高三物理专题复习微元法在电磁感应现象中的应用
- 格式:ppt
- 大小:428.00 KB
- 文档页数:17
微元法在高考物理中的应用河南省信阳高级中学陈庆威2013.10.06微元法是高中物理中的一个重要的思想方法。
因其近年来在江苏高考物理试题中的频繁出现,尤其是它在2013 年普通高等学校招生全国统一考试(课标卷I)第25 题中的闪亮登场,让它在我们的高考备考中的地位变得更加重要。
很多同学在学习过程中对这类问题因陌生而感到头痛,想集中训练又苦于很难在较短时间里收集到较好的题型,对很多顶尖的学生来说这类问题做起来也往往心有余而力不足。
希望通过以下几个典型的微元法试题的训练,能让你从陌生到熟练。
一、从真题中练方法例题1.(2013全国课标卷I)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:⑴电容器极板上积累的电荷量与金属棒速度大小的关系;⑵金属棒的速度大小随时间变化的关系。
B【答案】⑴Q=CBLv ⑵v =m (sin-cos)gt C mm +B2L2C【解析】(1)设金属棒下滑的速度大小为v,则感应电动势为θLE =BLv ①平行板电容器两极板之间的电势差为U =E ②设此时电容器极板上积累的电荷量为Q,按定义有C =Q ③U联立①②③式得Q =CBLv ④(2)设金属棒的速度大小为v 时经历的时间为t,通过金属棒的电流为i,金属棒受到的磁场的作用力方向沿导轨向上,大小为f1=BLi ⑤设在时间间隔(t, t +∆t )内流经金属棒的电荷量为∆Q ,按定义有i =∆Q ⑥∆t∆Q 也是平行板电容器极板在时间间隔(t, t +∆t )内增加的电荷量,由④式得∆Q =CBL∆v ⑦式中,∆v 为金属棒的速度变化量,按定义有a =∆v ⑧∆t金属棒所受的摩擦力方向斜向上,大小为f2=N⑨式中,N 是金属棒对于导轨的正压力的大小,有N =mg cos⑩金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有mg sin-f1-f2=ma ⑾联立⑤至⑾式得a =m (sin-cos)g ⑿m +B2L2C由⑿式及题设可知,金属棒做初速度为零的匀加速运动。
微元法论文电磁感应论文:微元法在电磁感应中的应用题型分析摘要:本文针对目前江苏高考中电磁感应中微元法的应用进行了深入浅出的分析。
首先对微元法的定义和步骤作简要的分析。
然后把电磁感应中出现的题目作了简要的分类:(1)导体棒所受的合力为单一安培阻力。
(2)安培阻力与物体速度成正比,导体在受到安培力的作用下和一个恒定外力的作用下做变加速运动。
(3)导体棒由于切割磁感线产生感应电流,受到安培阻力作用做变加速运动,安培力与速度的不成正比。
对每种题型作了详尽的分析,并且得出了更易于学生接受的推论。
此方法已经在教学实践中加以应用,并收到了良好的效果。
关键词:微元法电磁感应应用一、背景微元法是中学物理中的一种重要的思想方法。
从近几年的江苏省的高考试题来看多次出现应用微元法解决电磁感应的题目,如2006年最后一题,2007年最后第二题,2008年的最后一题,2009年最后一题。
说明在江苏高考中微元法占有相当重要的地位。
在大学普通物理中,许多问题的求解都要用到“微元法”的思想。
因此微元法非常重要。
我在教学过程中发现,学生对微元法的理解不够深入。
学生对微元法什么时候用,为什么要用,怎样用微元法往往是一知半解,在考试中乱用一气。
在电磁感应与力学综合题中,导棒在磁场中切割磁感线,产生感应电动势,进而产生感应电流。
导棒中的感应电流在磁场中受到了安培力的作用。
而安培力与物体的速度有关,安培力是变力,进而使导棒做变加速运动。
当求导棒在一定时间内发生的位移,或发生一定位移时需要的时间,由于导棒发生变加速运动,不能应用匀变速运动规律来求解,这为微元法的应用提供了非常好的素材。
因此本文借助于电磁感应中的力学问题的素材来研究微元法的应用。
本文主要讨论两个方面:一是怎样引导利用微元法来解题;二是就电磁感应中利用微元法解答的几种题型作初步的探讨。
二、微元法的定义微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
2019年高考物理备考:电磁感应中的“微元法”1走近微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
“微元法”,又叫“微小变量法”,是解物理题的一种常用方法。
2如何用微元法1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。
