中考第一轮一次函数复习教案
- 格式:doc
- 大小:276.50 KB
- 文档页数:9
课题中考第一轮复习《一次函数》、【教学目标】(一)知识与技能1. 理解正比例函数和一次函数的概念,能根据实际问题的条件或图象上的点的坐标确定正比例函数和一次函数的解析式.2. 理解一次函数和正比例函数的图象与性质,理解它们的性质在实际应用中的意义3. 会用图象法解二元一次方程组,能利用一次函数的图象与性质解决简单的实际问题(二)过程与方法1、通过复习进一步发展学生形象思维能力和应用数学的能力2、发展学生数形结合意识,提高学生观察图象的能力(三)情感态度价值观通过复习进一步培养学生良好的学习习惯二、【教学重难点】1、重点:一次函数的图象与性质.2、难点:用图象法解二元一次方程组,及利用一次函数的增减性解决实际问题中的最值.三、教学过程:(一)考点知识精讲1、正比例函数和一次函数的概念一般地,如果y=kx+b (k,b是常数,心0),那么y叫做x的一次函数。
特别地,当一次函数y=kx+b中的b为0时,y=kx (k为常数,心0)。
这时,y叫做x的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数y二kx • b的图像是经过点(0,b)的直线;正比例函数y二kx的图像是经过原点(0,0)的直线注:当时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质」般地,正比例函数y =kx有下列性质:(1) 当k>0时,图像必定经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像必定经过第二、四象限,y随x的增大而减小。
5、一次函数的性质一般地,一次函数y=kx・b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y二kx(k = 0)中的常数k。
确定一个一次函数,需要确定一次函数定义式y =kx • b(k = 0)中的常数k和b。
中考数学复习-《一次函数复习》1课时1.课标解析一次函数是初中阶段学生初次接触到的函数知识,它是在学生学习了一元一次方程,一元一次不等式、二元一次方程组的基础上进行学习的。
它是学生学习反比例函数、二次函数的基础与条件,是数形结合思想的一种完美体现,在整个数学知识体系中具有不可替代的作用。
同时,一次函数也是学生利用变量知识解决实际问题的一种数学模型,是学生了解物质世界变化规律的一种思维方式,2.知识目标了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。
3.能力目标让学生经历知识的梳理过程和归纳总结过程,加深对数形结合的数学思想的理解,强化数学的建模意识,提高利用演绎和归纳进行复习的方法的掌握程度。
4.考试内容(1)一次函数的图象和性质及其应用。
(2)考查学生对“由形到数”和“由数到形”的感知能力和抽象能力。
教学过程(一)、知识回顾:开门见山地给出一次函数的定义,图象和性质等的框架图。
(二)、提出“六求”:本单元的知识点比较繁多,且地位比较重要。
因此,我将本单元题目归为“六求”(三)分“求”例析及练习1、求系数(指数):例1、已知函数y=(k-1)x + m-2①若它是一个正比例函数,求k , m的值。
②若它是一个一次函数,求 k , m的值。
分析:这类题目主要考察对函数解析式的特征的理解,在讲解时要突出两点:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。
2、求位置:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,因此我把这个知识点编成顺口溜:“小小不过一,大小不过二,小大不过三,大大不过四,”,意思是当k<0,b<0是,直线经过二三四象限,以此类推。
同学们很容易记住并理解:例:两直线 y=ax+b 和 y=bx+a 在同一平面直角坐标系内的图象可能是 ( )3、求交点:①一次函数的图象与坐标轴的交点坐标以及两直线交点坐标的求法。
一次函数中考复习教学设计一、教学目标:1. 知识目标:(1)理解一次函数的定义及其性质(2)掌握用待定系数法确定函数解析式,并能根据图像和性质解决与一次函数相关的应用问题(3)利用数学结合的思想,解与一次函数图像有关的问题。
2. 能力目标:通过一次函数性质及其应用的学习,培养学生观察分析、类比归纳的探究能力,加深对数形结合、分类讨论等数学思想的认识。
3、情感、态度与价值观:①体验函数与人类生活的密切联系,增强对函数学习的求知欲。
②体验数学充满着探索性和创造性,从而培养学生对学习数学的兴趣。
二、教学重难点1、教学重点:(1)一次函数的图像及性质。
(2)一次函数的综合应用。
2、教学难点:(1)一次函数的综合应用。
