人教版九年级上册数学 第22章 22.3实际问题与二次函数 拓展训练(一)
- 格式:docx
- 大小:40.08 KB
- 文档页数:4
22.3实际问题与二次函数解答题专练1.如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?2.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,求涵洞所在抛物线的函数表达式.3.用一根长为800cm的木条做一个长方形窗框,若宽为x cm,写出它的面积y与x之间的函数关系式,并判断y是x的二次函数吗?4.如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?5.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.公司每日租出x辆车时,每辆车的日租金为多少元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?6.已知:如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x 轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)若点P在抛物线对称轴上,且PA=PB,求P点的坐标.7.如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A、C分别在在x轴、y 轴上,点B的坐标是(6,4),抛物线y=x2﹣x+c与矩形OABC的边BC和AB 分别交于点D(,4)和点E,连接DE(1)求抛物线的解析式;(2)求直线DE的函数表达式;(3)点P是抛物线对称轴上一个动点,①当△PDE是以DE为底边的等腰三角形时,请直接写出点P的坐标;②将△BDE沿直线DE翻折至△B′DE处,点B的对称点为点B′,连接B′P,请直接写出线段B′P长度的最小值.8.在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA 方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.9.已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)若已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方式求抛物线的解析式.(2)若直线DH为抛物线的对称轴,在(1)的基础上,求线段DK的长度,并求△DBC 的面积.(3)将图(2)中的对称轴向左移动,交x轴于点p(m,0)(﹣3<m<﹣1),与线段BC、抛物线的交点分别为点K、Q,用含m的代数式表示QK的长度,并求出当m 为何值时,△BCQ的面积最大?10.如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知点B的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出符合点Q的坐标;若不存在,请说明理由.11.已知:如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),点B(4,0),与y轴的交点为C(1)求二次函数的关系式;(2)已知点M是线段OB上一动点,过点M作平行于y轴的直线l,直线l与抛物线交于点E,与直线BC交于点F,连接CE,若△CEF与△OBC相似,求点M的坐标;(3)已知点M是x轴正半轴上一动点,过点M作平行于y轴的直线l,直线l与抛物线交于P,与直线BC交于点Q,连接CP,将△CPQ沿CP翻折后,是否存在这样的直线l,使得翻折后的点Q刚好落在y轴上?若存在,请求出此时点M的坐标;若不存在,请说明理由.12.已知抛物线y=﹣mx2+4x+2m与x轴交于点A,B与y轴交点C(0,2).(1)抛物线的解析式.(2)抛物线的对称轴为l,顶点为D,点C关于直线l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.13.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=2x2﹣4x+4与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ 的最大值.(3)在(2)的条件下,点B是抛物线C2上另一个动点,过点B作BP⊥x轴,P为垂足,求能使A、Q、B、P四点组成的四边形是平行四边形的点P的坐标,直接写出答案.14.如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积;(3)在x轴上是否存在一点P,使△ABP为等腰三角形?若存在,求出P的坐标;若不存在,说明理由.15.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.16.如图,抛物线y=x2﹣2x﹣4与直线y=x交于点A、B,点M是抛物线上的一个动点,连接OM.(1)当M为抛物线的顶点时,求△OMB的面积.(2)当△OMB的面积为10时,求点M的坐标.(3)当点M在直线AB的下方,M运动到何处时,△OMB的面积最大.17.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B.抛物线y=a(x﹣2)2+k经过A、B,并与x轴交于另一点C,其顶点为P,(1)求a,k的值;(2)抛物线的对称轴上是否存在一点M,使△ABM的周长最小?若存在,求△ABM的周长;若不存在,请说明理由;(3)抛物线的对称轴是上是否存在一点N,使△ABN是以AB为斜边的直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.18.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式.(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交BC于点N,求MN的最大值.(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.。
人教版九年级上册数学22.3实际问题与二次函数练习选择题用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为A.20 B.40? ? C.100 D.120【答案】D.【解析】试题分析:设围成面积为acm2的长方形的长为xcm,由长方形的周长公式得出宽为(40÷2-x)cm,根据长方形的面积公式列出方程x(40÷2-x)=a,整理得x2-20x+a=0,由△=400-4a≥0,求出a≤100,即可求解.试题解析:设围成面积为acm2的长方形的长为xcm,则宽为(40÷2-x)cm,依题意,得x(40÷2-x)=a,整理,得x2-20x+a=0,∵△=400-4a≥0,解得a≤100,故选D.选择题用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是(? )A. m2B. m2C. m2D. 4m2【答案】C【解析】试题分析:设窗的高度为xm,宽为m,则根据矩形面积公式列出二次函数求函数值的最大值即可.解:设窗的高度为xm,则宽为m,故S= ,∴.∴当x=2m时,S最大值为m2.故选C.选择题如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B.C. D.【答案】B【解析】试题分析:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y==;②当1<x≤2时,重叠三角形的边长为2?x,高为,y==;③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选B.填空题如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=______ m时,矩形场地的面积最大,最大值为______.【答案】? 20? 800m2【解析】试题分析:根据题意可以列出矩形场地的面积,从而可以得到当AD为多少时,矩形场地的面积最大,求出相应的最大值.解:设AB得长为xm,矩形场地的面积是: ,∴当x=40时, =20,矩形场地的面积最大,最大值是800m2,故答案为:20,800m2.填空题如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A 开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C 点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ 的面积为最大时,运动时间t为______s.【答案】2s【解析】试题分析:用含t的代数式表示出PB、QB再根据三角形的面积公式计算.解:根据题意得三角形面积为:S=(8?2t)t=?t2+4t=?(t?2)2+4,∴当t=2时,△PBQ的面积最大为4cm2.故答案为:2s.填空题将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是______cm2.【答案】cm2【解析】试题分析:设一段铁丝的长度为x,另一段为(20?x),则边长分别为,(20?x),则S==,∴由函数当x=10cm时,S最小,为12.5cm2.故答案为:12.5.解答题某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).【答案】当抽屉底面宽为45cm时,抽屉的体积最大,最大体积为40500cm3【解析】解:已知抽屉底面宽为x cm,则底面长为180÷2-x=(90-x)cm.由题意得:。