2. 关于微元法。
一般是以时间和位移为自变量,在时间t ∆很短或位移x ∆很小时,此元过程内的变量可以认为是定值。
比如非匀变速运动求位移时在时间t ∆很短时可以看作匀速运动,在求速度的变化量时在时间t ∆很短时可以看作匀变速运动。
运动图象中的梯形可以看作很多的小矩形,所以,s x t v ∆=∆=∆。
微元法体现了微分的思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),比如0v v v -=∆∑,当末速度0=v 时,有∑-=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4.物理量有三种可能的变化情况①不变(大小以及方向)。
可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。
②线性变化(方向不变,大小线性变化)。
比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。
电流的平方随时间线性变化可用平方的平均值来求焦耳热。
③非线性变化。
可以考虑用微元法。
值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。
微元法在《电磁感应》中的应用作者:揭秋林来源:《中学物理·高中》2015年第12期物理学追求认识自然界最普遍、最基本的规律。
学生学习物理,就要注意养成追根问底、悟物穷理的思维习惯,这有利于提高学生的理性思维能力。
新教材在《电磁感应》这一章中较老教材做了许多改动,从电磁感应现象,本质、规律三方面进行阐述,旨在达到上述效果。
但是由于高中学生在物理理论知识和数学知识两方面都有不足,学习时做不到深究,从而造成对电磁感应的认识不到位,而微元法能很好的加深理解和应用。
1 电磁感应现象大量的实验说明只要穿过某一闭合回路的磁通量发生变化,闭合回路中就有电流产生,磁通量的变化有以下两种情况:(1)B不变化而闭合电路的整体或局部在做切割磁感线运动,这样产生的感应电动势叫做动生电动势。
(2)B变化而闭合电路的任一部分都不动,这样产生的感应电动势叫做感生电动势。
2 产生电动势的原因(1)动生电动势的产生原因——洛伦兹力如图1所示,金属杆ab以速率v向右平移,它里面的电子也随之向右运动,向右运动的电子因处在磁场中所以要受到[TP12GW167。
TIF,Y#]洛伦兹力作用,由左手定则可以判断洛伦兹力方向向下,沿杆的洛伦兹力驱使自由电子向下运动,闭合线框中便出现逆时针方向的电流,这样在杆ab中就产生了动生电动势,运动着的杆ab就相当于电源。
(2)感生电动势产生的原因——感生电场力通过实验观察杆不动磁场变化时的电磁感应现象,自然会提出什么力驱使电荷定向移动呢?麦克斯韦认为,变化的磁场会激发一个闭合电场,我们称之为感生电场或涡旋电场。
感生电场对自由电荷的感生电场力充当了非静电力驱使闭合回路中的自由电荷定向移动,形成了电流,产生了感生电动势。
3 感应电动势大小的计算方法3。
1 匀强电场中的动生电动势大小的计算方法方法一从产生原因入手——洛伦兹力作用如图2所示,金属杆ab以速率v向右平移,则自由电子受到的沿杆的洛伦兹力f=evB,电子从金属杆一端移动到另一端(相当于从电源的一极移到另一极),此力做功Wf=fl,而Wf=eE,联立以上三式可解得E=Blv。
电磁感应中微元法的应用技巧及实例无锡市第六高级中学 曹钱建摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。
间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。
关键词:微元法;电磁感应;高考新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。
而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。
电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。
其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。
