数学分析 第六章 中值定理1
- 格式:ppt
- 大小:907.50 KB
- 文档页数:37
第六章 微分中值定理及其应用教学基本要求1.熟练掌握微分中值定理的条件和结论,通过举缺少条件的反例来加深理解;2.熟练掌握三个定理之间的关系以及几何上的一致性;3.熟练掌握L`Hospital 法则并应用极限计算.4.熟练掌握用导数来研究函数单调性、极值、最大值和最小值的方法,尤其是函数的单调性、凸性等几何性状;5.熟练掌握Taylor 公式,并理解Taylor 公式作为Lagrange 定理的推广在多项式逼近中将起的作用;6.掌握中值定理和Taylor 公式的应用,提高应用能力。
7.会利用导数等分析手段准确描绘函数图象.§ 1 拉格朗日定理和函数的单调性教学目的:熟练掌握罗尔中值定理,拉格朗日中值定理及其应用,掌握导数极限定理及意义,应用,掌握函数单调的条件及应用.使学生掌握拉格朗日中值定理,领会其实质,为微分学的应用打好坚实的理论基础 教学内容拉格朗日中值定理及其分析意义与几何意义。
掌握它的证明方法,了解它在微分中值定理中的地位。
教学重点:函数为常函数的充要条件; 导数极限定理; 函数单调的条件.一 罗尔定理与拉格朗日定理数学分析研究的基本对象是定义在实数集上函数的性质,而研究函数性质的最重要工具之一就是微分中值定理,微分中值定理主要指拉格朗日中值定理。
极值概念:回忆极值的概念和可微极值点的必要条件: 定理 ( Fermat ) 设函数f 在点0x 的某 邻域内有定义,且在点0x 可导,若点0x 为f 的极值点,则必有 0)(0='x f1.罗尔中值定理:若函数f 满足如下 条件:(i )f 在闭区间[a ,b]上连续; (ii )f 在开区间(a ,b )内可导; (iii ))()(b f a f =,则在(a ,b )内至少存在一点ξ,使得f '(ξ)=0(分析)由条件(i )知f 在[a ,b]上有最大值和最小值,再由条件(ii )及(iii ),应用费马定理便可得到结论。
第六章 微分中值定理及其应用(计划课时: 8时 )§ 1中值定理 ( 3时 )一 思路: 在建立了导数的概念并讨论了其计算后,应考虑导数在研究函数方面的一些作用。
基于这一目的,需要建立导数与函数之间的某种联系。
还是从导数的定义出发:00)()(limx x x f x f x x --→=)(0x f '.若能去掉导数定义中的极限符号,即00)()(x x x f x f --=?)(0x f ',则目的就可达到.这样从几何上说就是要考虑曲线的割线与切线之间的平行关系. 一方面要考虑给定割线, 找平行于该割线的切线; 另一方面要考虑给定切线, 找平行于该切线的割线. (1)若给定的割线是水平的、斜的或曲线的方程以参数方程的形式给出,则分别可找出相应的切线平行于该割线,再分析所需要的条件,就可建立起Rolle 定理、Lagrange 定理、Cauchy 定理. 这三个微分中值定理用一句话概括:对于处处连续、处处有切线曲线的每一条割线都可以找到平行于该割线的切线. (2)若给定切线, 找平行于该切线的割线, 则不一定能实现.二 微分中值定理:1. Rolle 中值定理: 叙述为Th1. ( 证 ) 定理条件的充分但不必要性.2. Lagrange 中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.Lagrange 中值定理的各种形式. 关于中值点的位置. 系1 函数)(x f 在区间I 上可导且)( ,0)(x f x f ⇒≡'为I 上的常值函数. (证) 系2 函数)(x f 和)(x g 在区间I 上可导且,)()( ),()(c x g x f x g x f +=⇒'≡'.I ∈x 系 3 设函数)(x f 在点0x 的某右邻域)(0x + 上连续,在)(0x +内可导.若)0()(lim 00+'='+→x f x f x x 存在 , 则右导数)(0x f +'也存在, 且有).0()(00+'='+x f x f (证)但是, )0(0+'x f 不存在时, 却未必有)(0x f +'不存在. 例如对函数⎪⎩⎪⎨⎧=≠=.0,0,0 ,1sin )(2x x xx x f 虽然)00(+'f 不存在,但)(x f 却在点0=x 可导(可用定义求得0)0(='f ).Th3 (导数极限定理) 设函数)(x f 在点0x 的某邻域 )(0x 内连续, 在)(0x内可导. 若极限)(lim 0x f x x '→存在, 则)(0x f '也存在, 且).