人教版九年级上册数学22.3实际问题与二次函数同步训练一、单选题1.飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米 2.据省统计局公布的数据,合肥市2021年一月GDP 总值约为6百亿元人民币,若合肥市三月GDP 总值为y 百亿元人民币,平均每个月GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .y =6(1+2x )B .y =6(1﹣x )2C .y =6(1+x )2D .y =6+6(1+x )+6(1+x )2 3.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x xB .(40)(50010)8000+-=x xC .(5040)(50010)8000-+-=x xD .(50)(50010)8000--=x x 4.在平面直角坐标系中,O 为坐标原点.二次函数致2y x bx c =++的图象与x 轴只有一个交点,且经过点()2,A m c -,()2,B m c +,则AOB 的面积为( ) A .8 B .12 C .16 D .4 5.已知关于x 的方程20x bx c ++=的两个根分别是-1和3,若抛物线22y x bx c =+-与y 轴交于点A ,过A 作AB y ⊥轴,交抛物线于另一交点B ,则AB 的长为( ) A .2 B .3 C .1 D .1.5 6.平面直角坐标系中,点A 的坐标为()0,1,点B 的坐标为()2,1,连接AB ,当抛物线2y x c =+与线段AB 有公共点时,c 的取值范围为( )A .3c <-B .31c -≤≤C .1c >D .01c ≤≤ 7.如图,在长为20m 、宽为14m 的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m ,则花圃中的阴影部分的面积有( )A .最小值247B .最小值266C .最大值247D .最大值266 8.如图,正方形ABCD 中,AB =4cm ,动点E 从点A 出发,沿折线AB BC -运动到点C 停止,过点E 作EF AE ⊥交CD 于点F ,设点E 的运动路程为x cm ,DF =y cm ,则y 与x 对应关系的图象大致是( )A .B .C .D .二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.11.如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB 为x 米,面积为S 平方米,则S 与x 的之间的函数表达式为 __;自变量x 的取值范围为 __.12.亮亮推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为()215312y x =--+,则小明推铅球的成绩是______m . 13.随着经济的发展和人们生活水平的提高,越来越多的人选择乘飞机出行.某种型号的飞机着陆后滑行的距离s (单位:m )与滑行的时间(单位:s )的函数关系式为260 1.5s t t =-,那么飞机着陆后滑行_____s 停下.14.如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.15.跳台滑雪是2022年北京冬奥会比赛项目之一.一名参赛运动员起跳后,他的飞行路线可以看作是抛物线21240453y x x =-++的一部分(如图所示),则这名运动员起跳后的最大飞行高度是______m .16.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y (万件)关于售价x (元/件)的函数解析式为:()()21404060806070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,则当该产品的售价x 为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题17.甲、乙两家水果店经销同一种水果,采取不同的降价措施增加销售额,提高利润.(1)甲水果店原售价每千克20元,连续两次降价后每千克12.8元,每次降价的百分率相同.求每次降价的百分率;(2)乙水果店原来每千克盈利6元,每天可售出60千克.经市场调查发现,若每千克降价0.5元,日销售量将增加10千克.在进货价不变的情况下,乙水果店决定采取适当的降价措施增加销售盈利.乙水果店降价多少元时,每天销售这种水果获利最多?最多可获利多少元?18.朝天城区某水果店王阿姨到水果批发市场打算购进一种水果销售,经过讨价还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;①请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?19.精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:设第x天的售价为y元/千克,y关于x的函数关系满足如下图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?20.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区分成两个区域,中间用塑料膜隔开.学校利用围墙作为一边,用总长为48m的塑料膜围成了如图所示的两块矩形区域;已知围墙的可用长度不超过21m,设AB的长为x m,矩形区域ABCD的面积y m2.(1)求y与x之间的函数解析式,并求出自变量x的取值范围;(2)当矩形ABCD的面积为84m2时,求AB的长度;(3)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?答案第1页,共1页 参考答案:1.A2.C3.C4.A5.A6.B7.A8.A9.81011. 2324S x x =-+1463≤<x 12.1113.2014.1650≤t ≤6且t ≠3 15.4516.5017.(1)20%(2)乙水果店每千克该种水果降价1.5元时,销售盈利最多,每天可获利405元 18.(1)实际购进这种水果每千克20元(2)①11440y x y =-+;①销售单价定为30元时利润最大,最大利润为1100元 19.(1)见解析(2)y =119(020)29(2030)x x x ⎧-+<≤⎪⎨⎪<≤⎩ (3)销售草莓的第30天时,当天的利润最大,最大利润是272元 20.(1)y =﹣3x 2+48x ,9≤x <16(2)14米(3)AB 的长度是9m 时,矩形区域ABCD 的面积y 取得最大值,最大值是189m 2。
人教版九年级数学上册22.3实际问题与二次函数同步练习题一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.162.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.03.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.54.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.75.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+1008.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.59.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m210.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是.12.二次函数y=2x2﹣2x+6的最小值是.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:.(注意标注自变量x的取值范围)14.正方形的边长是x,面积是A,请写出A与x的关系式:.它与y=x2的图象有什么不同?.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是.17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s(单位:m)相对于车速v(单位:km/h)的图象.(2)证明汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v(3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为45,72,105,144及189m,在这种情况下,(2)中的函数关系应如何调整?23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为,G 点坐标为;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.人教版九年级数学上册22.3实际问题与二次函数同步练习题参考答案一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.16【解答】解:y=﹣x2﹣8x+c=﹣(x﹣4)2+16+c,∵最大值为0,∴16+c=0,解得c=﹣16.故选:C.2.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.0【解答】解:因为函数的最大值是0,所以=0,则|a|+=|a|=﹣a.故选:C.3.