(2)数型结合、分类讨论的思想在解题中的应用三、教学设计简介:因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其综合应用。
为了节约学生的时间,打造高效课堂,我开门见山,用幻灯片直接向学生展示例题,然后让学生根据例题所用知识提示回顾知识要点,变被动学习为主动学习。
随后设置了两个大题例1和例2,例1第(1)问是求直线解析式的运用,会把点的坐标转化为线段的长度;第(2)问是求正比例函数y=mx的比例系数,要用到分类讨论的思想及证两个直角三角形全等的知识,第(3)问既要会根据直线解析式求出点的坐标,同时还要会根据两条直线求出交点坐标,从而求出线段的长度。
例2主要考查的动点问题,让学生明白点在动的过程中哪些量是会变化的,哪些量是不会变的,由于这是难点问题,故又设计了一个变式练习,让学生完成,从而克服学生的心理障碍,只要理解了动点问题解题方法、思路,一切问题都会迎刃而解。
四、教学过程:(一)小牛试刀展示自我已知一次函数y=(3-k)x-2k2+18(1)k为时,它的图象经过原点;(2)k为时,它的图象经过点(0,-2);(3)k为时,它的图象与y轴的交点在x轴的上方;(4)k为时,它的图象平行于直线y=-x;(5)k为时,y随x的增大而减小.(先让学生自主完成,并说说在完成此题时你主要用了一次函数的什么知识?)【设计意图】此环节主要是通过学生的自我展示,在头脑中唤起学生对本知识点的链接.这样既有利于学生独立、自主地去积极思考,又能促成学生的团结协作的精神;特别是在完成后要学生说明主要运用了一次函数的那些相关知识,更是无形地促成学生将知识内化,从而达到促成学生的能力提升的效果.(二)挑战中考初露锋芒1.出示例1(如图1),在平面直角坐标系中,A(2,0),B(0,4),(1)求直线AB的解析式;变式练习:在平面直角坐标系中,直线l: y=- ax+2a与x轴正半轴、y轴正半轴分别交于A、B两点。
教育学科教师辅导讲义学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师:授课类型 T 一次函数的概念与性质 C 一次函数与实际问题 T 一次函数综合运用授课日期及时段教学内容一、同步知识梳理1. 函数的概念一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个值,y 都有唯一的值与其对应,那 么我们就说x 是自变量,y 是因变量,y 是x 的函数。
注:构成函数的条件是: ①两个变量。
②对自变量x 在取值范围内的每一个值,y 都有唯一的值与其对应。
2. 函数的三种表示方法:解析法、列表法、图象法3. (1)一次函数的图像经过坐标轴上的(0,b )和()-bk ,0点。
(2)正比例函数必经过(0,0)点。
(3)一次函数与正比例函数的图像都是一条直线。
4. 一次函数与正比例函数的联系与区别:①正比例函数是一次函数y =kx +b (k ,b 是常数,k ≠0)中b =0的特殊情形; 因此正比例函数一定是一次函数,而一次函数不一定是正比例函数。
②一次函数=+的图象是一条过,和,两点的直线;y kx b 0b ()()-bk 0正比例函数y=kx的图象是一条过原点(0,0)和(1,k)的直线。
5. 一次函数的性质:y=kx+b(k,b为常数,k≠0),①当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小。
二、同步题型分析题型1:平面直角坐标系例1:(1)若点A(a,b)在第三象限,则点Q(-a+1,3b-5)在第________象限。
(2)若点B(m+4,m-1)在x轴上,则m=_____________。
(3)若点C(x,y)满足x+y<0,xy>0,则点C在第___________象限。
(4)若点D(6-5m,m2-2)在第二、四象限夹角平分线上,则m=_________。
(5)已知点和点关于y轴对称,则a=______,b=________。
解:(1)点A(a,b)在第三象限∵a<0,b<0∴-a+1>0,3b-5 <0点Q(-a+1,3b-5)在第四象限(2)点B(m+4,m-1)在x轴上∴m-1=0,解得m=1(3)xy>0,同号x+y<0,均为负点C在第三象限(4)点D(6-5m,m2-2)在第二、四象限夹角平分线上,(5)点和点关于y轴对称,总结:这组填空题是点的坐标特征的应用,要记住点在四个象限内的符号特征,点在坐标轴上,一、三与二、四象限夹角平分线上的特征;点关于x轴,y轴,原点对称点的特征。
中考复习 第一轮 第十课时 《一次函数》中考目标锁定:1、理解一次函数的概念;理解正比例函数是一次函数的特例;2、会画一次函数的图象,掌握一次函数的基本性质;3、会求一次函数解析式;4、体会一次函数与一次方程(组)及一次不等式的关系;5、会用一次函数解决实际问题。
教学重点: 掌握一次函数的基本性质;会用待定系数法求一次函数解析式教学难点:应用一次函数知识建构数学模型解决实际问题。