(lim )(00x f x f x x '='→ ( 证 )由该定理可见, 若函数)(x f 在区间I 上可导,则区间I 上的每一点,要么是导函数)(x f '的连续点,要么是)(x f '的第二类间断点.这就是说,当函数)(x f 在区间I 上点点可导时, 导函数)(x f '在区间I 上不可能有第二类间断点.3. Cauchy 中值定理:Th 4 设函数f 和g 在闭区间],[b a 上连续, 在开区间),(b a 内可导, f '和g '在),(b a 内不同时为零, 又).()(b g a g =/ 则在),(b a 内至少存在一点,ξ 使得)()()()()()(a g b g a f b f g f --=''ξξ. 证 分析引出辅助函数 -=)()(x f x F )()()()(a g b g a f b f --)(x g . 验证)(x F 在],[b a 上满足Rolle 定理的条件, ∍∈∃⇒ ),,( b a ξ-'=')()(ξξf F )()()()(a g b g a f b f --.0)(='ξg必有0)(=/'ξg , 因为否则就有0)(='ξf .这与条件“f '和g '在),(b a 内不同时为零” 矛盾. ⇒Cauchy 中值定理的几何意义.Ex [1]P 163 1—4;三 中值定理的简单应用: ( 讲1时 ) 1. 证明中值点的存在性:例1 设函数f 在区间],[b a 上连续, 在),(b a 内可导, 则),(b a ∈∃ξ, 使得)()(a f b f -)(lnξξf ab'⋅=. 证 在Cauchy 中值定理中取x x g ln )(=.例2 设函数f 在区间],[b a 上连续, 在),(b a 内可导, 且有0)()(==b f a f .试证明: 0)()( ),,(='-∍∈∃ξξξf f b a .2. 证明恒等式: 原理.例3 证明: 对R ∈∀x , 有 2π=+arcctgx arctgx .例 4 设函数f 和g 可导且 ,0)(≠x f 又 .0=''g f gf 则 )()(x cf xg =.(证明0) (='fg. ) 例 5 设对R ∈∀ , h x ,有 2|)()(|Mh x f h x f ≤-+,其中M 是正常数.则函数)(x f 是常值函数. (证明 0='f ).3. 证明不等式: 原理.例6 证明不等式: 0>h 时,h arctgh h h<<+21. 例7 证明不等式: 对n ∀,有nn n 1) 11 ln(11<+<+.4. 证明方程根的存在性:例8 证明方程 0cos sin =+x x x 在),0(π内有实根.例9 证明方程 c b a cx bx ax ++=++23423在) 1 , 0 (内有实根.四 单调函数 (结合几何直观建立)1 可导函数单调的充要条件Th 5设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗(或↘) ⇔在),(b a 内 0)(≥'x f ( 或0≤ ).例10 设13)(3+-=x x x f .试讨论函数)(x f 的单调区间. 解:⑴确定定义域. 函数)(x f 的定义域为),(+∞-∞. ⑵求导数并分解因式.)1)(1(333)(2+-=-='x x x x f⑶确定导数为0的点和不存在的点.令0)(='x f ,得1,1=-=x x⑷将导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单Th6设函数)(x f 在区间),(b a 内可导. 则在),(b a 内)(x f ↗↗( 或↘↘) ⇔ⅰ> 对),,(b a x ∈∀ 有0)(≥'x f ( 或)0≤; ⅱ> 在),(b a 内任子区间上.0)(≡/'x f3 可导函数严格单调的充分条件 推论 见P124例11 证明不等式 .0,1≠+>x x e xEx [1]P 124—125 1—7.§2 不定式的极限 ( 2时 )一.型: Th 1 (L 'Hospital 法则 ) ( 证 ) 应用技巧. 例1 .cos cos 1lim2xxtg xx +→π例2 )1l n ()21(l i m2210x x e xx ++-→. 例3 xx ex-+→1l i m 0. ( 作代换x t = 或利用等价无穷小代换直接计算. )例4 xx x x s i n 1s i nlim20→. ( L 'Hospital 法则失效的例 )二∞∞型: Th 2 (L 'Hospital 法则 ) ( 证略 )例5 ) 0 ( ,ln lim >+∞→ααxxx .例6 3lim x e xx +∞→.