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.5【解答】解:∵S=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,S有最小值5.故选:A.4.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.7【解答】解:因为二次函数y=x2﹣6x+c的最小值为1,所以==1,解得c=10.故选:A.5.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x【解答】解:圆面积是16π,正方形面积是x2,则函数关系式是:y=16π﹣x2.故选:B.6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.【解答】解:由正方形面积公式得:y=x2.故选:B.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+100【解答】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.8.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5【解答】解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.9.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m2【解答】解:设窗框的长为x,∴宽为,∴y=x,即y=﹣x2+4x,∵<0∴y有最大值,即:y最大===6m2.故选:B.10.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.【解答】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a ﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是﹣2.【解答】解:∵二次函数y=kx2+k2﹣3有最大值1,∴k<0,k2﹣3=1,解得,k=﹣2,故答案为:﹣2.12.二次函数y=2x2﹣2x+6的最小值是.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:y=﹣x2+20x(10≤x<20).(注意标注自变量x的取值范围)【解答】解:矩形的另一边长是:(20﹣x)cm;则面积y=x(20﹣x)=﹣x2+20x,根据线段为正值可得到:x>0,20﹣x>0,20﹣x≤x,解得10≤x<20.故答案为:y=﹣x2+20x(10≤x<20).14.正方形的边长是x,面积是A,请写出A与x的关系式:A=x2.它与y=x2的图象有什么不同?它与y=x2的图象完全一样.【解答】解:∵正方形的边长是x,面积是A,∴A与x的关系式为:A=x2,∴它与y=x2的图象完全一样.故答案为:A=x2,它与y=x2的图象完全一样.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).【解答】解:设所求的函数的解析式为y=ax2+bx+c,由已知,函数的图象过(﹣1,1),(0,1.5),(3,1)三点,易求其解析式为y=﹣x2+x+,∵丁头顶的横坐标为1.5,∴代入其解析式可求得其纵坐标为m.16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是(4﹣).【解答】解:设矩形的宽为x,长为(﹣x),则剪去三角形后剩下的面积为(﹣x)x﹣x•x,经整理,得:y=x2+x,当x==4﹣时,y取得最大值,y最大=(4﹣),此时长为(+).17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=﹣1或3.【解答】解:依题意,在y=﹣x2+6x中,x=0时,y=0;在y=x2﹣2(m﹣1)x+m2﹣2m﹣3中,x=0时,y=m2﹣2m﹣3=0;即m2﹣2m﹣3=0,解得m=﹣1或3.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.【解答】解:当x=2时,y=1,当x=2时,y=﹣15,又∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∴x=1时,y最大值=3,综上所述若2≤x≤4时,y=﹣2x2+4x+1的最大值是1、最小值是﹣15.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)【解答】(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.【解答】解:∵用一根长为40cm的铁丝围成一个半径为r的扇形,∴扇形的弧长为:(40﹣2r)cm,∴扇形的面积y与它的半径r之间的函数关系式为:y=r(40﹣2r)=﹣r2+20r,此函数是二次函数,<r<20.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.【解答】解:根据题意得:A (﹣0.8,﹣2.4),设涵洞所在抛物线解析式为y =ax 2,把x =﹣0.8,y =﹣2.4代入得:a =﹣, 则涵洞所在抛物线解析式为y =﹣x 2.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s (单位:m )相对于车速v (单位:km /h )的图象.(2)证明汽车滑行的距离s (单位:m )及车速v (单位:km /h )之间有如下的关系: s =v (3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为 45,72,105,144及189m ,在这种情况下,(2)中的函数关系应如何调整?【解答】解:(1)如图,(2)设函数解析式为y =av 2+bv +c ,代入(48,22.5),(64,36),(80,52.5)得,,解得,函数解析式为s=v,因此汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v;(3)如表:(4)在路况不良时,表中的滑行距离须分别修正后的数据恰好是对应原数据的2倍,因此将(2)中的每一项对乘以2即可,所得关系式为s=v+.23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?【解答】解:令y=﹣x2+x+=0,整理得:x2﹣8x﹣20=0,(x﹣10)(x+2)=0,解得x1=10,x2=﹣2(舍去),答:该运动员此次掷铅球的成绩是10m.24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(﹣1,﹣2),G点坐标为(﹣1,2);(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.【解答】解:(1)解方程x2+2x﹣3=0得x1=﹣3,x2=1.∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1).∵A(3,6)在抛物线上,∴6=a(3+3)•(3﹣1),∴a=,∴抛物线解析式为y=x2+x﹣.(2)由y=x2+x﹣=(x+1)2﹣2,∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC的解析式为y=kx+b,∵A(3,6),C(﹣3,0)在该直线上,∴,∴直线AC的解析式为:y=x+3.将x=﹣1代入y=x+3得y=2,∴G点坐标为(﹣1,2).(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.设直线A′G的解析式为y=kx+b.∴,∴直线A′G的解析式为y=﹣2x,令x=0,则y=0.∴M点坐标为(0,0).25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣3)(x﹣1),∴抛物线和x轴交于A(1,0),B(3,0)两点,当x=0时,y=﹣3,∴抛物线与y轴交于C(0,﹣3),对称轴为x==2,顶点纵坐标y=﹣4+4×2﹣3=1,顶点坐标D(2,1),∴OC=OB,∴△OBC是等腰直角三角形,∴∠OCB=∠OBC=45°,连结MN,BN.则OM=ON,∵∠COB=∠MOA=90°,∴∠COB﹣∠MOB=∠MON﹣∠MOB,∴∠COM=∠BON,在△OCM与△OBN中,,∴△OCM≌△OBN(SAS),∴∠OCB=∠OBN=45°,∴∠NBC=90°,由B(3,0),C(0,﹣3)可得直线BC解析式为:y=x﹣3,设直线BN的解析式为y=﹣x+m,由B(3,0),可得﹣3+m=0,解得m=3,则直线BN的解析式为y=﹣x+3,联立抛物线和直线解析式可得,解得或(不合题意,舍去)∴N坐标为:N(2,1).。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题(本大题共15小题,共45分)1.用60m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长L的变化而变化,要使矩形的面积最大,L的长度应为()A.63B.15 C.20 D.1032.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120∘.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()2A.182B.1832C.2432D.45323.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A.=(+3)2B.