教学过程:考点梳理:(设计说明:在第一轮复习中已穿插了中考模拟测试,学生对一次函数各知识点已经有所回顾,但尚不能将各知识点贯穿起来建立知识框架,教学时要充分发挥学生的主体意识和主观能动性,力求由学生讲各知识点清晰的表达出来,不足之处再由教师补充订正,模糊之处可采用争辩、讨论、互相补充等形式,讲求实效,复习出效果)一.一次函数的概念(1)一次函数:形如___________的函数叫做一次函数.(2)正比例函数:当 b =0 时即 y =kx (k ≠0)称为正比例函数.正比例函数是一次函数的特殊情况.二.一次函数图像与性质:(设计说明:利用一次函数的性质画出函数草图不仅能使学生体会数形结合思想,而且有助于学生理解k 、b 的作用,但针对模考中学生概念模糊,教学中随机抽出4名学生板演四种情况下的草图,既可暴露存在的问题又能加深认识,在这之后由学生快速总结各知识点,提高效率。
)(1)交点坐标:一次函数 y =kx +b (k ≠0)的图象与 x 轴的交点是_______,与 y 轴的交点是______(2)正比例函数 y =kx (k ≠0)的图象恒过点_______.(3)在同一直角坐标系中如果直线y=k 1x+b 1和y=k 2x+ b 2平行,那么 ,如果两直线相交于y 轴上的同一点,那么 。
活动1:概念模糊矫正练习一:(设计说明:作为考点一、二的巩固以及纠错练习,穿插在了对应考点梳理过程中,意在调动学生的学习主动性,既能及时巩固知识加强对概念的理解,又在纠正自己和他人的错误中再次弥补知识上的漏洞。
初三一次函数复习(一)一、教学目标:1、知道一次函数与正比例函数的定义;2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想;3、弄清一次函数与正比例函数的区别与联系;4、熟练运用待定系数法求一次函数的解析式。
二、教学重、难点:重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。
难点:运用一次函数的图像和性质解决含字母参数的问题,体会数形结合与方程思想。
三、教学准备:课件、电脑、投影仪四、教学方法:例证法、探究法五、教学设计简介:因为这是初三总复习节段的复习课,在这之前已经复习了变量、函数的定义、表示法及图象,而本节的教学任务是一次函数的基础知识及其简单的应用,没有涉及实际应用。
为了节约学生的时间,打造高效课堂,我开门见山,直接向学生展示教学目标,然后让学生根据本节课的复习目标进行联想回顾,变被动学习为主动学习。
例如,在“图象及其性质”环节中,老师让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充纠正。
这样,使无味的复习课变得活跃一些,增强学习气氛。
随后教师就用大屏幕展示出标准答案,然后教师组织学生以比赛的形式做一些针对性的练习。
六、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是x的一次函数正比例函数:对于y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2. 一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练一:1、指出下列函数中的正比例函数和一次函数:①y = x +1;②y = - x/5;③y = 3/x ;④y = 4x ;⑤y =x(3x+1)-3x ;⑥y=3(x-2);⑦y=x/5-1/2。
【鲁教版】中考数学一轮分类复习十四《一次函数》教案一. 教材分析鲁教版中考数学一轮分类复习十四《一次函数》教案,主要围绕一次函数的定义、性质、图像、应用等方面展开。
本节课的教学内容是一次函数的基本概念、一次函数的图像与性质、一次函数的应用。
通过本节课的学习,使学生掌握一次函数的基本知识,能够运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了初中阶段函数的基本知识,对函数的概念、性质有一定的了解。
但部分学生在一次函数的图像与性质方面还存在一定的困难,需要教师在教学过程中给予关注和引导。
此外,学生对实际问题中的一次函数模型还比较陌生,需要通过实例讲解和练习,提高学生运用一次函数解决实际问题的能力。
三. 教学目标1.知识与技能:理解一次函数的定义,掌握一次函数的图像与性质,能够运用一次函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现一次函数的性质,培养学生的观察能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的学习态度,提高学生解决问题的能力。
四. 教学重难点1.教学重点:一次函数的定义、图像与性质。
2.教学难点:一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣,引导学生理解一次函数的实际意义。