注: 关于x x e x ln ,,α当+∞→x 时的阶.例7 xxx x sin lim +∞→. ( L 'Hospital 法则失效的例 )三. 其他待定型: ∞-∞∞∞⋅∞ , ,0 ,1 ,000.前四个是幂指型的. 例8.ln lim 0x x x +→例9)(sec lim 2tgx x x -→π.例10xx x =→0lim .例11xx x ⎪⎭⎫⎝⎛++→11lim 0.例12()21cos lim x x x →.例13nn n ⎪⎭⎫ ⎝⎛+∞→211lim .例14设⎪⎩⎪⎨⎧=≠=.0 ,0,0 ,)()(x x x x g x f 且 .3)0( ,0)0()0(=''='=g g g 求).0(f '解 200)(lim 0)(lim )0()(lim )0(x x g xx x g x f x f f x x x →→→=-=-=' 23)0(21)0()(lim 212)(lim 0000=''='-'='=→→g x g x g x x g x x .Ex [1]P 132—133 1—5.§3 Taylor 公式 ( 3时 )一. 问题和任务:用多项式逼近函数的可能性; 对已知的函数, 希望找一个多项式逼近到要求的精度.二. Taylor ( 1685—1731 )多项式:分析前述任务,引出用来逼近的多项式应具有的形式定义 (Taylor 多项式 )(x P n 及Maclaurin 多项式)例1 求函数24)(23+-=x x x f 在点20=x 的Taylor 多项式.三. Taylor 公式和误差估计:称 )()()(x P x f x R n n -=为余项. 称给出)(x R n 的定量或定性描述的式 )()()(x R x P x f n n +=为函数)(x f 的Taylor 公式.1. 误差的定量刻画( 整体性质 ) —— Taylor 中值定理: Th 1 设函数f 满足条件:ⅰ> 在闭区间],[b a 上f 有直到n 阶连续导数; ⅱ> 在开区间),(b a 内f 有1+n 阶导数. 则对),,( ),,(b a b a x ∈∃∈∀ξ 使+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(21)1()()!1()(++-++n n a x n f ξ∑=+-=nk kk a x k a f 0)()(!)(1)1()()!1()(++-+n n a x n f ξ. 证 [1]P 138—139.称这种形式的余项)(x R n 为Lagrange 型余项. 并称带有这种形式余项的Taylor 公式为具Lagrange 型余项的Taylor 公式. Lagrange 型余项还可写为 ,)()!1())(()(1)1(++-+-+=n n n a x n a x a fx R θ ) 1 , 0(∈θ.0=a 时, 称上述Taylor 公式为Maclaurin 公式, 此时余项常写为,)()!1(1)(1)1(+++=n n n x x f n x R θ 10<<θ. 2. 误差的定性描述( 局部性质 ) —— Peano 型余项: Th 2 若函数f 在点a 的某邻域 )(a 内具有1-n 阶导数, 且)()(a fn 存在, 则+-++-''+-'+=n n a x n a f a x a f a x a f a f x f )(!)()(!2)())(()()()(2()n a x )(- , )(a x ∈.证 设)()()(x P x f x R n n -=, na x x G )()(-=. 应用L 'Hospital 法则1-n 次,并注意到)()(a fn 存在, 就有=====--→→)()(lim )()(lim )1()1(00x G x R x G x R n n n a x n a x )(2)1())(()()(lim)()1()1(a x n n a x a f a f x f n n n a x -------→ = 0)()()(lim !1)()1()1(=⎪⎪⎭⎫ ⎝⎛---=--→a f a x a f x f n n n n a x . 称()nn a x x R )()(-= 为Taylor 公式的Peano 型余项, 相应的Maclaurin 公式的Peano型余项为)()(nn x x R =. 并称带有这种形式余项的Taylor 公式为具Peano 型余项的Taylor 公式( 或Maclaurin 公式 ).四. 函数的Taylor 公式( 或Maclaurin 公式 )展开:1. 直接展开:例2 求 xe xf =)(的Maclaurin 公式.