=2+6+6C.=2+6D.=24.为了节省材料,某工厂利用岸堤MN(岸堤足够长)为一边,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域(如图),若BC=(x+20)米,则下列4个结论:AB=(10-1.5x)米;BC=2CF;AE=2BE;长方形ABCD的最大面积为300平方米.其中正确结论的序号是()A. ① ②B. ① ③C. ② ③D. ③ ④5.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-22+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元6.某商店销售某种商品所获得的利润y(元)与所卖的件数x(件)之间的关系是y=-2+1000x-200000,则当0<x⩽450时,销售该商品所获得的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150B.160C.170D.1808.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价()A.3.6元B.5元C.10元D.12元9.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天的销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示,最大利润是()A.180元B.220元C.190元D.200元10.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为y=-142,当涵洞水面宽AB为16m时,涵洞顶点O至水面的距离为()A.−6 B.12 C.16 D.24 11.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为=−1252,当水面离桥拱顶的高度DO是4时,这时水面宽度AB为()A.−20B.10C.20D.−1012.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数解析式为()A.=266752B.=−266752 C.=1313502 D.=−131350213.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(−80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC ⊥x 轴.若OA =10米,则桥面离水面的高度AC 为()A.16940米 B.174米 C.16740米 D.154米14.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是()15.A.2 B.3 C.4 D.5 16.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米二、填空题(本大题共3小题,共9分)17.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.18.19.已知一个直角三角形两直角边的和为20cm,则这个直角三角形的最大面积为2.20.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价金额x(元)之间满足函数关系式y=-22+60x+800,则获利最多为元.三、解答题(本大题共10小题,共66分)21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设中间隔墙长为x(m),总占地面积为y(2).(墙的厚度忽略不计)22.(1)求y关于x的函数解析式和自变量的取值范围.(2)请给出一种设计方案,使两间饲养室的占地总面积最大,并求出这个最大面积.23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)设计费能达到24000元吗?为什么?(3)当x是多少时,设计费最多?最多是多少元?24.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向终点C运动,它们其中一点到达终点后就都停止运动.25.(1)几秒后,点P,D的距离是点P,Q的距离的2倍.(2)几秒后,△DPQ的面积达到最小,最小面积为多少?26.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件.已知这种商品的零售价在一定范围内每降低1元,其日销售量就增加1件,为了促销决定对其降价x元销售,则每件的利润为____________元,每日的销售量为____________件,每日的利润y=____________(写出自变量的取值范围),所以当每件降价____________元时,每日获得的利润最大,为____________元.27.28.29.30.31.32.33.34.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降低1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式.(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,则该休闲裤的销售单价应定为____________元.35.某商场销售一款成本为40元的可控温杯,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-x+120.36.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本);37.(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?38.39.40.41.42.43.44.45.在乡村振兴政策的帮扶下,某农户欲通过电商平台销售自家农产品,已知这种产品的成本价为10元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)之间大致有如下关系:w=-4x+80.设这种产品每天的销售利润为y(元).(1)当销售价定为多少时,每天销售的利润最大?最大利润是多少?(2)如果物价部门规定这种产品的销售价不得高于20元/千克,该农户要想每天获得84元的销售利润,销售价应定为多少?46.如图,有一座抛物线型拱桥,桥下面在正常水位时AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.47.(1)在如图所示的平面直角坐标系中,求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?48.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图2+bx+c表示,且抛物线上的点中所示的平面直角坐标系,抛物线可以用y=-16m.C到墙面OB的水平距离为3m,到地面OA的距离为17249.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离.(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?50.如图,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图所示方式建立平面直角坐标系.51.52.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.2.C3.C4.D5.B6.B7.A8.B9.D10.C11.C12.B13.B14.B15.A16.15017.5018.125019.解:(1)y=x(50-3x)=-32+50x,(0<x<503).(2)y=-32+50x=-3(−253)2+6253,当x=253时,max=6253,253m,平行于墙的围墙长度为25m,6253m2.20.解:(1)∵矩形的一边长为x米,周长为16米,∴另一边长为(8-x)米.∴S=x(8-x)=-2+8x(0<x<8).理由:当设计费为24000元时,广告牌的面积为24000÷2000=12(平方米),即-2+8x=12,解得x=2或x=6.∵x=2和x=6在0<x<8范围内,∴设计费能达到24000元.(3)∵S=-2+8x=-(−4)2+16,0<x<8,∴当x=4时,最大=16.则16×2000=32000(元).∴当x=4时,设计费最多,最多是32000元.21.解:(1)3秒后,点P,D的距离是点P,Q的距离的2倍.(2)4秒后△DPQ的面积最小,最小面积为242.22.解:(30-x),(20+x),-2+10x+600(0≤x≤30,且x为整数),5,625.23.解:(1)由题意,得y=100+5(80-x)=-5x+500.(2)由题意,得w=y(x-40)=(-5x+500)(x-40)=-52+700x-20000=-5(−70)2+4500.∵a=-5<0,∴当x=70时,w有最大值,最大=4500.(3)60.24.解:(1)根据题意得S=y(x-40)=(-x+120)(x-40)=-x2+160x-4800;(2)∵S=-x2+160x-4800=-(x-80)2+1600,∴当x=80时,S取得最大值,最大值为1600,答:当销售单价定为80元时,该公司每天获取的利润最大,最大利润是1600元.25.解:(1)根据题意可得y=w(x-10)=(x-10)(-4x+80)=-42+120x-800=-4(−15)2+100,∴当x=15时,y有最大值,为100.故当销售价定为15元/千克时,每天最大销售利润为100元.