∴△MOD≌△NOB,∴MO=NO,∴四边形BMDN是平行四边形,又∵MB=MD,∴四边形BMDN 是菱形(2)∵MN垂直平分BD,∴MD=MB,设MD=x,在Rt△ABM中,AB2+AM2=BM2,∴42+(8-x)2=x2,解得x=5,∴MD=5
15. 解:(1)易证△ABE≌△DAF,∴AF=BE(2)过点Q作QE⊥BC于点E,过点P作PF⊥AB于点F,证明△NQE≌△PMF即可得MP=NQ。