解 ) 10 ( ,)!1(!!2!1112<<++++++=+θθn xn xx n e n x x x e . 例3 求 x x f sin )(=的Maclaurin 公式.解 )()!12() 1 (!5!3sin 212153x R m x x x x x m m m +--+-+-=-- , 10 ,)21(sin )!12()(122<<⎪⎭⎫ ⎝⎛+++=+θπθm x m x x R m m . 例4 求函数)1ln()(x x f +=的具Peano 型余项的Maclaurin 公式 .解 )!1() 1()0( ,)1()!1() 1()(1)(1)(--=+--=--n f x n x f n n nn n . )() 1(32)1l n (132n nn x nx x x x x +-+-+-=+-. 例5 把函数tgx x f =)(展开成含5x 项的具Peano 型余项的Maclaurin 公式.2. 间接展开: 利用已知的展开式, 施行代数运算或变量代换, 求新的展开式.例6 把函数2sin )(x x f =展开成含14x 项的具Peano 型余项的Maclaurin 公式 .解 ) (!7!5!3sin 7753x x x x x x +-+-=, ) (!7!5!3sin 141410622x x x x x x +-+-=.例7 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 . 解 ) (!6!4!21c o s6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= (注意, 0),()(≠=k x kx )∴ ) (!62!321)2c o s1(21c o s 665422x x x x x x +-+-=+=.例8 先把函数xx f +=11)(展开成具Peano 型余项的Maclaurin 公式.利用得到的展开式, 把函数x x g 531)(+=在点20=x 展开成具Peano 型余项的Taylor 公式. 解 ,)1(!)1(1)(++-=n n n x n f !)1()0()(n f n n -=. ); ()1(1)(32nn n x x x x x x f +-++-+-=13)2(511131)2(5131531)(-+=-+=+=x x x x g=⎪⎭⎫⎝⎛--+--+--n n n x x x )2() 135 () 1()2() 135 ()2(135113122 +().)2(n x - 例9 把函数shx 展开成具Peano 型余项的Maclaurin 公式 ,并与x sin 的相应展开式进行比较.解 ), (!!2!112n nxx n x x x e +++++= )(!)1(!2!112n n n xx n x x x e +-+-+-= ; ∴ ) ( )!12(!5!32121253---+-++++=-=m m x x x m x x x x e e shx . 而 ) ()!12()1(!5!3sin 1212153---+--+-+-=m m m x m x x x x x . 五. Taylor 公式应用举例:1. 证明e 是无理数: 例10 证明e 是无理数.证 把xe 展开成具Lagrange 型余项的Maclaurin 公式, 有10 ,)!1(!1!31!2111<<+++++++=ξξn e n e . 反设e 是有理数, 即p q p e ( =和q 为整数), 就有 =e n !整数 + 1+n e ξ.对qpn e n q n ⋅=>∀!! ,也是整数. 于是,-⋅=+q p n n e !1ξ整数 = 整数―整数 = 整数.但由,30 ,10<<<⇒<<e e ξξ 因而当 3>n 时,1+n e ξ不可能是整数. 矛盾.2. 计算函数的近似值:例11 求e 精确到000001.0的近似值.解 10 ,)!1(!1!31!2111<<+++++++=ξξn e n e . 注意到,30 ,10<<<⇒<<e e ξξ 有 )!1(3) 1 (+≤n R n . 为使000001.0)!1(3<+n , 只要取9≥n . 现取9=n , 即得数e 的精确到000001.0的近似值为 718281.2!91!31!2111≈+++++≈ e . 3. 利用Taylor 公式求极限: 原理:例12 求极限 ) 0 ( ,2lim20>-+-→a x a a x x x . 