(2)当y=84时,可得84=-42+120x-800,整理,得2-30x+221=0,解得1=13,2=17.经检验,符合题意.故当销售价定为13元/千克或17元/千克时,该农户每天可获得销售利润84元.26.解:(1)设所求抛物线的解析式为y=2(a≠0).由CD=10m,可设D(5,b).∵AB=20m,水位上升3m就达到警戒线CD,∴B(10,b-3).把点D,B的坐标分别代入y=2,得25=,100=−3,解得=−125,=−1.∴y=-1252.(2)∵b=-1,∴拱桥顶O到CD的距离为1m.∴10.2=5(小时).∴再持续5小时到达拱桥顶.27.解:(1)由题意,得点B的坐标为(0,4),点C的坐标为(3,172),∴,=−16×32+3+.解得=2,=4.∴该抛物线的函数关系式为y=-162+2x+4.∵y=-162+2x+4=-16(−6)2+10,∴拱顶D到地面OA的距离为10m.(2)当x=6+4=10时,y=-162+2x+4=-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y=8时,-162+2x+4=8,即2-12x+24=0,∴1=6+23,2=6-23.∴两排灯的水平距离最小是6+23-(6-23)=43(m).28.解:(1)由题意得:A(-4,0),C(0,4),设抛物线的解析式为y=2+k(a≠0),则16+=0,=4,解得=−14=4,∴抛物线对应的函数关系式为y=-142+4.(2)2+0.42=2.2,当x=2.2时,y=-14×2.22+4=2.79,2.79-0.5=2.29(m).答:该货车能够安全通过的最大高度为2.29m.。
人教版九年级上册数学22.3实际问题与二次函数--拱桥问题训练1.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.2.如图,一隧道的横截面是由一段抛物线及矩形的三边围成的,隧道宽BC=10米,矩形部分高AB=3米,抛物线型的最高点E离地面OE=6米,按如图建立一个以BC 为x轴,OE为y轴的直角坐标系.(1)求抛物线的解析式;(2)如果该隧道内设有双车道,现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能顺利通过隧道吗?3.如图,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m ,抛物线可以用2144y x =-+表示.()1一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?()2如果该隧道内设双行道,那么这辆货运卡车是否可以通过?4.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E 到桥下水面的距离EF 为3米时,水面宽AB 为6米,一场大雨过后,河水上涨,水面宽度变为CD ,且CD=26米,此时水位上升了多少米?5.如图所示,有一座抛物线形拱桥,桥下面在正常水位时,AB宽20 m,水位上升到警戒线CD时,CD到拱桥顶E的距离仅为1 m,这时水面宽度为10 m.(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.3 m的速度上升,从正常水位开始,持续多少小时到达警戒线?6.如图所示的是水面一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下水面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示,求抛物线的解析式.7.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12 m,宽OB为4 m,隧道顶端D到路面的距离为10 m,建立如图所示的直角坐标系.(1)求该抛物线的表达式;(2)一辆货车载有一个长方体集装箱,集装箱最高处与地面距离为6 m,宽为4 m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排离地面高度相等的灯,如果灯离地面的高度不超过8.5 m,那么这两排灯的水平距离最小是多少米?8.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型. 已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴, AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.10.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)11.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,把拱桥的截面图放在平面直角坐标系中.(1)求抛物线对应的函数解析式,并写出自变量的取值范围;(2)求两盏景观灯之间的水平距离.12.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?13.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形脚手架CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需测算“脚手架”三根钢杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.14.有一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如图所示).(1)请你直接写出O、A、M三点的坐标;(2)一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)?15.一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE上,设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?16.某工厂大门是一抛物线水泥建筑物(如图),大门地面宽AB=4 m,顶部C离地面高为4.4 m.(1)以AB所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,求该抛物线对应的函数表达式;(2)现有一辆载满货物的汽车欲通过大门,货物顶点距地面2.8 m,装货宽度为2.4 m,请通过计算,判断这辆汽车能否顺利通过大门.17.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,求涵洞所在抛物线的函数表达式.18.如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB =6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?参考答案1.解:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(10,0)、(0,6). 设抛物线的解析式为y =ax2+c ,将B 、C 的坐标代入y =ax2+c ,得60100c a c ⎧⎨⎩=,=+ 解得a =350-,c =6. 所以抛物线的表达式是y =350-x2+6. (2)可设()5F F y ,,于是2356 4.550F y -⨯=+=, 从而支柱EF 的长度是10-4.5=5.5米.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是()70,. 过G 点作GH 垂直AB 交抛物线于H ,则2376 3.06350H y -⨯==+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.2.(1)设抛物线的解析式为y =ax 2+c .∵点E (0,6),点A (﹣5,3)在此抛物线上,∴2653c a c =⎧⎨⨯-+=⎩(),得:3256a c ⎧=-⎪⎨⎪=⎩,∴此抛物线的解析式为y 2325x =-+6; (2)当x =±3时,y 23325=-⨯±+()6=4.92>4.5,即这辆货运卡车能顺利通过隧道. 3. 解:()1把422y =-=代入2144y x =-+得: 21244x =-+, 解得22x =±,∴此时可通过物体的宽度为()2222422--=>,∴能通过;()2∵一辆货运卡车高4m ,隧道的截面由抛物线和长方形构成.长方形的长是8m ,宽是2m ,∴货车上面有2m ,在矩形上面,当2y =时,21244x =-+, 解得22x =±,∵222>,∴能通过.4.以点E 为原点、EF 所在直线为y 轴,垂直EF 的直线为x 轴建立平面直角坐标系,根据题意知E (0,0)、A (﹣3,﹣3)、B (3,﹣3),设y=kx 2(k <0),将点(3,﹣3)代入,得:k=﹣13, ∴y=﹣13x 2, 将6代入,得:y=﹣2,∴上升了1米.5.解:(1)设所求抛物线的解析式为y =ax 2.∵CD =10 m ,CD 到拱桥顶E 的距离仅为1 m ,∴C (-5,-1).把点C 的坐标代入y =ax 2,得a =-,故抛物线的解析式为y =-x 2.(2)∵AB 宽20 m ,∴可设A (-10,b).把点A 的坐标代入抛物线的解析式y =-x 2中,解得b =-4,∴点A 的坐标为(-10,-4).设AB 与y 轴交于点F ,则F (0,-4),∴EF =3 m.∵水位以每小时0.3 m 的速度上升,∴3÷0.3=10(时).答:从正常水位开始,持续10小时到达警戒线.6.试题解析:设抛物线解析式为2y ax =,把点()104B -,代入解析式得:2410a -=⨯, 解得:125a =-, ∴抛物线的解析式为2125y x =-. 