2.互动教学法:教师与学生互动,引导学生观察、分析、归纳一次函数的性质,提高学生的思维能力。
3.实践教学法:通过解决实际问题,培养学生运用一次函数解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备。
2.学具:笔记本、文具。
3.教学资源:一次函数的相关案例、习题。
七. 教学过程1.导入(5分钟)教师通过生活实例引入一次函数,引导学生理解一次函数的实际意义。
例如,讲解交通费用与行驶里程之间的关系,引导学生发现一次性费用与行驶里程之间的关系可以表示为一次函数。
2.呈现(10分钟)教师通过多媒体展示一次函数的图像,引导学生观察、分析一次函数的性质。
课题----- 中考第一轮复习《一次函数》 一、【教学目标】(一)知识与技能1.理解正比例函数和一次函数的概念,能根据实际问题的条件或图象上的点的坐标确定正比例函数和一次函数的解析式.2.理解一次函数和正比例函数的图象与性质,理解它们的性质在实际应用中的意义.3.会用图象法解二元一次方程组,能利用一次函数的图象与性质解决简单的实际问题. (二)过程与方法1、通过复习进一步发展学生形象思维能力和应用数学的能力2、发展学生数形结合意识,提高学生观察图象的能力 (三)情感态度价值观通过复习进一步培养学生良好的学习习惯 二、【教学重难点】1、重点:一次函数的图象与性质.2、难点:用图象法解二元一次方程组,及利用一次函数的增减性解决实际问题中的最值. 三、教学过程: (一)考点知识精讲1、正比例函数和一次函数的概念一般地,如果y kx b =+(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
4、正比例函数的性质y 有下列性质:一般地,正比例函数kx(1)当k>0时,图像必定..经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像必定..经过第二、四象限,y随x的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。
解这类问题的一般方法是待定系数法。
【教师活动】:以提问的形式帮助学生梳理一次函数有关知识点,并用多媒体课件展示复习内容 【学生活动】:独立思考问题,个别学生回答问题(二)、【中考典型精析】例1.(2013•徐州)下列函数中,y 随x 的增大而减少的函数是( ) A . y =2x+8 B . y =﹣2+4x C . y =﹣2x+8 D . y =4x考点: 一次函数的性质.分析: 根据一次函数的性质,k <0,y 随x 的增大而减少,找出各选项中k 值小于0的选项即可. 解答: 解:A 、B 、D 选项中的函数解析式k 值都是整数,y 随x 的增大而增大,C 选项y=﹣2x+8中,k=﹣2<0,y 随x 的增大而减少. 故选C .点评: 本题考查了一次函数的性质,主要利用了当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.例2.(2013•娄底)一次函数y=kx+b (k≠0)的图象如图所示,当y >0时,x 的取值范围是( )A . x <0B . x >0C . x <2D . x >2考点: 一次函数的图象.分析: 根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b <0的解集,就是图象在x 轴下方部分所有的点的横坐标所构成的集合.解答: 解:因为直线y=kx+b 与x 轴的交点坐标为(2,0),由函数的图象可知当y >0时,x 的取值范围是x <2. 故选C .点评: 此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解. 例3.(2013•湖州)若正比例函数y=kx 的图象经过点(1,2),则k 的值为( )A. 21-B. -2C. 21D. 2考点: 一次函数图象上点的坐标特征.分析: 把点(1,2)代入已知函数解析式,借助于方程可以求得k 的值. 解答: 解:∵正比例函数y=kx 的图象经过点(1,2),∴2=k ,解得,k=2.故选D.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.例4.(2013贵州省黔东南州,9,4分)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤1考点:两条直线相交或平行问题.专题:计算题.分析:联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.解答:解:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1.故选C.点评:本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.