解 ) (ln 2ln 1222ln x a x a x ea ax x+++==,) (ln 2ln 1222x a x a x ax++-=-;). (ln 2222x a x aa xx+=-+-∴ a xx a x x a a x x x x 22222020ln )(ln lim 2lim =+=-+→-→ . 4. 证明不等式: 原理.例13 证明: 0≠x 时, 有不等式 x e x+>1. Ex[1]P141 1—3.§4 函数的极值与最大(小)值( 4时 )一 可微函数极值点判别法:极值问题:极值点,极大值还是极小值, 极值是多少.1. 可微极值点的必要条件: Th1 Fermat 定理(取极值的必要条件).函数的驻点和(连续但)不可导点统称为可疑点, 可疑点的求法.2. 极值点的充分条件: 对每个可疑点, 用以下充分条件进一步鉴别是否为极(结合几何直观建立极值点的判别法)Th 2 (充分条件Ⅰ) 设函数)(x f 在点0x 连续, 在邻域) , (00x x δ-和) , (00δ+x x 内可导. 则ⅰ> 在) , (00x x δ-内,0)(<'x f 在) , (00δ+x x 内0)(>'x f 时,⇒ 0x 为)(x f 的一个极小值点;ⅱ> 在) , (00x x δ-内,0)(>'x f 在) , (00δ+x x 内0)(<'x f 时,⇒ 0x 为)(x f 的一个极大值点;ⅲ> 若)(x f '在上述两个区间内同号, 则0x 不是极值点.Th 3 (充分条件Ⅱ——“雨水法则”)设点0x 为函数)(x f 的驻点且)(0x f ''存在.则 ⅰ> 当0)(0<''x f 时, 0x 为)(x f 的一个极大值点;ⅱ> 当0)(0>''x f 时, 0x 为)(x f 的一个极小值点.证法一 .)(lim )()(lim)(000000x x x f x x x f x f x f x x x x -'=-'-'=''→→当0)(0<''x f 时, 在点0x 的某空心邻域内0)(x x x f -')( ,0x f '⇒<与0x x -异号,…… 证法二 用Taylor 公式展开到二阶, 带P eano 型余项. Th 4 (充分条件Ⅲ ) 设0)()()(0)1(00===''='-x f x f x f n ,而0)(0)(≠x fn .则ⅰ> n 为奇数时, 0x 不是极值点; ⅱ> n 为偶数时, 0x 是极值点. 且0)(0)(>x fn 对应极小; 0)(0)(<x f n 对应极大.例1 求函数32)52()(x x x f -=的极值.例2 求函数x x x f 432)(2+=的极值. 例3 求函数34)1()(-=x x x f 的极值.注 Th 2、 Th 3、 Th 4只是极值点判别的充分条件.如函数⎪⎩⎪⎨⎧=≠=-.0,0,0,)(21x x e x f x 它在0=x 处取极小值,但因 ,2,1,0)0()(==k f k .所以无法用Th 4对它作出判别.二 函数的最大值与最小值:⑴设函数)(x f 在闭区间],[b a 上连续且仅有有限个可疑点n x x x ,,,21 . 则 )(m a x ],[x f b a x ∈=max } )(,),(),(),(),( {21n x f x f x f b f a f ;m i n )(m i n ],[=∈x f b a x } )(,),(),(),(),( {21n x f x f x f b f a f .⑵函数最值的几个特例: ⅰ> 单调函数的最值:ⅱ> 如果函数)(x f 在区间],[b a 上可导且仅有一个驻点, 则当0x 为极大值点时,0x 亦为最大值点; 当0x 为极小值点时, 0x 亦为最小值点.ⅲ> 若函数)(x f 在R 内可导且仅有一个极大(或小)值点, 则该点亦为最大(或小)值点.ⅳ> 对具有实际意义的函数, 常用实际判断原则确定最大(或小)值点. 例4 求函数x x x x f 1292)(23+-=在闭区间⎥⎦⎤⎢⎣⎡-25,41上的最大值与最小值.⑶最值应用问题:例5 A 、B 两村距输电线(直线)分别为km 1 和km 5.1(如图), CD 长.3km . 现两村合用一台 变压器供电. 问变压器设在何处,输电线总长BE AE +最小.解 设x 如图,并设输电线总长为(x L.30 ,5.1)3(1)(222≤≤+-++=+=x x x EB AE x L015.1)3(1)3(5.1)3()(222222令===+⋅+-+--+-='x x x x x x x L ,⇒1)3(5.1)3(222+-=+-x x x x , .09625.1 2=-+⇒x x解得 2.1=x 和 6-=x ( 舍去 ). 