7.试题分析:(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=10,求出y 与6作比较;(3)求出y=8.5时x 的值即可得.试题解析:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=()26a x -+10,将点B (0,4)代入,得:36a+10=4,解得:a=16-, 故该抛物线解析式为y=()2166x --+10; (2)根据题意,当x=6+4=10时,y=16-×16+10=223>6, ∴这辆货车能安全通过.(3)当y=8.5时,有:()2166x --+10=8.5, 解得:1x =3,2x =9,∴2x ﹣1x =6,答:两排灯的水平距离最小是6米.考点:二次函数的应用.8.:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m .方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 9.解析:(1)抛物线的解析式为y=ax 2+c ,又∵抛物线经过点C (0,8)和点B (16,0),∴0=256a+8,a=-132. ∴抛物线的解析式为y=-132x 2+8(-16≤x≤16); (2)设弧AB 所在的圆心为O ,C 为弧AB 的中点,CD ⊥AB 于D ,延长CD 经过O 点,设⊙O 的半径为R ,在Rt △OBD 中,OB 2=OD 2+DB 2∴R 2=(R-8)2+162,解得R=20;(3)①在抛物线型中设点F (x ,y )在抛物线上,x=OE=16-4=12,EF=y=3.5米;②在圆弧型中设点F′在弧AB 上,作F′E′⊥AB 于E′,OH ⊥F′E′于H ,则OH=D E′=16-4=12,O F′=R=20,在Rt △OH F′中,H F′= 222012-,∵HE′=OD=OC -CD=20-8=12,E′F′=HF′-HE′=16-12=4(米)∴在离桥的一端4米处,抛物线型桥墩高3.5米; 圆弧型桥墩高4米.10.解:(1)由图可设抛物线的解析式为:y=ax 2+2,由图知抛物线与x 轴正半轴的交点为(2,0),则:a×22+2=0, ∴a=﹣,∴抛物线的解析式为y=﹣x 2+2;(2)当y=1.60时,知1.6=﹣x 2+2,解得:x=,所以门的宽度最大为2×=米. 考点:二次函数的应用.11.(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1),设抛物线的解析式是y =a(x ﹣5)2+5,把(0,1)代入y =a (x ﹣5)2+5,得:a =﹣425,∴y =﹣425(x ﹣5)2+5(0≤x ≤10),即2481255y x x =-++(0≤x ≤10); (2)由已知得两景观灯的纵坐标都是4,∴4=﹣425(x ﹣5)2+5,∴425(x ﹣5)2=1,∴x 1=152,x 2=52,∴两景观灯间的距离为 152﹣52=5米. 12.二次函数的应用,待定系数法,曲线上点的坐标与方程的关系.(1)根据抛物线特点设出二次函数解析式,把B 坐标代入即可求解.(2)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 至多为6,把6代入所给二次函数关系式,求得t 的值,相减即可得到禁止船只通行的时间.13.(1)∵M (12,0),P (6,6).∴设这条抛物线的函数解析式为y=a(x -6)2+6,∵把(0,0)代入解得a=-16, ∴这条抛物线的函数解析式为y=-16(x -6)2+6, 即y=-16x 2+2x (0≤x≤12); (2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时,y=4.5<5∴不能行驶宽2.5米、高5米的特种车辆;(3)设点A的坐标为(m,-16m2+2m),∴OB=m,AB=DC=-16m2+2m根据抛物线的轴对称可得OB=CM=m,∴BC=12-2m,即AD=12-2m∴L=AB+AD+DC=-13m2+2m+12=-13(m-3)2+15∴当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.14.解:(1)0(0,0),A(6,0),M(3,3).(2)设抛物线的关系式为y=a(x-3)2+3,因为抛物线过点(0,0),所以0=a(0-3)2+3,解得a=,所以,要使木板堆放最高,依据题意,得B点应是木板宽CD的中点,把x=2代入,得,所以这些木板最高可堆放米.15.解:(1)由题意得M(0,4),F(4,0)可设抛物线的解析式为y=ax2+4,将F(4,0)代入y=ax2+4中,得a=-14,∴抛物线的解析式为y=-14x2+4;(2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (24216n n -+,), ∴GH+GA+BH=n+(2416n -+)×2+2×2=21128n n -++, ∴L=21128n n -++, ∵a <0,抛物线开口向下,∴当n=-2b a=4时,L 有最大值,最大值为14. 16.解:(1)如图,过AB 的中点作AB 的垂直平分线,建立平面直角坐标系.点A ,B ,C 的坐标分别为 A(-2,0),B(2,0),C(0,4.4).设抛物线的表达式为y =a(x -2)(x +2).将点C(0,4.4)代入得a(0-2)(0+2)=4.4,解得a =-1.1,∴y =-1.1(x -2)(x +2)=-1.1x 2+4.4.故此抛物线的表达式为y =-1.1x 2+4.4.(2)∵货物顶点距地面2.8 m ,装货宽度为2.4,∴只要判断点(-1.2,2.8)或点(1.2,2.8)与抛物线的位置关系即可.将x =1.2代入抛物线,得 y =2.816>2.8,∴点(-1.2,2.8)和点(1.2,2.8)都在抛物线内.∴这辆汽车能够通过大门.17.解:设此抛物线所对应的函数表达式为:2y ax =,∵ 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,∴A 点坐标应该是()0.8, 2.4--,把A 点代入得:22.4(0.8)a -=-⨯, 解得:154a =-,故涵洞所在抛物线的函数表达式2154y x =-. 18. (1)设抛物线形桥洞的函数解析式为y=ax 2+c , 把A (3,0),E (0,3)代入得:解得: ∴由题意得:点C 与D 的纵坐标为0.5, ∴解得:∴(米), 则水面的宽度CD 为米;(2)当x =1时,∵ ∴这艘游船能从桥洞下通过.。
2020-2021学年数学人教版九年级上册第二十二章二次函数第一节22.3实际问题与二次函数同步练习一、单选题1.已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,。
有下列结论:①当x1>x2+2时,S1>S2;②当x1<2−x2时,S1<S2;③当|x1−2|>|x2−2|>1时,S1>S2;④当|x1−2|>|x2+2|>1时,S1<S2。
其中正确结论的个数是A. 1B. 2C. 3D. 42.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,每人的单价就降低10元,若这个旅行社要获得最大营业额,此时旅行团人数为()人A. 56B. 55C. 54D. 533.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A. 20B. 1508C. 1550D. 15584.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=−110x2+35x+85,由此可知小宇此次实心球训练的成绩为()A. 85米 B. 8米 C. 10米 D. 2米5.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A. 100(1+x)2=364;B. 100+100(1+x)+100(1+x)2=364;C. 100(1+2x)=364;D. 100+100(1+x)+100(1+2x)=364.6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A. ①②B. ②③C. ①③④D. ①②③7.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系8.某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A. 1mB. 32m C. 138m D. 2m9.某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月平均增长率.设该公司11,12两个月营业额的月平均增长率为x,则可列方程为()A. 2500(1+x)2=3600B. 3600(1+x)2=2500C. 2500(1+2x)=3600D. 2500(1+x2)=360010.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成-一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开。