例5.(2013山东临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70x(单位:台)10 20 30y(单位:万元/台)60 55 50(1)求y与x之间的函数关系式,并写出自变量的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)z351555 75 a【答案】:解:(1)设y与x的函数解析式为y=kx+b,根据题意,得10602055k bk b+=⎧⎨+=⎩,,解得1265kb⎧=-⎪⎨⎪=⎩,.∴y与x之间的函数关系式为1652y x=-+(10≤x≤70).(2)设该机器的生产数量为x台,根据题意,得x(1652x-+)=2000,解得x1=50,x2=80.∵10≤x≤70,∴x=50.答:该机器的生产数量为50台.(3)设销售数量z与售价a之间的函数关系式为z=ka+b,根据题意,得55357515k bk b+=⎧⎨+=⎩,,解得190kb=-⎧⎨=⎩,.∴z=-a+90.当z=25时,a=65.设该厂第一个月销售这种机器的利润为w万元,w=25×(65-200050)=625(万元).例6.(2013•遵义)20XX年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,所以,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:组甲种货车5辆,乙种货车11辆;方案二:组甲种货车6辆,乙种货车10辆;方案三:组甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,第3题图由题意得,y=1500x+1200(16﹣x ), =300x+19200, ∵300>0,∴当x=5时,y 有最小值,y 最小=300×5+19200=20700元;方法二:当x=5时,16﹣5=11, 5×1500+11×1200=20700元; 当x=6时,16﹣6=10, 6×1500+10×1200=21000元; 当x=7时,16﹣7=9, 7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.点评: 本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.【教师活动】:出示问题,并分析问题,指导学生完成例题 【学生活动】:分组讨论并交流问题,个别学生回答问题(三)【课堂练习】1、(2013•益阳)已知一次函数y=x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( ) A .B .C .D .2、(20XX 年福州中考)一次函数21y x =-的图象大致是( )3、(20XX 年福州质检)若一次函数y=kx+b 的图象如图所示,则k 、b 的取值范围是( ). A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <04、(20XX 年福州质检)已知函数y =2x +b ,当b 取不同的数值时,可以得到许多不同的直线,这些直线必定( )A .交于同一个点B .有无数个交点C .互相平行D .互相垂直5、(20XX 年福州质检)如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( )A .(4,23)B .(23,4)C .(3,3)D .(23+2,23)OxyOxyOxyyxOA.A 图13BxyO6、(2013福州中考)A ,B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x+a ,y+b ),B (x ,y ),下列结论正确的是( )A .a >0B .a <0C .b=0D .ab <0 7、(2013•钦州)请写出一个图形经过一、三象限的正比例函数的解析式 8、(2013福州质检)在一次函数y=kx+2中,若y 随x 的增大而增大,则它的图象不经过第 象限. 9、(20XX 年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 10、(2013湖南永州)已知一次函数b kx y +=的图象经过点A (1,-1),B (-1,3)两点,则k 0(填“>”或“<”).11、(20XX 年潍坊市)一次函数b x y +-=2中,当1=x 时,y <1;当1-=x 时,y >0则b 的取值范围是____. 12、(20XX 年福州中考)如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A x 的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按此做法进行下去,点5A 的坐标为( , )。