答: …… 三 利用导数证明不等式:我们曾在前面简介过用中值定理或Taylor 公式证明不等式的一些方法. 其实, 利用 导数证明不等式的方法至少可以提出七种 ( 参阅[3]P 112—142 ). 本段仅介绍利用单调性 或极值证明不等式的简单原理.1. 利用单调性证明不等式:原理: 若f ↗, 则对βα<∀, 有不等式)()(βαf f ≤. 例5证明: 对任意实数a 和b , 成立不等式. 1 ||1||||1b b a a b a b a +++≤+++证 取⇒>+='≥+= ,0)1(1)( ).0( ,1)(2x x f x x x x f 在) , 0 [∞+内)(x f ↗↗. 于是, 由 |||| ||b a b a +≤+, 就有 ) |||| () || (b a f b a f +≤+, 即||1||||1||||||1||||||1||||||1||||||1||b b a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++.2. 不等式原理: 设函数)(x f 在区间) , [∞+a 上连续,在区间) , (∞+a 内可导, 且0)(>'x f ; 又 .0)(≥a f 则 a x >时, .0)(>x f (不等式原理的其他形式.)例6 证明: 21>x 时, 1)1ln(2->+arctgx x .例7 证明: 0>x 时, !3sin 3x x x ->.3. 利用极值证明不等式: 例8 证明: 0≠x 时, x e x+>1. Ex [1]P 146—147 1—9.§5 函数的凸性与拐点( 2时 )一. 凸性的定义及判定:1. 凸性的定义:由直观引入. 强调曲线弯曲方向与上升方向的区别. 定义 见书P146凸性的几何意义: 曲线的弯曲方向;曲线与弦的位置关系;曲线与切线的位置关系. 引理(弦与弦斜率之间的关系)2. 利用一阶导数判断曲线的凸向 Th1 (凸的等价描述) 见书P146例1 (开区间内凸函数的左、右可导性,从而开区间内凸函数是连续的)3. 利用二阶导数判断曲线的凸向:Th2 设函数)(x f 在区间),(b a 内存在二阶导数, 则在),(b a 内 ⑴ )( ,0)(x f x f ⇒<''在),(b a 内严格上凸; ⑵ )( ,0)(x f x f ⇒>''在),(b a 内严格下凸. 证法一 ( 用Taylor 公式 ) 对),,(,21b a x x ∈∀ 设2210x x x +=, 把)(x f 在点 0x 展开成具Lagrange 型余项的Taylor 公式, 有,)(2)())(()()(201101001x x f x x x f x f x f -''+-'+=ξ 202202002)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ.其中1ξ和2ξ在1x 与2x 之间. 注意到 )(0201x x x x --=-, 就有[]20222011021))(())((21)(2)()(x x f x x f x f x f x f -''+-''+=+ξξ, 于是若有⇒<'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f <+⇒< , 即)(x f 严格上凸. 若有⇒>'' ,0)(x f 上式中[])(2)()( ,0021x f x f x f >+⇒> , 即)(x f 严格下凸.证法二 ( 利用Lagrange 中值定理. ) 若,0)(>''x f 则有)(x f '↗↗, 不妨设21x x <,并设2210x x x +=,分别在区间],[01x x 和],[20x x 上应用Lagrange 中值定理, 有 ))(()()( ),,(10110011x x f x f x f x x -'=-∍∈∃ξξ, ))(()()( ),,(02202202x x f x f x f x x -'=-∍∈∃ξξ.有),()( ,2122011ξξξξf f x x x '<'⇒<<<< 又由 00210>-=-x x x x ,⇒ ))((101x x f -'ξ<))((022x x f -'ξ, ⇒)()()()(0210x f x f x f x f -<-, 即 ⎪⎭⎫⎝⎛+=>+22)(2)()(21021x x f x f x f x f , )(x f 严格下凸.可类证0)(<''x f 的情况.例2 讨论函数x x f arctan )(=的凸性区间.