2018年秋七年级数学上册 第2章 有理数 2.10 有理数的除法(第1课时)练习课件 (新版)华东师大版
- 格式:ppt
- 大小:1.07 MB
- 文档页数:19
课题:§2.10 有理数的除法教学目标:(一)知识目标:使学生理解有理数除法的意义和法则,初步掌握有理数除法的运算,并了解倒数在有理数中的运算.(二)能力目标:通过寻找除法运算向乘法运算转化,培养学生的观察、分析、归纳、概括的能力,向学生渗透转化类的思想,进一步了解将新问题转化成老问题,用已有知识探求新知识的学习方法.培养学生运用数学思想指导思维活动的能力,感知数学知识具有普遍联系性,相互转化性.(三)情感目标:通过对有理数除法的探索发现,培养学生转化类比的思想,合作交流的意识,.体验矛盾着的双方,在一定条件下相互转化的辩证唯物主义思想.教学重点:熟练进行有理数的除法运算.教学难点:理解有理数除法的法则.教学方法:本节课我主要采用探究式、类比法教学.引导学生通过对已学知识的复习来猜想,用已学知识的学习方法来类比新知并得到新知,发挥学生的主体性.教学准备(教具):彩色粉笔、多媒体课件.课型:新授课.教学过程(一)创设情境,复习导入师:我们已经学习了有理数的三种运算:有理数的加法、减法和乘法,还有哪一种基本的运算方法我们没学?[学生齐答:有理数的除法,教师板书]师:上节课我们学习了有理数的乘法,有理数乘法的法则是什么?[学生举手回答]师:同学们回想一下:有了有理数的加法后,我们是怎样研究和学习有理数的减法的?生1:把减法变成加法.师:减法变成加法的条件是什么?生1:减去一个数等于加上这个数的相反数.师:为什么能实现这样的转化?其根本原因是什么?[同学们思考一会儿]生2:因为加法和减法有密切关系,他们互为逆运算.师:我们已经有了学习减法的经验,又掌握了乘法的运算,同学们想一想,怎样来研究有理数的除法?[这时,有不少同学接茬:和减法一样,想办法把除法变成乘法]师:有同学已经说了,也用转化的思想,把除法变成乘法.那能不能这样转化?如果能,转化的条件是什么?我们大家一起来探索一下.(二)探索新知,讲授新课()()?26=÷-师:怎样做有理数的除法我们暂时还不知道,那看了题以后,我们知道什么? 生3:只知道-6是被除数,2是除数.师 :对.那么根据小学除法的意义,我们要计算(-6)÷2,就是要求一个数,使它与2的乘积是-6.写成算式是()6?2-=⨯根据有理数的乘法运算,有()632-=-⨯所以 ()326-=÷-这是根据除法的意义和乘法与除法互为逆运算,我们得到了-6除以2的商是-3. 另外,我们还知道:()3216-=⨯- 所以, ()()21626⨯-=÷- 这表明除法可以转化为乘法来进行. 试一试填空:()()()()()()()()()().3266;3166;636;828⨯-=÷-⨯-=÷-⨯=-÷⨯=-÷ 同学们,有什么发现:小学学习过倒数的意义,对于有理数仍有:乘积是1的两个数互为倒数. 师:这样,有理数的除法都可以转化为乘法:()()21626⨯-=÷- 类比有理数的减法法则,对有理数除法,一般有有理数除法法则:除以一个数等于乘上这个数的倒数.如果用字母表示:[同学] ba b a 1⨯=÷ 师:这个式子有没有问题,该注意什么?生4:除数b 不能为零.如果b=0,那么b1就没有意义. (三)尝试反馈,巩固练习例1 计算: [教师讲解](1) ()618÷-;(2)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-5251;(3)0÷(-8);(4)(-6.5)÷0.13. 解: (1)()()36118618-=⨯-=÷- (2)2125515251=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛- (3)()081080=⎪⎭⎫ ⎝⎛-⨯=-÷ (4)()50131002131001321313.05.6-=⨯⎪⎭⎫ ⎝⎛-=÷⎪⎭⎫ ⎝⎛-=÷- 因为除法可化为乘法,根据例题,所以有理数的除法有与乘法类似的法则: 两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(四)变式训练,培养能力例2 化简下列分数:[学生口答] (1) 312-; (2) 1624--. 解: (1) ()()4312312312-=÷-=÷-=- (2) ()()231612416241624=⨯=-÷-=-- 例3 计算: [教师讲解] (1) ()67624-÷⎪⎭⎫ ⎝⎛-; (2) ⎪⎭⎫ ⎝⎛-⨯÷-43875.3. 解:(1) ()71471461762467624=+=⨯⎪⎭⎫ ⎝⎛+=-÷⎪⎭⎫ ⎝⎛- (2) 343782743875.3=⨯⨯=⎪⎭⎫ ⎝⎛-⨯÷- (五)课堂总结:师:大家学习了一节课,有什么收获?生5:学习了有理数的两种法则:① 除以一个数等于乘上这个数的倒数.用字母表示: ()01≠⨯=÷b ba b a ② 两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.师 :生5把这节课学习的新知识做了很好的总结,除了知识之外,还有什么收获没有?生6:转化类比的思想.师:运用转化的思想.在研究新知识的时候,想办法将新问题转化为老问题,然后用已学知识来解决新问题,从而获得新知识.类比已学知识得到相似的新知识.(六)作业布置:1、复习本节内容,掌握有理数的两个法则.2、必做题61P 习题2.10 .3、选做题81P A 组7,8 B 组16.4、预习下节内容.板书设计。
第一章有理数2.2有理数的乘除法2.2.2 有理数的除法第1课时有理数的除法一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃.某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃.请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?例如8÷(-4).师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以 8÷(-4)=-2 ①另外,我们知道,8×(-)=-2 ②由①、②得 8÷(-4)=8×(-)③③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4, 等于乘以-4的倒数-.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,4,-8;右边组由上到下5答案依次为:-2,-6,4,-8;5教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨:从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·(b≠0),其中a、b表示任意有理数(b≠0)例如:教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9);(2)(–27) ÷3;(3)0 ÷ (–7);(4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) ―123 ;(2)―45―12 .师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2)师生共同解答如下:解:(1)原式=====点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式== 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A.3B.–3 C.13D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a,b互为相反数,且a ≠ b,则ab=________;(2)当a < 0时,|a|a=_______;(3)若a>b,ab<0,则a,b的符号分别是__________.(4)若–3x=12,则x =_____.4.若|2x+6|+|3―y|=0,则xy=_________.5. (1)计算;(2). 计算;(3)计算参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x+6|+|3―y|=0,解得x=-3,y=3,所以xy =―33=-1.5.解:(1)原式==(2)原式==(3)原式==(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。