第4章 目标规划-第1,2节
- 格式:ppt
- 大小:444.00 KB
- 文档页数:30
第四章 多目标规划模型多目标决策问题的理论基础之一是向量优化问题,也称多目标优化问题。
这类问题,从方法论的角度看,它是一个目标函数中具有向量值的数学规划问题;从决策论角度看,它又是决策规则中含有各个目标极值的决策问题。
因此,多目标决策问题属于向量优化问题。
向量优化问题的解与标量优化问题的解是不同的。
标量优化问题对任何两个函数的解,只要比较它们的两个函数值的大小,总可以从中找出一个最优解,且能排出它们的顺序;而多目标优化问题的解都是非劣解,且不是唯一的,究竟谁优谁劣,很难直接作出判断。
非劣解的概念是由经济学家pareto 于1896年提出的。
但是发展为向量优化问题的生成非劣解技术,还是在1951年Kuhn-Tucker 非劣性条件发表以后的事。
由于向量优化问题是在标量优化问题的基础上发展起来的,只要通过适当的途径将向量优化问题转化为标量优化问题,就可以利用求解标量优化问题的现有方法,求解具有一定特征的向量优化问题。
本章主要介绍有关向量优化问题的基本理论,如非劣解概念,特征非裂解的标量优化解法及非劣性的充要条件。
其中提到的许多概念和术语,在本书的后继章节中都是很有用的。
第一节、多目标规划基本概念与原理1.1非劣解概念设求解()x f 1和()x f 2两个目标的最大值,他们的可行解域如图4.1所示。
图中可行解域内部的各点数据,总是劣于可行域边界上的某点值。
这是因为内部的任一点,总可在边界上至少找出一个相应点,它的目标函数值不劣于内部这点所反映的目标函数值,而且至少有一个目标函数值优于内部这点的目标函数值。
图4.1 多目标非劣解集示意图例如,图中的C 点就劣于A 点和B 点之间任一点所反映的目标函数值。
所以,在优选中类似C 点的一些点可以舍去,并将这些可以舍去的解称为劣解。
但是可行域边界上各点所代表的解,就不能直接判断它们的优劣(如A 点、B 点就是这样)。
因为这些点中任一个与其他任一个相比较,总会发现一个目标函数值比其他另一个函数值优越,但又不是两个目标函数值都优越,否则其中的一个作为劣解而舍去。