例3 若函数)(x f 为定义在开区间),(b a 内的可导函数,则),(0b a x ∈为)(x f 的极值点的 充要条件是0x 为)(x f 的稳定点,即.0)(0='x f4. 凸区间的分离: )(x f ''的正、负值区间分别对应函数)(x f 的下凸和上凸区间.二.曲线的拐点: 拐点的定义.Th3 (拐点的必要条件) Th4注:. 例4 讨论曲线x x f arctan )(=的拐点.Jensen 不等式: 设在区间],[b a 上恒有0)(>''x f ( 或) 0<, 则对],[b a 上的任意n 个点 )1(n k x k ≤≤, 有Jensen 不等式:∑=≥n k k x f n 1)(1( 或⎪⎭⎫⎝⎛≤∑=n k k x n f 11) ,且等号当且仅当n x x x === 21时成立.证 令∑==nk k x n x 101, 把)(k x f 表为点0x 处具二阶Lagrange 型余项的Taylor 公式,仿前述定理的证明,注意∑==-nk kx x10,0)( 即得所证.对具体的函数套用Jensen 不等式的结果,可以证明一些较复杂的不等式.这种证明不等式的方法称为Jensen 不等式法或凸函数法.具体应用时,往往还用到所选函数的严格单调性.例2 证明: 对,,R ∈∀y x 有不等式 )(212y xy x e e e+≤+. 例3 证明均值不等式: 对+∈∀R n a a a ,,,21 , 有均值不等式na a a n11121+++ n a a a a a a nn n +++≤≤ 2121 . 证 先证不等式na a a a a a nn n +++≤ 2121.取x x f ln )(=. )(x f 在) , 0 (∞+内严格上凸, 由Jensen 不等式, 有∑∑∑∑∏=====⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛≤==n k n k k n k k k n k k n nk k x n x n f x f n x n x 111111ln 1)(1ln 1ln .由)(x f ↗↗ ⇒ na a a a a a n n n +++≤ 2121 .对+∈R na a a 1,,1,121 用上述已证结果, 即得均值不等式的左半端. 例4 证明: 对R ∈∀n x x x ,,,21 , 有不等式nx x x n x x x nn 2222121+++≤+++ . ( 平方根平均值 ) 例5设6=++z y x ,证明 12222≥++z y x . 解 取2)(x x f =, 应用Jensen 不等式.例6 在⊿ABC 中, 求证 233sin sin sin ≤++C B A . 解 考虑函数x x x f x x x f sin . 0 , 0 sin .0 ,sin )(⇒<<-=''≤≤=ππ在 区间) , 0 (π内凹, 由Jensen 不等式, 有233sin 33)()()(3sinC sinB sinA ==⎪⎭⎫⎝⎛++≤++=++∴πC B A f C f B f A f . 233sinC sinB sinA ≤++⇒.例7 已知1 ,,,=++∈+c b a c b a R . 求证6737373333≤+++++c b a .解 考虑函数3)(x x f =, )(x f 在) , 0 (∞+内严格上凸. 由Jensen 不等式, 有≤+++++=+++++3)73()73()73(3737373333c f b f a f c b a 28)8()7(37373733===+++=⎪⎭⎫⎝⎛+++++≤f c b a f c b a f . ⇒6737373333≤+++++c b a .例8 已知 .2 , 0 , 033≤+>>βαβα 求证 2≤+βα. ( 留为作业 )(解 函数3)(x x f =在) , 0 (∞+内严格下凸. 由Jensen 不等式, 有=+≤⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+2)()(228)(33βαβαβαβαf f f ⇒=≤+ ,122233βα 2 , 8)(3≤+⇒≤+βαβα. )Ex [1]P 153 1—5.§6 函数图象的描绘( 2时 )微分作图的步骤: ⑴确定定义域.⑵确定奇偶性、周期性.⑶求一阶导数并分解因式,同时确定一阶导数为0的点和不存在的点. ⑷求二阶导数并分解因式,同时确定二阶导数为0的点和不存在的点.⑸将一阶、二阶导数为0的点和不存在的点作为分点插入函数的定义域,列表讨论各个区间上的单调性、凹凸性及各分点的极值、拐点. ⑹确定渐近线.⑺适当补充一些点,如与坐标轴的交点. ⑻综合以上讨论作图. 例1 描绘函数3231)(+--=x x x x f 的图象. 例2 描绘函数222)(21)(σμσπ--=x ex f (其中0,>σμ为常数)的图象.Ex [1]P 155 (1)—(8).。