22.3 实际问题与二次函数(拱桥问题)一、选择题1.如图是抛物线型拱桥,当拱顶高离水面2m时,水面宽4m.水面上升1.5m,水面宽度为()A.1m B.2m C.√3m D.2√3m2.某大桥的桥拱可以用抛物线的一部分表示,函数关系为y=−125x2,当水面宽度AB为20m时,水面与桥拱顶的高度CO等于()A.2m B.4m C.10m D.16m3.如图1是太原晋阳湖公园一座抛物线型拱桥,按如图2所示建立坐标系,在正常水位时水面宽AB=30米,当水位上升5米时,则水面宽CD=20米,则函数表达式为()A.y=−115x2B.y=−125x2C.y=115x2D.y=125x24.如图,隧道的截面由抛物线和长方形OABC构成.按照图中所示的平面直角坐标系,拋物线可以用y=−16x2+2x+4表示.在抛物线型拱壁上需要安装两排灯,如果灯离地面的高度为8m.那么两排灯的水平距离是()A.2m B.4m C.4√2m D.4√3m5.廊桥是我国古老的文化遗产.如图是某座抛物线形廊桥的示意图,已知水面AB宽48m,拱桥最高处点C到水面AB的距离为12m,为保护该桥的安全,现要在该抛物线上的点E,F处安装两盏警示灯,若要保证两盏灯的水平距离EF是24m,则警示灯E距水面AB的高度为()A.12m B.11m C.10m D.9mx2 + 8(单位:米),施工队计划在隧道正中搭6.如图,某隧道美化施工,横截面形状为抛物线y =-12建一个矩形脚手架DEFG,已知DE:EF = 3:2,则脚手架高DE为()A.7米B.6.3米C.6米D.5米7.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4 √3米B.5 √2米C.2 √13米D.7米8.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A.16 米B.米C.16 米D.米二、填空题x2+3.25,一辆车高3米,宽4米,该车9.单行隧道的截面是抛物线形,且抛物线的解析式为y=−18(填“能”或“不能”)通过该隧道.10.如图,图2是图1的拱形大桥的示意图.桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =−1(x﹣80)2+16,桥拱与桥墩AC的交400点C恰好在水面上,AC⊥x轴.若OA=20米,则桥面离水面的高度AC为11.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C 到AB的距离为8m,AB=24m,D,E为拱桥底部的两点,且DE//AB,若DE的长为36m,则点E到直线AB的距离为.12.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx,小强骑自行车从拱梁一端O匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶到6分钟和14分钟时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需分钟.13.如图,某公路隧道横截面为抛物线,其最大高度为8 m,以隧道底部宽AB所在直线为x轴,以AB垂x2+b,则隧道底部宽AB 直平分线为y轴建立如图所示的平面直角坐标系,若抛物线的表达式为y=-12为m.三、解答题14.有一个抛物线形的拱形桥洞,当桥洞的拱顶P(抛物线最高点)离水面的距离为4米时,水面的宽度OA为12米.现将它的截面图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)当洪水泛滥,水面上升,水面的宽度小于5米时,则必须马上采取紧急措施.某日涨水后,观察员测得桥洞的拱顶P到水面CD的距离只有1.5米,问:是否要采取紧急措施?并说明理由.15.如图,某隧道口的横截面是抛物线型,已知隧道底部宽AB为10m,最高点离地面的距离OC为5m,以AB的中点O为坐标原点,AB所在直线为x轴,OC所在的直线为y轴,1m为数轴的单位长度,建立平面直角坐标系.(1)求抛物线的函数表达式;(2)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为3m,求两排灯之间的水平距离.16.如图,某市青少年活动中心的截面由抛物线的一部分和矩形组成,其中OA=20米,OC=7米,最高点P离地面的距离为9米,以地面OA所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)暑期来临之际,该活动中心工作人员设计了6米长的竖状条幅从顶棚拋物线部分悬挂下来(条幅的宽可忽略不计),为了安全起见,条幅最低处不能低于底面上方2米.设条幅与OC的水平距离为m米,求出m的取值范围.17.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系。
人教版九年级数学上册第22章二次函数拓展训练(一)(含答案)一.选择题(共10小题)1.下列函数中,y是x的二次函数的是()A.y=x2﹣x(x+2)B.y=x2﹣C.x=y2 D.y=(x﹣1)(x+3)2.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④当m<﹣2时,am2+bm>0.其中正确的个数是()A.4B.3C.2D.14.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b5.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5B.y=(x﹣3)2+5C.y=(x+5)2+3D.y=(x﹣5)2+36.抛物线y=ax2+(1﹣2a)x+3(a>0)过点A(1,m),点A到抛物线对称轴的距离记为d,满足0<d≤,则实数m的取值范围是()A.m≥3B.m≤2C.2<m<3D.m≤37.如果二次函数y=(x﹣m)2+n的图象如图所示,那么一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)9.已知点A(x1,y1),B(x2,y2)是抛物线y=ax2﹣2ax+c(a>0)上两点,若x1<x2且x1+x2=2﹣a.则()A.y1>y2B.y1=y2C.y1<y2D.y1与y2大小不能确定10.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.二.填空题(共5小题)11.点P1(﹣2,y1),P2(0,y2),P3(1,y3)均在二次函数y=﹣x2﹣2x+c的图象上,则y1,y2,y3的大小关系是.12.二次函数y=(a﹣1)x2+2x﹣1的图象与x轴有2个交点,则a的取值范围是.13.抛物线y=2x2﹣ax+b与x轴相交于不同两点A(x1,0),B(x2,0),若存在整数a,b使得1<x1<3和1<x2<3同时成立,则ab=.14.在平面直角坐标系中,将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是.15.已知二次函数y=mx2+nx与y=nx2+mx(其中m,n为常数),若这两个函数图象的顶点关于x轴对称,则m和n满足的关系为.三.解答题(共5小题)16.已知二次函数y=(x﹣1)2﹣3.(1)写出二次函数图象的开口方向和对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值.17.如图,已知二次函数y=﹣x+3的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求线段BC的长;(2)当0≤y≤3时,请直接写出x的范围;(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90°时,求点P的坐标.18.某酒店试销售某种套餐,试销一段时间后发现,每份套餐的成本为7元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过10元,每天可销售300份;若每份售价超过10元,每提高1元,每天的销售量就减少30份,设该店每份套餐的售价为x元(x为正整数),每天的销售量为y份,每天的利润为w元.(1)直接写出y与x的函数关系式;(2)求出w与x的函数关系式;并求出利润w的最大值.19.已知二次函数y=ax2+10x+c(a≠0)的顶点坐标为(5,9).(1)求a,c的值;(2)二次函数y=ax2+10x+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,求△ABC的面积.20.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.参考答案一.选择题(共10小题)1.解:A、y=x2﹣x(x+2)=﹣2x为一次函数;B、y=x2﹣不是二次函数;C、x=y2 不是函数;D、y=(x﹣1)(x+3)=x2+2x﹣3为二次函数.故选:D.2.解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.3.解:∵抛物线经过原点,∴c=0,所以①正确;∵抛物线与x轴的交点坐标为(0,0),(﹣2,0),∴抛物线的对称轴为直线x=﹣1,所以②正确;即x=﹣=﹣1,∴b=2a,∴当x=1时,y=a+b+c=a+2a+0=3a,所以③错误;当x<﹣2或x>0时,y>0,∴m<﹣2时,am2+bm>0.所以④正确.故选:B.4.解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.5.解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;故选:D.6.解:∵抛物线y=ax2+(1﹣2a)x+3(a>0),∴对称轴为直线x=﹣,∵点A(1,m)到抛物线对称轴的距离记为d,满足0<d≤,∴0<|1+|≤,∴0<≤,∴a≥1,把A(1,m)代入y=ax2+(1﹣2a)x+3(a>0)得:a+1﹣2a+3=m,∴4﹣a=m,∴a=4﹣m,∴4﹣m≥1,∴m≤3,故选:D.7.解:根据题意得:抛物线的顶点坐标为(m,n),且在第四象限,∴m>0,n<0,则一次函数y=mx+n经过第一、三、四象限.