例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称.(1)求t=0时刻线圈的电功率;(2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少?(3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m RLS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率Rv L B R E P 20222==(2)线圈进入磁场的过程中动能转化为焦耳热 21202121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -=(3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得:Bv v 乙m Rv L B m BLI a 22==: 等式两边同时乘以t ∆可得:t Lv mRL B t v mR L B t a ∆=∆=∆222 因为时间t ∆极短,则a 可认为恒定不变,所以t a ∆等于此极短时间内的速度改变量v ∆,同理v 也可认为恒定不变,所以t v ∆等于此极短时间内的位移x ∆。
专题7 感应电荷量的应用1.安培力的冲量大小感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BIL。
方法1 微元法由于感应电流通常变化,所以安培力为变力,求时间t内安培力的冲量必须用微元法,在极短时间∆t内认为安培力为定值,则安培力冲量大小为I i=BI i L∆t = BLq i,求和可得全过程安培力冲量大小为I = BL∆q,其中∆q为此过程流过导体棒任意截面的电荷量。
方法2 平均电流法设此过程电流对时间的平均值为I,则∆q=It,所以安培力冲量通用表达式为:BILt BL q=∆,即感应电荷量与时间和安培力的冲量相联系。
2.感应电荷量在前面利用平均感应电流I=ER与和平均感应电动势E nt∆Φ=解得感应电荷量q=I t = nR∆Φ。
如果是由于导体棒切割产生的感应电荷量,则B S BLxq n nR R∆==,其中x为导体棒运动的距离,即感应电荷量与空间距离相联系。
3.感应电荷量的时空联系感应电荷量连接空间距离和安培力的冲量,因此在非匀变速运动中,如果题目求导体棒的位移,通常用感应电荷量和动量定理求解。
在分析电磁感应问题中,往往求解物体的初速度v0、末速度v、时间t、位移x、电荷量q 这5个物理量的时候,通常采用安培力的冲量,按此模型处理方法进行处理。
4.实例分析以2022年6月浙江选考19题第3问为例,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。
线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B 。
开关S 与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S 掷向2接通定值电阻R 0,同时施加回撤力F ,在F 和磁场力作用下,动子恰好返回初始位置停下。
若动子从静止开始至返回过程的v -t 图如图2所示,在t 1至t 3时间内F =(800-10v )N ,加速度不变恒为a =160m/s 2,t 3时撤去F 。
微元法在电磁学中的应用
微元法在电磁学中的应用
在电磁学中,微元法是一种常见的数学方法,它用于解决涉及电磁场的微分方程问题。
微元法可以将一个复杂的系统分解成许多微小的元素,再对每个微小元素进行推导和计算,最终得到整个系统的解。
下面我们将介绍微元法在电磁学中的应用。
1.微元法在电荷分布和电场强度的计算中的应用
在确定电荷分布和电场强度时,我们可以使用微元法。
我们将空间分成许多小微元,对于每个微元,我们可以计算出其内部的电荷分布和电场强度,然后将所有微元的电场强度叠加起来得到整个空间的电场强度。
微元法可以显著提高计算的准确性和效率。
2.微元法在感应电流和磁场的计算中的应用
在感应电流和磁场的计算中,我们也可以使用微元法。
对于磁场的计算,我们将空间分成许多小微元,对于每个微元,我们可以通过安培定理计算出其内部的电流密度和磁场强度,然后将所有微元的磁场强度叠加起来得到整个空间的磁场。
微元法同样可以显著提高计算的准确性和效率。
3.微元法在电磁波传播中的应用
在电磁波传播中,微元法同样有着重要的应用。
我们将空间划分为许多微小的区域,对于每个区域,我们可以计算出其中的电场和磁场,
然后应用麦克斯韦方程式求得整个空间的电场和磁场。
微元法可以帮助我们更准确、更细致地分析电磁波的传播过程。
综上所述,微元法在电磁学中有着重要的应用。
它可以帮助我们精确地计算电场和磁场、电荷分布、感应电流和磁场等等,为我们深入理解电磁现象提供了有效的数学工具和分析方法。