中值定理知识点总结中值定理的表述:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个点c∈(a, b),满足f'(c) = (f(b) - f(a))/(b - a)。
中值定理的证明比较简单,可以根据函数的连续性和可导性来进行推导。
接下来我们来详细介绍中值定理的知识点。
一、中值定理的条件中值定理的前提是函数在闭区间上连续,在开区间上可导。
这两个条件都是至关重要的,只有同时满足这两个条件,中值定理才成立。
1. 函数在闭区间上连续:闭区间[a, b]是一个包含了a和b的区间,函数在闭区间上连续意味着函数在这个区间内没有间断点,没有跳跃点,图象是一条连续的曲线。
一般来说,函数在有限区间上都是连续的,因此这个条件通常是满足的。
2. 函数在开区间上可导:开区间(a, b)是一个不含a和b的区间,函数在开区间上可导意味着函数在这个区间上具有导数。
可导性是指函数在这个区间内存在切线,即函数在这个区间内是光滑的。
这个条件比较严格,只有在一些特殊的情况下才能满足。
二、中值定理的应用中值定理主要用来描述函数在某个区间内的平均变化率与瞬时变化率之间的关系。
它可以推导出一些重要的结论和定理,对于理解函数的性质和特点有很大的帮助。
1. 平均变化率和瞬时变化率:中值定理可以用来比较函数在闭区间上的平均变化率和在开区间上的瞬时变化率。
平均变化率指的是函数在某个区间内的整体变化情况,而瞬时变化率指的是函数在某一点的瞬间变化情况。
中值定理表明,这两者之间存在着某种联系,通过中值定理可以求得函数在某个区间内的平均变化率和在某一点的瞬时变化率之间的对应关系。
2. 函数的增减性:中值定理可以用来研究函数的增减性。
通过中值定理可以求得函数在某个区间内的导数值,在这个区间上的函数是增加还是减小。
这对于研究函数的极值和拐点有很大的帮助。
3. 函数的凹凸性:中值定理可以用来研究函数的凹凸性。
通过中值定理可以求得函数在某个区间内的二阶导数值,根据二阶导数的正负性可以判断函数在这个区间上的凹凸性,这对于求解函数的拐点和凹凸区间有很大的帮助。
中值定理1. 简介中值定理是微积分中的一个重要定理,它与函数的导数和函数在一个闭区间上的平均值有关。
中值定理包括了拉格朗日中值定理和柯西中值定理。
2. 拉格朗日中值定理拉格朗日中值定理是中值定理中的一种形式,描述了函数导数的性质。
定理的表述如下:定理1(拉格朗日中值定理): 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导。
则在(a,b)内存在一个点c,使得f(b)−f(a)=f′(c)(b−a)。
定理1的几何意义是:在闭区间[a,b]上,存在一个点c,使得函数的切线斜率等于函数在闭区间上的平均改变率。
从图像上看,这相当于函数曲线上的某一点,其切线与函数曲线与线段AB的斜率相等。
拉格朗日中值定理的一个重要推论是费马定理,其表述如下:定理2(费马定理):设函数f(x)在点x=c处取得了极值,并且在x=c处可导,那么f′(c)= 0。
也就是说,在一个连续且可导的函数f(x)的局部极值点上,函数的导数等于零。
3. 柯西中值定理柯西中值定理也是中值定理中的一种形式,它是拉格朗日中值定理的推广形式。
柯西中值定理的表述如下:定理3(柯西中值定理):设函数f(x)和g(x)在闭区间[a,b]上连续,并且在开区间(a,b)上可导,且g′(x)eq0。
那么,存在一个点c,使得$\\frac{f(b)-f(a)}{g(b)-g(a)} = \\frac{f'(c)}{g'(c)}$。
定理3的几何意义是:在闭区间[a,b]上,存在一个点c,使得函数曲线上的切线与函数曲线的斜率的比值等于两个函数之间的平均改变率的比值。
4. 应用中值定理在微积分中有广泛的应用。
下面介绍几个常见的应用场景:4.1 判断函数在某个区间上的增减性通过中值定理,可以判断函数在某个区间上的增减性。
如果函数在某个区间上的导数恒为正,则函数在该区间上单调递增;如果导数恒为负,则函数在该区间上单调递减。
4.2 寻找函数极值点利用拉格朗日中值定理的推论——费马定理,可以寻找函数的极值点。
第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。