故选:B.8.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.9.解:∵抛物线y=ax2﹣2ax+c(a>0),∴抛物线的开口向上,对称轴为直线x=﹣=1,∵x1<x2且x1+x2=2﹣a,∴=1﹣a<1,∴点A(x1,y1)到对称轴的距离大于点B(x2,y2)的距离,∴y1>y2,故选:A.10.解:∵y=ax2+bx+c的图象的开口向下,∴a<0,∵对称轴在y轴的左侧,∴b<0,∴一次函数y=ax+b的图象经过二,三,四象限.故选:C.二.填空题(共5小题)11.解:二次函数y=﹣x2﹣2x+c的二次项系数a=﹣1,∴函数图象开口向下又∵对称轴为x=﹣1,∴y1=y2>y3点故答案为:y1=y2>y3.12.解:令y=(a﹣1)x2+2x﹣1=0,∵y=(a﹣1)x2+2x﹣1是二次函数,∴a﹣1≠0,∴a≠1,∵二次函数y=(a﹣1)x2+2x﹣1的图象与x轴有两个交点,∴△=4+4(a﹣1)>0,∴a>0,∴a的取值范围是a>0且a≠1,故答案为:a>0且a≠1.13.解:∵抛物线y=2x2﹣ax+b,∴抛物线开口向上,∵1<x1<3和1<x2<3同时成立,∴当x=1时,y>0;当x=3时,y>0;1<对称轴x<3;判别式△≥0.∴∴4<a<12,∵a是整数,则a=5,6,7,8,9,10,11当a=5时,无整数解;当a=6时,无整数解;当a=7时,b=6;当a=8时,b=7;当a=9时,无整数解;当a=10时,b=9;当a=11时,无整数解,综上所述,整数a=7,b=6或a=8,b=7或a=10,b=9时,使得1<x1<3和1<x2<3同时成立.故答案为:42或56或90.14.解:将抛物线y=(x+1)2先向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式是y =(x+1﹣2)2+3,即y=(x﹣1)2+3.故答案为:y=(x﹣1)2+3.15.解:函数y=mx2+nx=m(x+)2﹣的顶点坐标为(,﹣),y=nx2+mx=n(x+)2﹣的顶点坐标为(,﹣),∵这两个函数图象的顶点关于x轴对称,∴,解得,m=﹣n,故答案为:m=﹣n.三.解答题(共5小题)16.解:(1)在y=(x﹣1)2﹣3中,∵a=>0,∴二次函数图象开口向上,且对称轴为x=1;(2)∵二次函数开口向上,∴函数y有最小值,∵其顶点坐标为(1,﹣3),∴y的最小值为﹣3.17.解:(1)当x=0时,y=3,∴C(0,3),∴OC=3,当y=0时,∴x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,在Rt△BOC中,BC==5,(2)由(1)可知y=0时,x=﹣1或4,当y=3时,x=0或3,观察图象可得当0≤y≤3时,x的取值范围是:﹣1≤x≤0或3≤x≤4.(3)过点P作PD⊥y轴,设点P坐标为(x,),则点D坐标为(0,),∴PD=x,CD=﹣3=,∵∠BCP=90°,∴∠PCD+∠BCO=90°,∵∠PCD+∠CPD=90°,∴∠BCO=∠CPD,∵∠PDC=∠BOC=90°,∴△PDC∽△COB,∴,∴,∴x=或x=0(舍去),当x=时,y=,∴点P坐标为(,).18.解:(1)∵每份售价超过10元且每天的销售量不为负数,∴y=300﹣30(x﹣10)=﹣30x+600,∵﹣30x+600≥0,∴x≤20.(2)当7≤x≤10时,w=300(x﹣7)﹣200=300x﹣2300;当10<x≤20时,w=(﹣30x+600)(x﹣7)﹣200=﹣30x2+810x﹣4400.∴w=,∵当7≤x≤10时,∵k=300>0,y随x增大而增大,∴当x=10时,w最大值=700元;∵当10<x≤20时,∵a=﹣30<0,w有最大值,∴当时,∵x取整数,∴x应取13或14,w最大,∴x=13时,w取最大值:元.∵700<1060,∴每份套餐的售价应定为13元,此时,最大利润为1060元.19.解:(1)根题意,得,,解得;故a=﹣1,c=﹣16;(2)由(1)可知该二次函数的解析式为y=﹣x2+10x﹣16,今x=0,则y=﹣16.∴点C的坐标为(0,﹣16),令y=0,则﹣x2+10x+16=0,解得x1=2,x2=8,AB=8﹣2=6.∴S△ABC=AB•OC=×6×16=48.20.解:(1)∵抛物线C:y=x2+mx+n(m,n为常数)顶点坐标为P(1,2),∴﹣=1,=2,解得m=﹣2,n=3;(2)在(1)的条件下,抛物线C为:y=x2﹣2x+3,∵点Q(a,b)在抛物线C上,且离y轴的距离不大于2,∴﹣2≤x Q≤2,由图象可知,2≤y Q≤11即2≤b≤11.(3)将抛物线C向左平移2个单位得到抛物线C1为y=(x+2)2+m(x+2)+n;将抛物线C向右平移2个单位得到抛物线C2为y=(x﹣2)2+m(x﹣2)+n;由(x+2)2+m(x+2)+n=(x﹣2)2+m(x﹣2)+n,解得x=﹣m,∴若C1与C2的交点坐标为(1,3),∴﹣m=1,解得m=﹣2,把点(1,3)代入y=(x+2)2﹣2(x+2)+n得3=9﹣6+n,∴n=0,∴抛物线C的函数解析式为y=x2﹣2x.。
人教版九年级上册数学
第22章 22.3实际问题与二次函数拓展训练(一)
一.选择题
1.正方形的边长为3,如果边长增加x,那么面积增加y,则y与x之间的函数表达式是()
A.y=3x B.y=(3+x)2C.y=9+6x D.y=x2+6x
2.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣6(t﹣2)2+7,则小球距离地面的最大高度是()
A.2米B.5米C.6米D.7米
3.对于二次函数y=﹣(x﹣2)2﹣3,下列说法中正确的是()
A.当x=﹣2时,y的最大值是﹣3 B.当x=﹣2时,y的最小值是﹣3
C.当x=2时,y的最大值是﹣3 D.当x=2时,y的最小值是﹣3
4.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()
A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3
5.一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y与x的函数关系式为()
A.y=50(1﹣x)2B.y=50﹣x2C.y=50(1﹣2x)D.y=50(1+x)2
6.若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是()
A.﹣1 B.0 C.1 D.2
7.二次函数y=﹣x2+6x﹣7,当x取值为t≤x≤t+2时,y最大值=﹣(t﹣3)2+2,则t的取值范围是()A.t=0 B.0≤t≤3 C.t≥3 D.以上都不对
8.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值,则a,b的大小比较为()
A.a>b B.a<b C.a=b D.不能确定
9.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x (米)的关系式为()
A.y=x2﹣20x B.y=﹣x2+20x C.y=﹣x2+10x D.y=x2﹣10x
10.已知二次函数y=a(x﹣1)2+b(a≠0)有最大值2,则a、b的大小比较为()
A.a>b B.a<b C.a=b D.不能确定
二.填空题
11.已知x2﹣3x+y﹣5=0,则y﹣x的最大值为.
12.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.2x2+1.5x﹣2,则最佳加工时间为min.
13.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量y(万件)与x之间的关系应表示为.
14.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.
15.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.
三.解答题
16.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y =﹣0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.
(1)x在什么范围内,学生的接受能力逐步增强?
(2)某同学思考10分钟后提出概念,他的接受能力是多少?
17.龙眼是同安的特产,远销国内外.现有一个龙眼销售点在经销时发现:如果每箱龙眼盈利10元,每天可售出50箱.若每箱龙眼涨价1元,日销售量将减少2箱.若该销售点单纯从经济角度考虑,每箱龙眼应涨价多少元才能获利最高?
18.用长12m的一根铁丝围成长方形.(1)如果长方形的面积为5m2,那么此时长方形的较长的边是多少?(2)能否围成面积是10m2的长方形?为什么?(3)能围成的长方形的最大面积是多少?
19.某超市销售一种水果,进价为每箱40元,规定售价不低于进价.现在的售价为每箱72元,每月可销售60箱.经市场调查发现:若这种水果的售价每降低2元,则每月的销量将增加10箱,设每箱水果降价x元(x为偶数),每月的销量为y箱.
(1)写出y与x之间的函数关系式和自变量x的取值范围.
(2)若该超市在销售过程中每月需支出其他费用500元,则如何定价才能使每月销售水果的利润最大?最大利润是多少元?
20.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x(吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)
(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?。